

FCC RF Exposure Report

FCC ID : 2AAS9-MI10

Equipment : Wi-Fi 6 AX6600 Tri-Radio Indoor Mesh Router

Model No. : MI10

Brand Name : PRISM

Applicant : Browan Communications Incorporation.

Address : No.15-1, Zhonghua Rd., Hsinchu Industrial

Park, Hukou Hsinchu Hsien Taiwan 303

Standard : 47 CFR FCC Part 2.1091

Received Date : Dec. 30, 2021

Tested Date : Jan. 29 ~ Feb. 14, 2022

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen/ Assistant Manager Gary Chang / Manager

Report No.: FA1D3002-01 Page: 1 of 7

Table of Contents

1	MPE EVALUATION OF MOBILE DEVICES	4
1.1	LIMITS FOR GENERAL POPULATION/UNCONTROLLED EXPOSURE	4
1.2	MPE EVALUATION FORMULA	4
1.3	DEVIATION FROM TEST STANDARD AND MEASUREMENT PROCEDURE	4
1.4	MEASUREMENT UNCERTAINTY	4
1.5	MPE EVALUATION RESULTS	5
_		_
2	TEST I ABORATORY INFORMATION	7

Report No.: FA1D3002-01

Page : 2 of 7

Release Record

Report No.	Version	Description	Issued Date
FA1D3002-01	Rev. 01	Initial issue	Mar. 04, 2022

Report No.: FA1D3002-01 Page: 3 of 7

MPE EVALUATION OF MOBILE DEVICES 1

1.1 LIMITS FOR GENERAL POPULATION/UNCONTROLLED EXPOSURE

Frequency Range (MHz)	Power Density (mW /cm²)	Averaging Time (minutes)
300~1500	F/1500	30
1500~100000	1.0	30

1.2 MPE EVALUATION FORMULA

$$Pd = \frac{Pt}{4 * Pi * R^2}$$

Where

Pd= Power density in mW/cm²

Pt= EIRP in mW Pi= 3.1416

R= Measurement distance

1.3 **DEVIATION FROM TEST STANDARD AND MEASUREMENT PROCEDURE**

None

1.4 **MEASUREMENT UNCERTAINTY**

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Parameters	Uncertainty
Conducted power	±0.808 dB

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FA1D3002-01 Page: 4 of 7

1.5 MPE EVALUATION RESULTS

Frequency Range (MHz)	Maximum Conducted Power (dBm)	Rated Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)	Ratio*	Pass / Fail
Non-beamformi	ng mode							
2412~2462 ^{Note1}	29.71	30	4.48	28	0.285	1	0.285	Pass
5180~5240 ^{Note1}	16.14	16.5	6.6	28	0.021	1	0.021	Pass
5745~5825 ^{Note1}	29.89	30	5.92	28	0.397	1	0.397	Pass
5250~5350	17.43	17.5	5.46	28	0.020	1	0.020	Pass
5470~5725	23.09	23.5	6.58	28	0.103	1	0.103	Pass
Beamforming m	Beamforming mode							
2412~2462 ^{Note1}	25.31	25.5	6.75	28	0.170	1	0.170	Pass
5180~5240 ^{Note1}	13.13	13.5	8.39	28	0.016	1	0.016	Pass
5745~5825 ^{Note1}	23.67	24	11.33	28	0.346	1	0.346	Pass
5250~5350	14.37	14.5	7.96	28	0.018	1	0.018	Pass
5470~5725	17.07	17.5	11.87	28	0.088	1	0.088	Pass

Ratio* = Power density / Limit.

Note:

1. Test results of these frequency bands are leveraged from original MPE report, report no. FA1D3002.

2

For 2412-2462 MHz:

Directional gain = $10 \times \log((10^{4.48/20} + 10^{2.94/20})^2/2) = 6.75 \text{ dBi}.$

For 5150~5250MHz:

Directional gain = $10 \times \log((10^{3.95/20} + 10^{6.6/20})^2/2) = 8.39 \text{ dBi}.$

For 5725~5850MHz:

Directional gain = $10 \times \log((10^{5.3/20} + 10^{5.92/20} + 10^{4.72/20} + 10^{5.25/20})^2/4) = 11.33 dBi$.

For 5250~5350:

Directional gain = $10 \times \log((10^{4.4/20} + 10^{5.46/20})^2/2) = 7.96 \text{ dBi}.$

For 5470~5725:

Directional gain = $10 \times \log((10^{5.36/20} + 10^{6.58/20} + 10^{5.11/20} + 10^{6.25/20})^2/4) = 11.87 dBi$.

Report No.: FA1D3002-01 Page: 5 of 7

1.6 MPE EVALUATION OF SIMULTANEOUS TRANSMISSION

Non-beamforming mode

Mode	Max Ratio of Each Mode
2.4GHz Radio 1	0.285
5GHz Radio 2	0.021
5GHz Radio 3	0.397
Sum	0.703
Limit	1
Pass / Fail	Pass

Beamforming mode

Mode	Max Ratio of Each Mode
2.4GHz Radio 1	0.170
5GHz Radio 2	0.018
5GHz Radio 3	0.346
Sum	0.534
Limit	1
Pass / Fail	Pass

Report No.: FA1D3002-01 Page: 6 of 7

2 TEST LABORATORY INFORMATION

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC Service@icertifi.com.tw

==END==

Report No.: FA1D3002-01 Page: 7 of 7