

FCC Co-Location Test Report

FCC ID	:	2AAS9-BW1257
Equipment	:	Tri-Band Wi-Fi AC3000 Indoor Access Point
Model No.	:	BW1257
Brand Name	:	BROWAN
Applicant	:	BROWAN COMMUNICATIONS Co., Ltd.
Address	:	No.15-1, Zhoughua Rd, Hsinchu Industrial Park, Hukou, Hsinchu, Taiwan, R.O.C. 333
Standard	:	47 CFR FCC Part 15.247 47 CFR FCC Part 15.407
Received Date	:	Dec. 18, 2018
Tested Date	:	Dec. 28 ~ Apr. 03, 2019

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Chen

Along Chen/ Assistant Manager

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	.5
1.1	Information	
1.2	The Equipment List	.6
1.3	Test Standards	.8
1.4	Deviation from Test Standard and Measurement Procedure	
1.5	Measurement Uncertainty	.8
2	TEST CONFIGURATION	.9
2.1	Testing Condition	.9
2.2	The Worst Test Modes and Channel Details	.9
3	TRANSMITTER TEST RESULTS	10
3.1	Unwanted Emissions into Restricted Frequency Bands	10
4	TEST LABORATORY INFORMATION	32

Release Record

Report No.	Version	Description	Issued Date
FR8D1801CO	Rev. 01	Initial issue	Jun. 19, 2019

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.247(d)			
15.407(b)		[dBuV/m at 3m]: 67.83MHz 38.99 (Margin -1.01dB) - QP	Pass
15.209			

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared values of gain for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of the gain.

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

WLAN	
Operating Frequency	802.11b/g/n: 2412 MHz ~ 2462 MHz 802.11a/n/ac: 5180 MHz ~ 5240 MHz, 5745 ~ 5825 MHz
Modulation Type	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n/ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
вт	
Operating Frequency	2402 MHz ~ 2480 MHz
Modulaton Type	Bluetooth 4.1 LE: GFSK Bluetooth BR V4.1 (1Mbps): GFSK Bluetooth EDR V4.1 (2Mbps): π/4-DQPSK Bluetooth EDR V4.1 (3Mbps): 8-DPSK

1.1.2 Antenna Details

VVIFI

Ant No	Turno	Connector	Operating Frequencies (MHz) / Antenna Gain (dBi)			
Ant. No. Type		Connector	2400~2483.5	5150~5250	5725~5850	
1	Dipole	R-SMA	3.4	3.3	4.3	
2	Dipole	R-SMA	2.8	2.7	3.4	
2			2.8	2.7	3.4	

Note: The antenna with highest gain was selected for final testing in this test report.

ΒT

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	Dipole	R-SMA	3.4	
2	Dipole	R-SMA	2.8	

Note: The antenna with highest gain was selected for final testing in this test report.

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from adapter 55Vdc from POE
-------------------	--------------------------------------

Note: The POE power supplies are not bundled in market.

1.2 The Equipment List

Test Item	RF Conducted							
Test Site	(TH01-WS)							
Tested Date	Apr. 02 ~ Apr. 03, 201	Apr. 02 ~ Apr. 03, 2019						
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until						
Spectrum Analyzer	R&S	FSV40	101063	Apr. 16, 2018	Apr. 15, 2019			
Power Meter	Anritsu	ML2495A	1241002	Oct. 09, 2018	Oct. 08, 2019			
Power Sensor	Anritsu	MA2411B	1207366	Oct. 09, 2018	Oct. 08, 2019			
DC POWER SOURCE	GW INSTEK	GPC-6030D	EM892433	Oct. 25, 2018	Oct. 24, 2019			
AC POWER SOURCE	APC	AFC-500W	F312060012	Nov. 29, 2018	Nov. 28, 2019			
Measurement Software	Sporton	SENSE-15247_DTS	V5.9	NA	NA			
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission						
Test Site	966 chamber 3 / (03CH03-WS)						
Tested Date	Mar. 19, 2019						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101499	Jan. 07, 2019	Jan. 06, 2020		
Receiver	R&S	ESR3	101658	Dec. 11, 2018	Dec. 10, 2019		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 19, 2018	Apr. 18, 2019		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Jan. 07, 2019	Jan. 06, 2020		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2018	Nov. 14, 2019		
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 09, 2018	Nov. 08, 2019		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 08, 2018	Oct. 07, 2019		
Preamplifier	EMC	EMC02325	980187	Aug. 24, 2018	Aug. 23, 2019		
Preamplifier	Agilent	83017A	MY53270014	Aug. 09, 2018	Aug. 08, 2019		
Preamplifier	EMC	EMC184045B	980192	Aug. 09, 2018	Aug. 08, 2019		
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/ 4	Oct. 01, 2018	Sep. 30, 2019		
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Oct. 01, 2018	Sep. 30, 2019		
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Oct. 01, 2018	Sep. 30, 2019		
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Oct. 01, 2018	Sep. 30, 2019		
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Oct. 01, 2018	Sep. 30, 2019		
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Oct. 01, 2018	Sep. 30, 2019		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		

Test Item	Radiated Emission						
Test Site	966 chamber 3 / (03CH03-WS)						
Tested Date	Dec. 28, 2018						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R& S	FSV40	101499	Jan. 03, 2018	Jan. 02, 2019		
Receiver	R&S	ESR3	101658	Dec. 11, 2018	Dec. 10, 2019		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 19, 2018	Apr. 18, 2019		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Jan. 18, 2018	Jan. 17, 2019		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2018	Nov. 14, 2019		
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 09, 2018	Nov. 08, 2019		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 08, 2018	Oct. 07, 2019		
Preamplifier	EMC	EMC02325	980187	Aug. 24, 2018	Aug. 23, 2019		
Preamplifier	Agilent	83017A	MY53270014	Aug. 09, 2018	Aug. 08, 2019		
Preamplifier	EMC	EMC184045B	980192	Aug. 09, 2018	Aug. 08, 2019		
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/ 4	Oct. 01, 2018	Sep. 30, 2019		
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Oct. 01, 2018	Sep. 30, 2019		
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Oct. 01, 2018	Sep. 30, 2019		
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Oct. 01, 2018	Sep. 30, 2019		
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Oct. 01, 2018	Sep. 30, 2019		
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Oct. 01, 2018	Sep. 30, 2019		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		

1.3 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 47 CFR FCC Part 15.407 ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.4 Deviation from Test Standard and Measurement Procedure

None

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Radiated emission ≤ 1GHz	±3.96 dB
Radiated emission > 1GHz	±4.51 dB

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
Radiated Emissions	03CH03-WS	24°C / 61-65%	Roger Lu Akun Chung
Conducted Emissions	TH01-WS	21°C / 63%	Roger Lu

➢ FCC Designation No.: TW0009

➤ FCC site registration No.: 207696

➢ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Channel	Data Rate (Mbps)	Test Configuration
Radiated Emissions ≤1GHz	2.4G 11b + 5G 11a + 5G 11a	CH06 + CH48 + CH157	1 + 6 + 6	1, 2
	BLE + 5G 11a + 5G 11a	CH39 + CH48 + CH157	1 + 6 + 6	3, 4
	BT EDR + 5G 11a + 5G 11a	CH78 + CH48 + CH157	1 + 6 + 6	5, 6
Radiated Emissions >1GHz	2.4G 11b + 5G 11a + 5G 11a	CH06 + CH48 + CH157	1 + 6 + 6	2
	BLE + 5G 11a + 5G 11a	CH39 + CH48 + CH157	1 + 6 + 6	4
	BT EDR + 5G 11a + 5G 11a	CH78 + CH48 + CH157	1 + 6 + 6	6
Antenna Port Conducted Emissions	2.4G 11b + 5G 11a BLE + 5 G 11a BT EDR + 5G 11a	Ch06 + Ch48 CH39 + CH157 CH78 + CH157	1 + 6 1 + 6 1 + 6	7 8 9

NOTE:

- 1. The EUT had been tested by following test configurations.
 - 1) Configuration 1 : Adapter mode, Wi-Fi 2.4 GHz + 5.15 ~ 5.25 GHz + 5.725 ~ 5.85 GHz
 - 2) Configuration 2 : POE mode, Wi-Fi 2.4 GHz + 5.15 ~ 5.25 GHz + 5.725 ~ 5.85 GHz
 - 3) Configuration 3 : Adapter mode, Bluetooth LE + Wi-Fi 5.15 ~ 5.25 GHz + 5.725 ~ 5.85 GHz
 - 4) Configuration 4 : POE mode, Bluetooth LE + Wi-Fi 5.15 ~ 5.25 GHz + 5.725 ~ 5.85 GHz
 - 5) Configuration 5 : Adapter mode, Bluetooth EDR + Wi-Fi 5.15 ~ 5.25 GHz + 5.725 ~ 5.85 GHz
 - 6) Configuration 6 : POE mode, Bluetooth EDR + Wi-Fi 5.15 ~ 5.25 GHz + 5.725 ~ 5.85 GHz
 - 7) Configuration 7 : POE mode, Wi-Fi 2.4 GHz + 5.15 ~ 5.25 GHz
 - 8) Configuration 8 : POE mode, Bluetooth LE + Wi-Fi 5.725 ~ 5.85 GHz
 - 9) Configuration 9 : POE mode, Bluetooth EDR + Wi-Fi 5.725 ~ 5.85 GHz

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

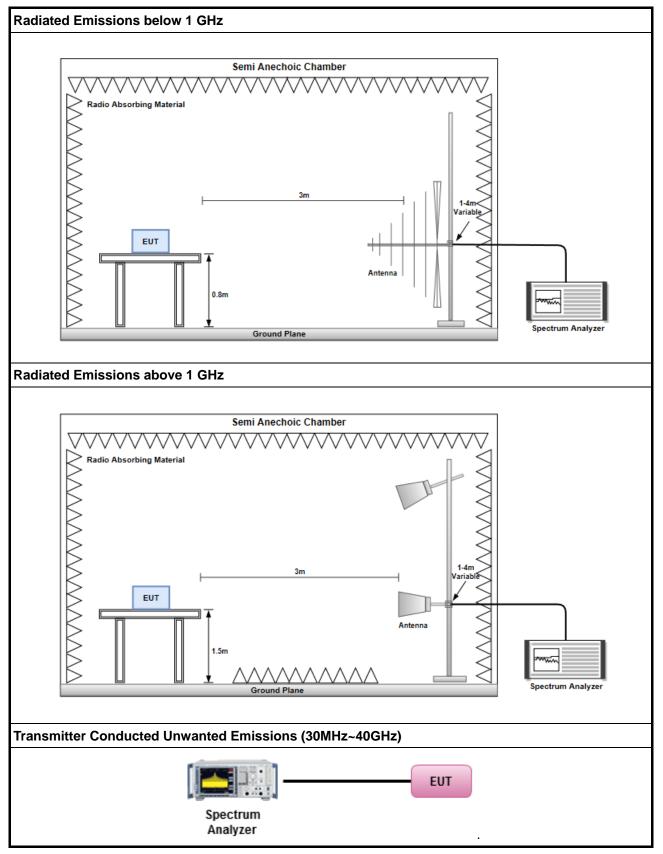
	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

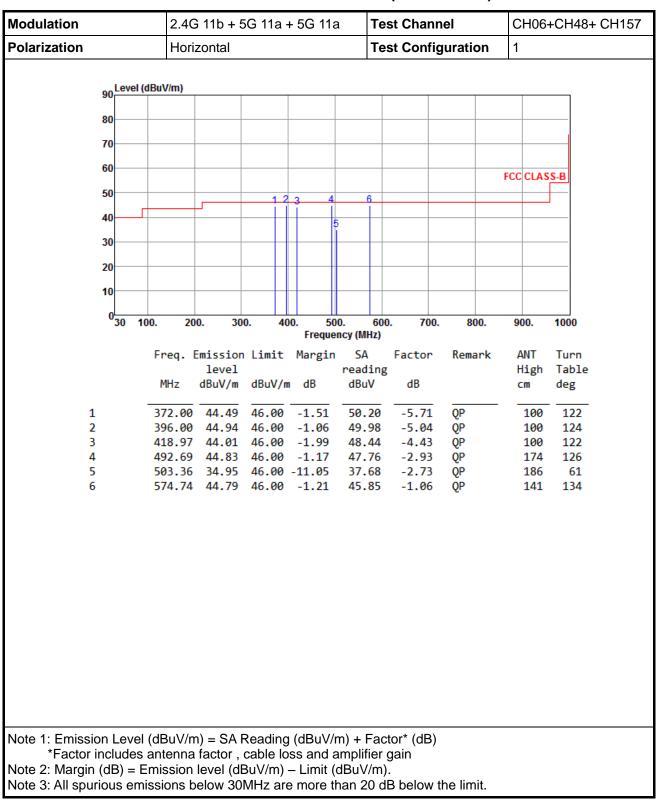
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.1.2 Test Procedures


- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.1.3 Test Setup

3.1.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Vodulation	2.40	G 11b + 5	5G 11a +	- 5G 11	а	Tes	st Chann	el	CH06+CH48+ CH157		
Polarization	Verti	Vertical Test Configuration 1									
Level (d	2										
90 <mark>Level (di</mark>	suv/m)										
80						_					
70											
10											
60									FCC CLAS	S-B	
50											
				34		6				J	
40 1											
30											
20											
20											
10											
0 30 100											
⁰ 30 100	. 20	0. 30	0. 40		00. ency (MH	600. 17)	700.	800.	900.	1000	
	[nog]	Emiccion	Limit				Factor	Remark	ANT	Turn	
	Freq. i	Emission level	LIWIC	mangri	read:		Factor	кешагк	High	Table	
	MHz	dBuV/m	dBuV/m	dB	dBu		dB		cm	deg	
_						_					
1			40.00	-4.92			-8.09	QP	100	120	
2		44.98		-1.02			-5.04	QP	111	182	
		42.29 41.66		-3.71 -4.34			-3.81 -3.32	Peak QP	100	124	
		41.88					-2.94	QP QP	100		
6		41.61					-1.05	Peak			
lote 1: Emission Level (dBu\//m	n) = SA F	Reading	(dBuV/	/m) + F	act	or* (dR)				
*Factor includes a											
lote 2: Margin (dB) = Er											
					,						

Modulation	2.4G	11b + 5	G 11a +	- 5G 11a	a T	lest (Chanr	nel	CH06	+CH48+ CH15	
Polarization	Horiz	zontal			٦	lest (Config	guration	2		
Level	(dBuV/m)										
90											
80											
70											
60											
60									FCC CLAS	SS-B	
50											
40 12			3	4 5	6						
30											
50											
20						_					
10											
0	100. 20	0. 300). 40			600.	700.	800.	900.	1000	
				-	ncy (MH)					-	
	Freq. E	mission level	Limit	Margin	SA readi		actor	Remark	ANT High	Turn Table	
	MHz	dBuV/m	dBuV/m	dB	dBuV		dB		cm	deg	
1		35.78	40.00	-4.22	45.3		-9.57	QP	100	57	
2 3	76.56 395.69	37.77 39.98	40.00 46.00	-2.23 -6.02	49.8 45.0		12.06 -5.04	QP Peak	133	153	
4		37.16		-8.84	41.5		-4.43	Peak			
5		37.39			40.3		-2.93	Peak			
6	575.14	37.86	46.00	-8.14	38.9	1 -	-1.05	Peak			
Note 1: Emission Leve	el (dBuV/m) = SA F	Reading	(dBuV/r	n) + F:	actor	* (dB)				
*Factor includes											
Note 2: Margin (dB) =	Emission	level (dE	BuV/m) -	– Limit (dBuV/r	m).					
Note 3: All spurious er	nissions b	elow 30ľ	MHz are	e more th	nan 20	dB b	below t	the limit.			

Modulation	2.40	6 11b + 5	5G 11a -	- 5G 11a	a 1	Fest Char	nnel	CH06	+CH48+ CH1
Polarization	Verti	cal			٦	Fest Conf	iguration	2	
Leve	l (dBuV/m)								
80									
70									—
60								FCC CLAS	SS-B
50									
40 1 2	3		4	5 6					
30									
20									
10									
0 <mark>30</mark>	100. 20	0. 30	0. 40			500. 70	0. 800.	900.	1000
				-	ncy (MH)	-			_
	Freq. 1	mission level	Limit	Margin	SA readi	Factor	Remark	ANT High	Turn Table
	MHz		dBuV/m	dB	dBuV	-		cm	deg
1	45.52	36.82	40.00	-3.18	44.9	1 -8.09	QP	100	95
2	67.83	38.99	40.00	-1.01	49.1	0 -10.11	L QP	100	1
3 4	78.18	38.88 40.53	40.00 46.00	-1.12 -5.47	51.3 45.5		-	161	181
5	418.97	40.65	46.00	-5.35	45.0	8 -4.43	B Peak		
6	492.69	38.92	46.00	-7.08	41.8	5 -2.93	B Peak		
Note 1: Emission Leve	el (dBuV/m	n) = SA F	Reading	(dBuV/r	m) + Fa	actor* (dB	3)		
*Factor include	s antenna	factor,	cable lo	ss and a	amplifie	er gain	,		
Note 2: Margin (dB) =							, the limit		
Note 3: All spurious er	HISSIONS D		ivinz afe	e more ti	nan 20				

Modulation	BLE	+ 5G 11	a + 50	G 11a	Т	est Chann	nel	CH39	+CH48+ CH15			
Polarization	Hori	HorizontalTest Configuration3										
90 Level (de	uV/m)											
90	Juvilly											
80												
70												
60												
								FCC CLAS	S-B			
50			12:	3	6 51				<u></u>			
40												
30												
20												
20												
10												
0 <mark></mark>	. 20	0. 30		400. 50	0 6	00. 7 00.	800.	900.	1000			
50 100	. 20	0. 50			ncy (MHz)		000.	500.	1000			
	Freq. I		Limit	t Margin		Factor	Remark	ANT	Turn			
	MU-	level	40.37	/	readin	-		High	Table			
	MHz	dBuV/m	abuv,	m ab	dBuV	dB		cm	deg			
	356.53	44.43	46.00	-1.57	50.57		QP	100	219			
		44.95			50.71		QP	100	122			
	384.63	44.90 42.63			50.25 45.39		QP Peak	100	124			
		41.37			42.74		QP	151				
6	574.75	44.76	46.00	9 -1.24	45.82	-1.06	QP	142	138			
Note 1: Emission Level (
*Factor includes a Note 2: Margin (dB) = En												
NOTE Z. INITIAL (UD) = EI	112210[]	ievei (ur	JU V/III) — LIIIII ((JDU V/II	17.						

Modulation			BLE	+ 5G 11	a + 5G	11a	Т	est Ch	anne	l	CH39+CH48+ CH157		
Polarization			Verti	Vertical Test Configuration 3									
	L.	evel (dBi	uV/m)										
	90												
	80												
	70-												
	60								_		FCC CLAS	S-B	
	50								_				
	40-4	2			34	56							
	- 11												
	30								_				
	20												
	10												
	0 ¹¹ 30	0 100.	20	0. 30	0. 40				700.	800.	900.	1000	
						-	ncy (MHz	-					
		F	req. E	mission level	Limit	Margin		Fact	or	Remark	ANT	Turn	
			MHz	dBuV/m	dBuV/m	dB	readi dBuV	-			High cm	Table deg	
	1		40.22		40.00	-2.62	45.8			QP	100	105	
	2 3			38.13 42.02		-1.87 -3.98	46.14			QP Peak	100	105	
	4			42.02			46.8			Peak			
	5			42.44			45.3			Peak			
	6	5	505.22	41.63	46.00	-4.37	44.3	3 -2.	70	Peak			
Note 1: Emiss	sion L	evel (d	Bu\//m	a = SAF	Reading	(dBu\//r	n) + F	actor* (c	IB)				
						ss and a)				
Note 2: Margi													
Note 3: All sp									، مالد ،	1			

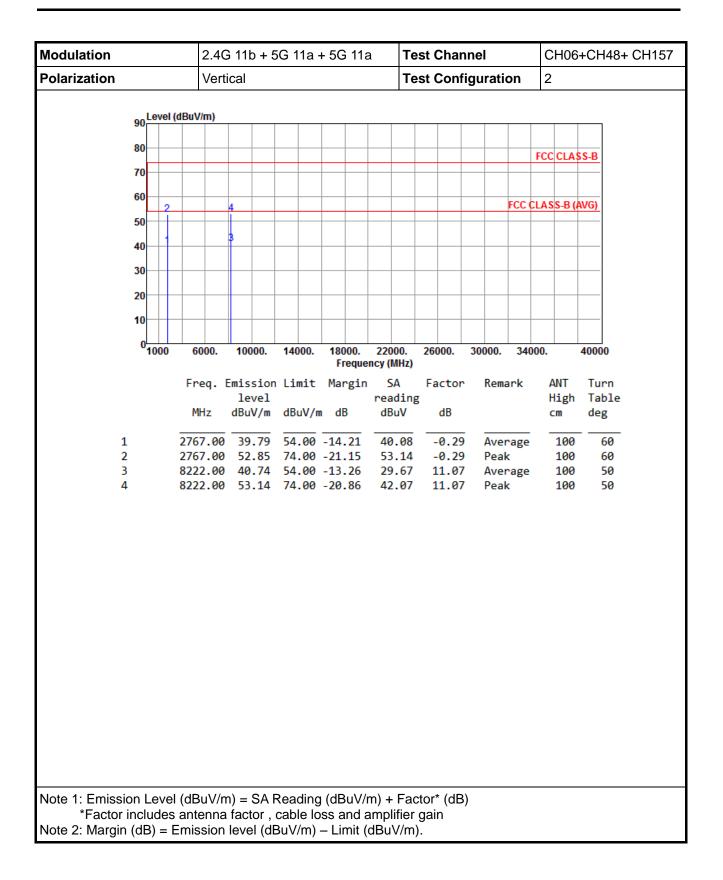
Modulation	BLE	+ 5G 11	a + 5G	11a	٦	Fest	t Chanr	nel	CH39+CH48+ CH15		
Polarization	Hori	zontal			٦	Fest	t Config	guration	4		
Lev	el (dBuV/m)										
90											
80						-					
70						_					
60											
									FCC CLAS	SS-B	
50			3								
40	12		1	4 5 I I							
30						_					
20											
10											
0 ^L 30	100. 20	0. 300). 40)0. (ency (MHz	600. 	700.	800.	900.	1000	
	Enor	Emission	limi+				Factor	Remark	ANT	Turn	
	rreq.	level	LIMIC	nargin	readi		Factor	Nellidirk	High		
	MHz	dBuV/m	dBuV/m	dB	dBuV	_	dB		cm	deg	
1	64.25	35.77	40.00	-4.23	45.2	1 -	-9.44	Q.P.	100	59	
2		37.83	40.00	-2.17	49.8		-12.01	QP	135	151	
3		39.93		-6.07	44.9		-5.02	Peak			
4 5		37.44 37.66			41.8 40.5		-4.44 -2.91	Peak Peak			
6		37.96			39.0		-1.04	Peak			
Note 1: Emission Lev	/el (dBuV/n	n) = SA F	Reading	(dBuV/i	m) + F:	acto	or* (dB)				
*Factor includ	es antenna	factor, o	cable lo	ss and a	amplifie	er ga					
Note 2: Margin (dB) =											
Note 3: All spurious e	emissions b	elow 30	MHz are	e more t	han 20	dB	below	the limit.			

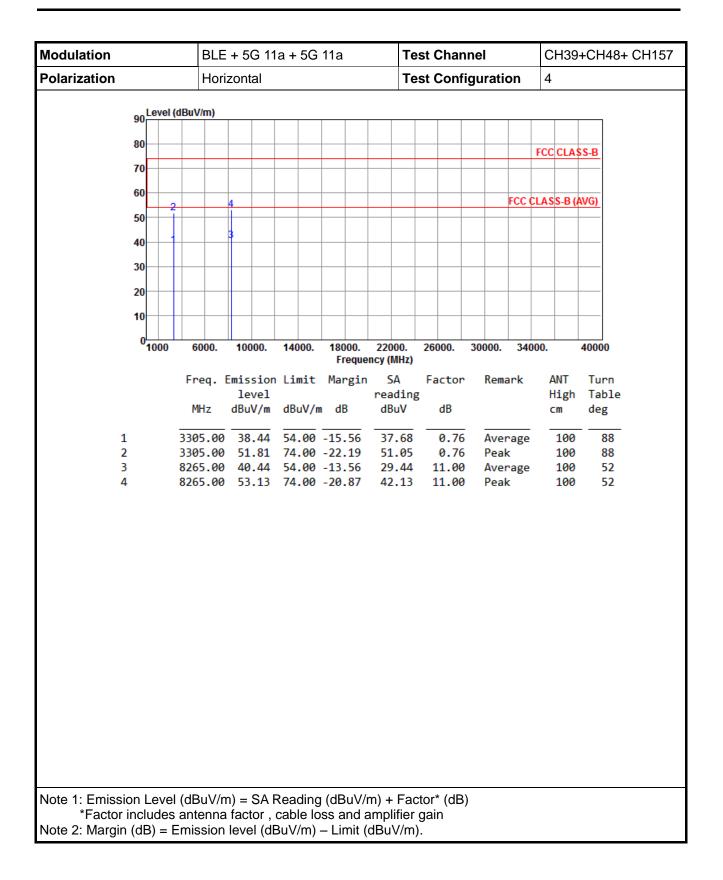
Modulation	BLE	+ 5G 11	a + 5G	11a	Т	est Chanr	nel	CH39+CH48+ CH15		
Polarization	Verti	cal		guration	a 4					
90 Level (d	BuV/m)									
90										
80										
70										
60										
60								FCC CLAS	SS-B	
50									<u>}</u>	
40 23			4	5 6						
30										
20										
10				+						
0 <mark>44 144</mark> 30 10	0. 20	0. 30	0. 40		0. 6 ncy (MHz	500. 700. 1)	. 800.	900.	1000	
	Frea. E	mission	Limit	Margin		Factor	Remark	ANT	Turn	
		level			readi			High		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg	
1	45.43	36.31	40,00	-3.69	44.40	0 -8.09	QP	100	97	
2		38.93	40.00	-1.07	48.4		QP	100	5	
3	79.43		40.00	-1.04	51.6		QP	158	183	
4		40.24			45.2		Peak			
5		40.44 38.64			44.89		Peak Peak			
-				,,,,,,						
Note 1: Emission Level (Factor includes a*										
Note 2: Margin (dB) = Ei										
Note 3: All spurious emis					20 V/I					

Modulation	BTI	EDR + 50	G 11a +	5G 11a	1	Test C	hann	el	CH78	+CH48+ CH15
Polarization	Hori	zontal			٦	Fest C	Config	guration	5	
Lev	vel (dBuV/m)									
90										
80						_				
70										
60										
00									FCC CLAS	S-B
50			1.23		_6					<u>}</u>
40					5					
30										
20										
10										
0	100. 20)0. 30	0 40)0. <u>5</u> 0		600.	700.	800.	900.	1000
50	100. 20	JU. 30	0. 41		ncy (MH)		700.	800.	900.	1000
	Freq.	Emission	Limit	Margin	SA	Fa	ctor	Remark	ANT	Turn
		level			readi				High	
	MHz	dBuV/m	dBuV/n	ı dB	dBuV		dB		cm	deg
1	370.00	44.97	46.00	-1.03	50.7	3 -	5.76	QP	100	123
2	384.77			-1.08	50.2		5.35	QP	100	123
3		44.23 42.55		-1.77 -3.45	49.2		5.04 2.76	QP Peak	100	222
5		42.55			45.3 42.8		1.36	QP	153	
6		44.89			45.9		1.06	QP	143	140
Note 1: Emission Le	vel (dBuV/r	n) = SA F	Readinc	(dBuV/r	n) + F	actor*	(dB)			
*Factor includ	les antenna	factor,	cable lo	ss and a	mplifie	ər gair				
Note 2: Margin (dB)										
Note 3: All spurious	emissions k	pelow 30	MHz are	e more th	nan 20	dB be	elow t	ne limit.		

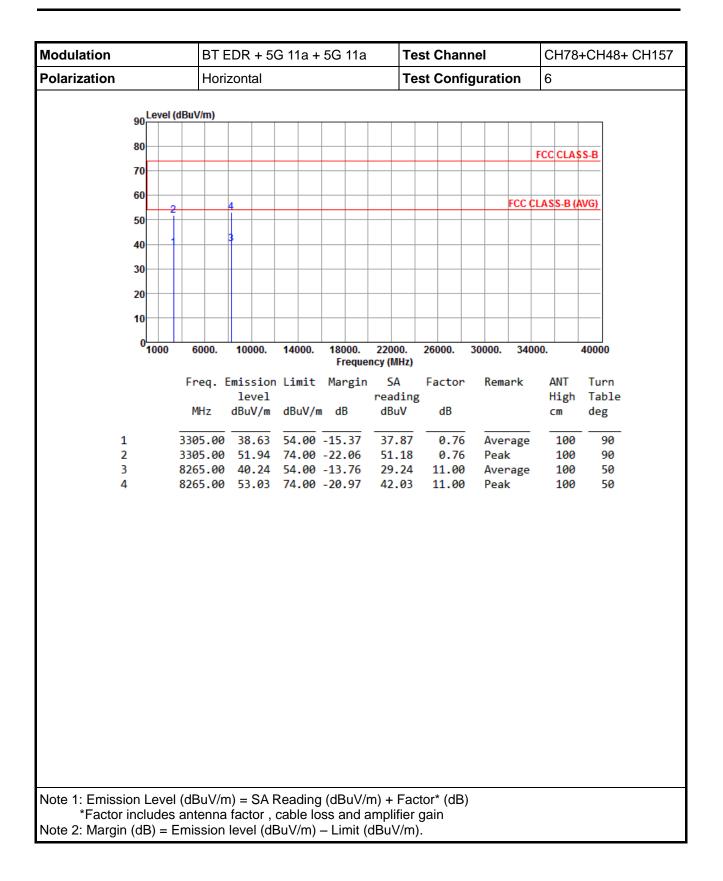
Modulation	BTE	EDR + 50	G 11a +	5G 11a		Test (Chann	el	CH78+CH48+ CH15			
Polarization	Vert	ical			-	Test (Config	uration	5			
l evel ((dBuV/m)											
90												
80												
70												
60									FCC CLAS	SS-B		
50												
40 -2			34	56								
30												
20												
10												
0 <mark>111 30 1</mark>	00. 20	0. 30	0. 40	0. 50	0.	600.	700.	800.	900.	1000		
				Freque	ncy (MH	Z)						
	Freq.		Limit	Margin			nctor	Remark	ANT	Turn		
		level	15.144	10	readi				High			
	MHz	dBuV/m	dBuV/m	I db	dBuV	/	dB		CM	deg		
1	40.02	37.08	40.00	-2.92	45.5	54 -	8.46	QP	100	107		
2		37.99		-2.01	46.0		8.02	QP	100	108		
3		41.20			46.9		5.73	Peak				
4 5		41.86 42.32			46.9 45.2		5.04 2.93	Peak Peak				
6		41.58			44.2		2.69	Peak				
lote 1: Emission Level												
*Factor includes							n					
lote 2: Margin (dB) = I								ha limit				
lote 3: All spurious em	112210112				iai 20	ud D						

Modulation	BTE	EDR + 50	G 11a +	5G 11a	٦	Гes	t Chann	el	CH78+CH48+ CH15				
Polarization	Hori	zontal			1	Гes	t Config	juration	6	6			
Lovel (dBu\//m\												
90 Level (
80						_							
70													
60						+			FCC CLAS	SS-B			
50						_							
10			3		6	-				-			
40 1 ²				4 0	Ĭ								
30						+-							
20													
10						-							
0 30 1	00. 20	0. 30	0. 40	0. 50	0 4	600.	700.	800.	900.	1000			
50 10	JJ. 20	J. JU	v. 40		ncy (MH		700.	000.	300.	1000			
	Freq.	Emission	Limit	Margin	SA		Factor	Remark	ANT	Turn			
		level			readi				High				
	MHz	dBuV/m	dBuV/m	dB	dBuV		dB		cm	deg			
1	64.38	35.68	40.00	-4.32	45.1	5	-9.47	QP	100	62			
2		37.68		-2.32	49.6		-11.99	QР	141	156			
3		39.88		-6.12	44.9		-5.03	Peak					
4		37.32		-8.68	41.7		-4.44	Peak					
5		37.52 37.74			40.4			Peak Peak					
0	575.25	57.74	40.00	-0.20	50.7	0	-1.04	reak					
Note 1: Emission Level	(dBuV/n	n) = SA F	Reading	(dBuV/r	n) + Fa	acto	or* (dB)						
*Factor includes	antenna	factor,	cable lo	ss and a	mplifie	ər g							
Note 2: Margin (dB) = E													
Note 3: All spurious em	issions b	elow 30	MHz are	e more th	nan 20	dB	below t	he limit.					

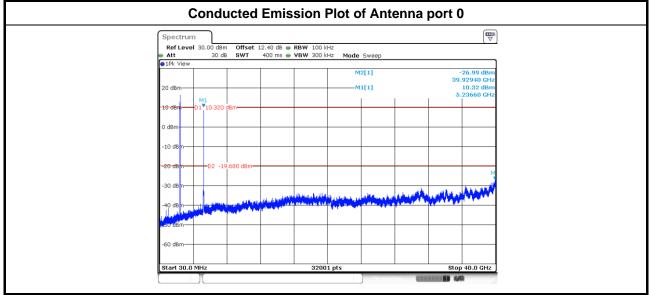

Modulation	BT E	EDR + 50	G 11a +	5G 11a		Tes	t Chann	nel	CH78+CH48+ CH15			
Polarization	Verti	cal		6	6							
Loval	(dDu)//m)											
90	(dBuV/m)											
80						_						
70												
60									FCC CLAS	SS-B		
50												
40 . 23	3		4	5 6						-		
40 1 2				Ĭ								
30						_						
20												
20												
10										—		
0	400 20	0 20	0 40	0 50	0	<u> </u>	700	000	000	4000		
30	100. 20	0. 30	0. 40	0. 50 Freque		600. z)	700.	800.	900.	1000		
	Frea, F	mission	Limit	Margin	SA		Factor	Remark	ANT	Turn		
		level			readi		, accor	include in	High	Table		
	MHz	dBuV/m	dBuV/m	dB	dBuV		dB		cm	deg		
4	45.34		10.00									
1 2	45.34 67.47		40.00 40.00	-3.53 -1.02	44.5 49.0		-8.10 -10.04	QP QP	100 100	99 6		
3		38.86					-12.69	QP QP	160			
4		40.33			45.3		-5.02	Peak				
5	418.25	40.36	46.00	-5.64	44.8	31	-4.45	Peak				
6	491.89	38.39	46.00	-7.61	41.3	33	-2.94	Peak				
			.									
Note 1: Emission Leve												
*Factor includes = Note 2: Margin (dB)							am					
Note 2: Margin (dB) =							helow +	ha limit				
						, uD						

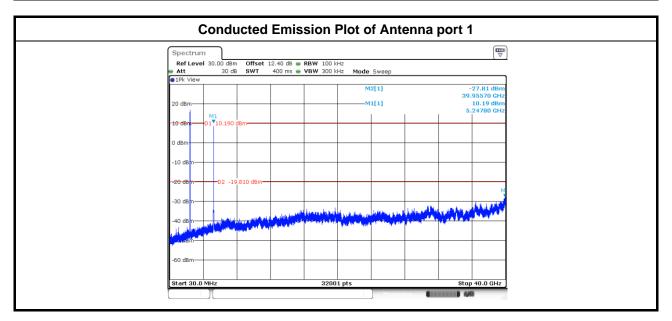

Modulation			2.40	6 11b + 5	5G 11a ·	+ 5G 11a	a To	est Cha	nnel		CH06	CH06+CH48+ CH157			
Polarization			Hori	zontal			Т	est Cor	figurat	ion	2				
		evel ((dBuV/m)												
	90														
	80										FCC CLA	SS R			
	70														
	60	2		4						FCC	CLASS-B (AVG)			
	50														
	40	1		3											
	30-														
	20														
	10									_					
	0														
	-1	000	6000.	10000.	14000.	18000. Freque	22000. ncy (MHz)	26000.	30000.	340)00.	40000			
			Freq F	mission	limit	Margin		Facto	r Ren	ark	ANT	Turn			
				level	LIMIC	nu gri	readin				High				
			MHz	dBuV/m	dBuV/n	n dB	dBuV	dB			cm	deg			
	1		2767.00	39 70	54 00	14 30	39.99	-0.2		rage	100	90			
	2		2767.00				53.35			_	100				
	3		8222.00	40.88	54.00	-13.12	29.81	11.0	7 Ave	rage		60			
	4		8222.00	53.20	74.00	-20.80	42.13	11.0	7 Pea	ık	100	60			
ote 1: Emiss			dBuV/m antenna						3)						

3.1.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

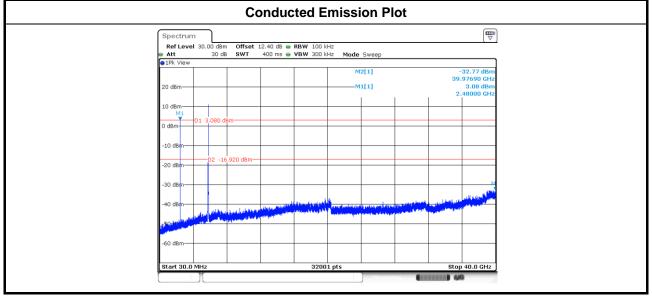


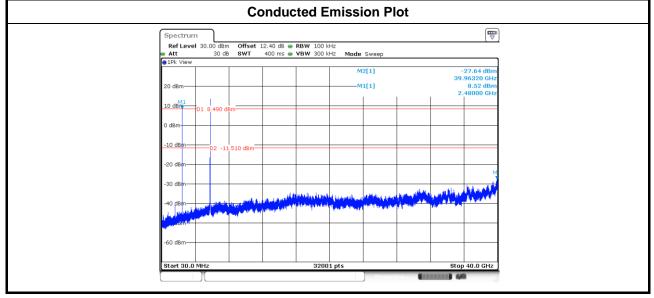
Modulation	BLE	BLE + 5G 11a + 5G 11a								Test Channel					CH39+CH48+ CH15			
Polarization		Verti	cal					Те	est (Conf	igura	atio	n	4				
90Lev	vel (dBi	uV/m)																
90																		
80				_			_							FCC	CLAS	SS-B		
70				_			_						_					
60																		
	2		4									F	CC C	LAS	S-B (/	AVG)		
50																		
40	-1		3	_														
30				_														
20																		
20																		
10													-					
0 <mark></mark>	00	6000.	10000.	14	000.	18000.	2	2000.	260	000.	3000)0.	340	00.		40000		
								(MHz)										
	F	Freq. E			mit	Margi				ctor	R	ema	rk		NT	Turr		
		MHz	level dBuV/r			, dB		ading BuV		dB				H: CI	igh m	Tabl deg	.e	
		1.117	ubuv/i	" UD	uv/i	i ub		Duv		ub				C		ueg		
1		305.00						7.69		0.76		ver			100			
2 3		305.00						1.03 9.42		0.76		eak ver			100 100			
4		265.00						1.93		1.00		eak			100			
Note 1: Emission Lev)							
*Factor includ										n								
Note 2: Margin (dB)	= Em	iission	ievel (авил	<u>/m)</u>		(dB	uv/m).									




Modulation	BTE	EDR + 50	G 11a +	5G 11a	Те	est Chani	nel	CH78+CH48+ CH15				
Polarization	Vert	Vertical Test Configuration 6										
Loval	(dBu)//m)											
90	(dBuV/m)											
80								FCC CLA	SS-B			
70												
60	2	4					FCC C	LASS-B (AVG)			
50	2											
40	•	3										
30												
20												
10												
0 <mark>0</mark>	6000.	10000.	14000.	18000.	22000.	26000.	30000. 340	00	40000			
1000	0000.	10000.	14000.		ncy (MHz)		50000. 540	00.	40000			
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table			
	MHz	dBuV/m	dBuV/m	dB	dBuV	dВ		cm	deg			
1	3305.00	38.66	54.00	-15.34	37.90	0.76	Average	100				
2	3305.00	51.97	74.00	-22.03	51.21	0.76	Peak	100	30			
3 4		40.26 53.09					Average Peak	100 100				
Noto 1: Emission Laura) o o din m			otor* (dD)						
Note 1: Emission Leve *Factor includes												
Note 2: Margin (dB) =												

3.1.6 Conducted Emissions (30MHz~40GHz)


Test Configuration 7 (2.4G 11b + 5G 11a)



Test Configuration 8(BLE + 5 G 11a)

Test Configuration 9(BT EDR + 5 G 11a)

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—