	BUREAU VERITAS
	FCC Test Report
Report No.:	RF190827C16
FCC ID:	2AARN-EA702C1U
Contains module FCC ID:	2ACOE-WG209-1
Test Model:	EA702C1U
Received Date:	Aug. 27, 2019
Test Date:	Sep. 25 ~ Sep. 26, 2019
Issued Date:	Oct. 25, 2019
	PHIHONG TECHNOLOGY CO., LTD.
Address:	No. 568, Fuxing 3rd Rd., Guishan District, Taoyuan City 333 Taiwan
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
	Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location:	No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN
FCC Registration / Designation Number:	788550 / TW0003
	lac-mra
	Testing Laboratory 2021
only with our prior written permission. The report are not indicative or representative unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptare mention, the uncertainty of measuremen	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ice of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. t to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF190827C16

Table of Contents

Relea	se Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
2.1 2.2		
3	General Information	6
-	1 Test Mode Applicability and Tested Channel Deta	7
3.3		
3.4		
4	Test Types and Results	9
4.1	Radiated Emission Measurement	9
4.1.	2 Test Instruments	10
4.1.	Deviation from Test Standard	.11
4.3		
4.3.		
4.3.	2 Test Setup	45
4.3.	3 Test Instruments	45
	Certificate of Conformity. 4 Summary of Test Results 5 2.1 Measurement Uncertainty 5 2.2 Modification Record 5 General Information 6 3.1 General Description of EUT 6 3.2 Description of Test Modes 6 3.1 General Description of Full 6 3.1 Configuration of System under Test 8 3.4 General Description of Applied Standards 8 3.4 General Description of Applied Standards 8 3.4 General Description of System under Test 9 4.1 Radiated Emission Measurement 9 4.1.1 Limits of Radiated Emission Measurement 9 4.1.2 Test Instruments 10 4.1.3 Test Standard 11 4.1.4 Deviation from Test Standard 12 4.1 Test Results 13 4.2 Conducted Emission Measurement 37 4.2.1 Test Results 37 4.2.2 Test Results 38 4.2.3 Test Res	
5		
-		
Thhe		JZ

Release Control Record

Issue No.	Description	Date Issued
RF190827C16	Original release	Oct. 25, 2019

1 Certificate of Conformity

Product:	AC EV Charger
Brand:	PHIHONG
Test Model:	EA702C1U
Sample Status:	Engineering sample
Applicant:	PHIHONG TECHNOLOGY CO., LTD.
Test Date:	Sep. 25 ~ Sep. 26, 2019
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)
	47 CFR FCC Part 15, Subpart C (Section 15.215)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	Celine Chou / Se	enior Specialist	,	Date:	Oct. 25, 2019
Approved by :	Bruce Chen / Senio	r Project Engineer	,	Date:	Oct. 25, 2019

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)						
FCC Clause	Test Item	Result	Remarks			
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -0.47dB at 13.56130MHz			
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	Pass	Meet the requirement of limit. Minimum passing margin is -70.0dB at 13.56MHz.			
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	Pass	Meet the requirement of limit.			
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	Pass	Meet the requirement of limit.			
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	Pass	Meet the requirement of limit. Minimum passing margin is -0.4dB at 564.04MHz.			
15.225 (e)	The frequency tolerance	Pass	Meet the requirement of limit.			
15.215 (c)	20dB Bandwidth	Pass	Meet the requirement of limit.			

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.86 dB
	200MHz ~1000MHz	3.87 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	AC EV Charger
Brand	PHIHONG
Test Model	EA702C1U
Sample Status	Engineering sample
Power Supply Rating	200-240Vac, 50/60Hz, Max. 32A
Modulation Type	ASK
Operating Frequency	13.56MHz
	Type A: 106kbit/s
Data Rate	Type B: 106kbit/s
	Type F: 424kbit/s
	Type A: 12.0dBuV/m (30m)
Field Strength	Type B: 14.0dBuV/m (30m)
	Type F: 13.9dBuV/m (30m)
Antenna Type	PCB antenna
	Wall Bracket, Cable Hook, Bottom Case Hook x 2, Screw M4, Screw M5,
Accessory Device	Expansion Screw, Key, RFID Card, Hex Wrench T8
Data Cable Supplied	NA

3.2 Description of Test Modes

1 channel is provided to this EUT

Channel	Freq. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Deta

EUT Configure		Applic	able to		Description	
Mode	RE	PLC	FS	EB		
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Where RE: Radiated Emission			PLC: Power Line Conducted Emission			
FS: Frequency Stability		EB: 20dB Bandwidth measurement				

Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.

Radiated Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate
-	1	1	ASK	Type A: 106kbit/s
-	1	1	ASK	Type B: 106kbit/s
-	1	1	ASK	Type F: 424kbit/s

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate
-	1	1	ASK	Type A: 106kbit/s
-	1	1	ASK	Type B: 106kbit/s
-	1	1	ASK	Type F: 424kbit/s

Frequency Stability:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Following channel(s) was (were) selected for the final test as listed below.

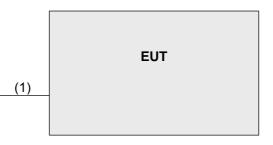
EUT Configure Mode	Modulation Type	Data Rate		
-	1	1	ASK	Type B: 106kbit/s

20dB Bandwidth:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate
-	1	1	ASK	Type A: 106kbit/s
-	1	1	ASK	Type B: 106kbit/s
-	1	1	ASK	Type F: 424kbit/s

Test Condition:


Applicable to	Environmental Conditions	Input Power	Tested by
RE 23 deg. C, 67% RH		220Vac, 60Hz	Titan Hsu
PLC 23 deg. C, 67% RH		220Vac, 60Hz	Titan Hsu
FS 23 deg. C, 67% RH		220Vac, 60Hz	Titan Hsu
BW 23 deg. C, 67% RH		220Vac, 60Hz	Titan Hsu

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC Power Cable	1	1.8	Ν	0	Provided by manufacturer

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in \S 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	May 30, 2019	May 29, 2020
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	Nov. 22, 2018	Nov. 21, 2019
HORN Antenna SCHWARZBECK	9120D	209	Nov. 25, 2018	Nov. 24, 2019
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 25, 2018	Nov. 24, 2019
Loop Antenna TESEQ	HLA 6121	45745	Jul. 01, 2019	Jun. 30, 2020
Preamplifier Agilent (Below 1GHz)	8447D	2944A10738	Aug. 20, 2019	Aug. 19, 2020
Preamplifier Agilent (Above 1GHz)	8449B	3008A02465	Mar. 27, 2019	Mar. 26, 2020
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH3-01	Aug. 20, 2019	Aug. 19, 2020
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	Aug. 20, 2019	Aug. 19, 2020
RF signal cable HUBER+SUHNER& EMCI	SUCOFLEX 104&EMC104-SM-S M-8000	Cable-CH3-03 (309224+170907)	Aug. 20, 2019	Aug. 19, 2020
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

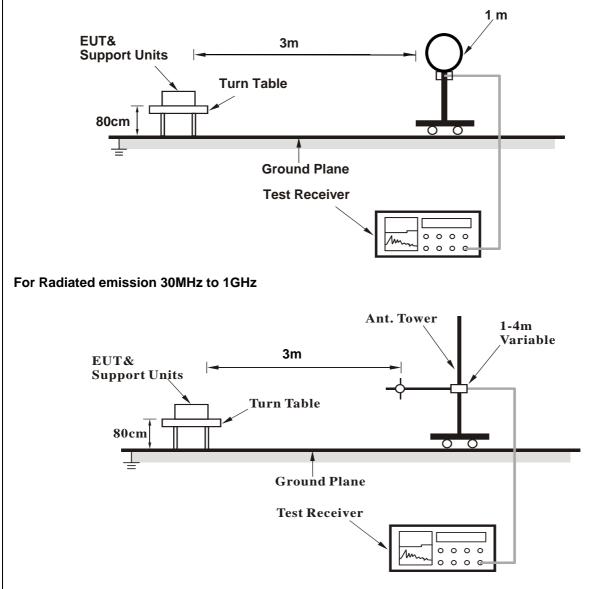
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.
- 2. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

For Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

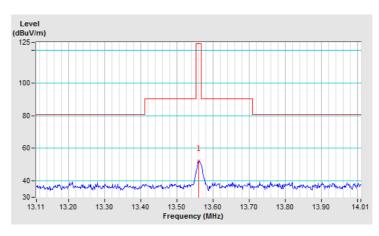
a. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Type A

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*13.56	52.0 QP	124.0	-72.0	1.00	348	30.2	21.8	


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * " : Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

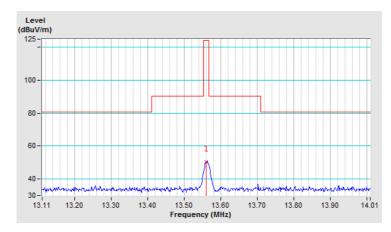
- 13.56MHz = 15848uV/m
 - = 15848uV/m 30m = 84dBuV/m 30m
 - $= 84+20\log(30/3)^2$ 3m
 - = 124dBuV/m

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 30m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)				
1	*13.56	12.0 QP	84.0	-72.0				

Remarks: Emission Level at 30m = Emission Level at $3m + 20\log(3/30)^2$

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*13.56	50.7 QP	124.0	-73.3	1.00	259	28.9	21.8


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

30m

- 4. Margin value = Emission Level Limit value
- 5. "*": Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

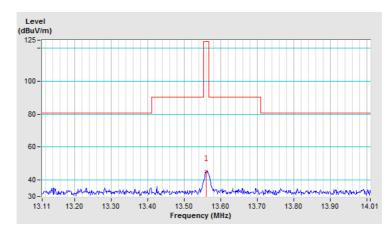
- 13.56MHz = 15848uV/m
 - 30m = 84dBuV/m 3m
 - $= 84+20\log(30/3)^2$
 - = 124dBuV/m

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 30m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)					
1	*13.56	10.7 QP	84.0	-73.3					

Remarks: Emission Level at 30m = Emission Level at 3m + 20log(3/30)²

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 67% RH		Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*13.56	45.3 QP	124.0	-78.7	1.00	350	23.5	21.8	


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

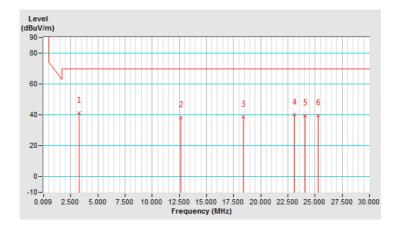
30m

- 4. Margin value = Emission Level Limit value
- 5. "*": Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

- 13.56MHz = 15848uV/m
 - 30m = 84dBuV/m 3m
 - = 84+20log(30/3)²
 - = 124dBuV/m

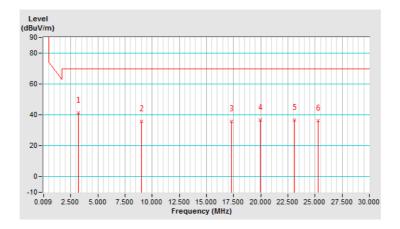
	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 30m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)					
1	*13.56	5.3 QP	84.0	-78.7					


Remarks: Emission Level at 30m = Emission Level at 3m + 20log(3/30)²

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	3.28	41.1 QP	69.5	-28.4	1.00	207	21.1	20.0		
2	12.65	38.3 QP	69.5	-31.2	1.00	71	16.5	21.8		
3	18.42	38.6 QP	69.5	-30.9	1.00	153	16.6	22.0		
4	23.13	39.8 QP	69.5	-29.7	1.00	4	17.7	22.1		
5	24.09	39.4 QP	69.5	-30.1	1.00	177	17.3	22.1		
6	25.29	39.7 QP	69.5	-29.8	1.00	16	17.6	22.1		

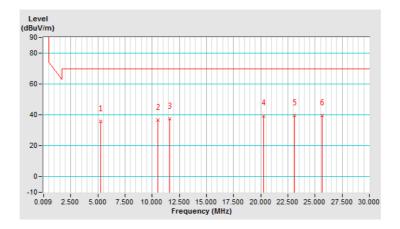
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	3.23	41.2 QP	69.5	-28.3	1.00	229	21.3	19.9		
2	9.04	35.7 QP	69.5	-33.8	1.00	3	14.3	21.4		
3	17.31	35.9 QP	69.5	-33.6	1.00	113	13.9	22.0		
4	19.95	36.5 QP	69.5	-33.0	1.00	105	14.4	22.1		
5	23.13	36.4 QP	69.5	-33.1	1.00	206	14.3	22.1		
6	25.29	36.0 QP	69.5	-33.5	1.00	349	13.9	22.1		

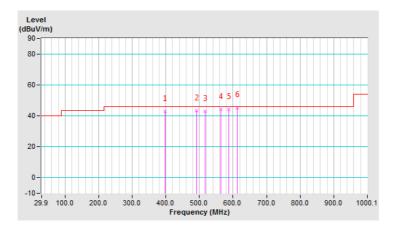
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	5.25	35.8 QP	69.5	-33.7	1.00	358	15.6	20.2		
2	10.53	36.5 QP	69.5	-33.0	1.00	49	14.8	21.7		
3	11.59	37.4 QP	69.5	-32.1	1.00	349	15.7	21.7		
4	20.29	39.4 QP	69.5	-30.1	1.00	1	17.3	22.1		
5	23.13	39.7 QP	69.5	-29.8	1.00	335	17.6	22.1		
6	25.67	39.6 QP	69.5	-29.9	1.00	299	17.5	22.1		

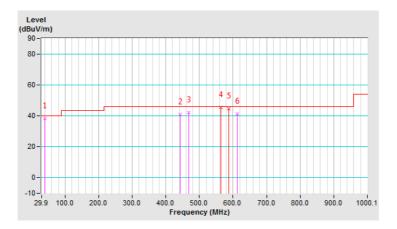
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range Below 1000MHz		
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Horizontal At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	396.89	43.0 QP	46.0	-3.0	1.51 H	23	47.6	-4.6		
2	492.50	43.5 QP	46.0	-2.5	2.00 H	15	45.2	-1.7		
3	516.41	43.1 QP	46.0	-2.9	2.00 H	15	44.1	-1.0		
4	564.21	44.4 QP	46.0	-1.6	2.00 H	113	44.6	-0.2		
5	588.12	44.3 QP	46.0	-1.7	1.01 H	335	43.6	0.7		
6	612.02	45.3 QP	46.0	-0.7	2.00 H	316	44.1	1.2		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

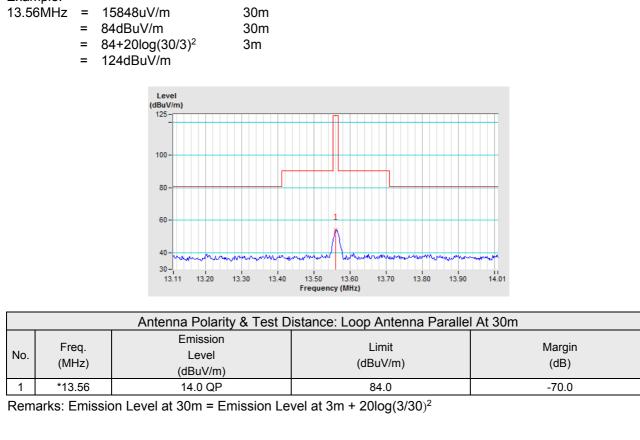


EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 1000MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Vertical At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	39.74	38.4 QP	40.0	-1.6	1.00 V	137	48.1	-9.7	
2	443.29	40.8 QP	46.0	-5.2	1.49 V	281	43.6	-2.8	
3	468.60	42.2 QP	46.0	-3.8	1.49 V	269	44.5	-2.3	
4	564.04	45.6 QP	46.0	-0.4	2.00 V	246	45.8	-0.2	
5	588.01	44.6 QP	46.0	-1.4	2.00 V	237	43.9	0.7	
6	612.02	41.3 QP	46.0	-4.7	1.99 V	253	40.1	1.2	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Туре В


EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*13.56	54.0 QP	124.0	-70.0	1.00	341	32.2	21.8	

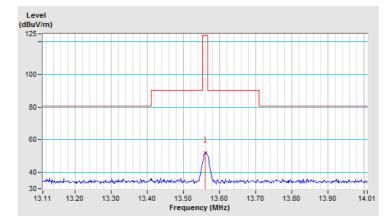
Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * " : Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 67% RH		Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor	
	· · ·	(dBuV/m)	, ,	· · ·	(m)	(Degree)	(dBuV)	(dB/m)	
1	*13.56	52.2 QP	124.0	-71.8	1.00	271	30.4	21.8	


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

30m

- 4. Margin value = Emission Level Limit value
- 5. " * " : Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

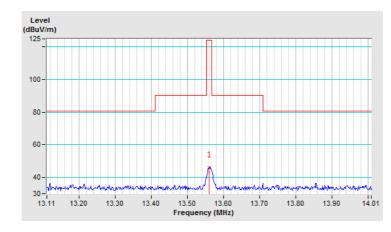
- 13.56MHz = 15848uV/m
 - = 84dBuV/m 30m = $84+20log(30/3)^2$ 3m
 - = $84+20\log(30/3)^2$ = 124dBuV/m
 - 1240DUV/III

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 30m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)				
1	*13.56	12.2 QP	84.0	-71.8				

Remarks: Emission Level at $30m = Emission Level at <math>3m + 20log(3/30)^2$

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 67% RH		Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*13.56	46.1 QP	124.0	-77.9	1.00	345	24.3	21.8	


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

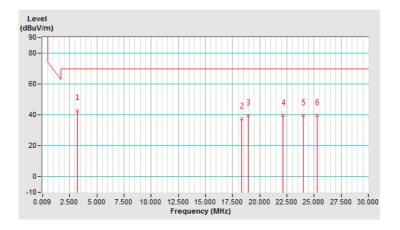
30m

- 4. Margin value = Emission Level Limit value
- 5. "*": Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

- 13.56MHz = 15848uV/m
 - 30m = 84dBuV/m 3m
 - = 84+20log(30/3)²
 - = 124dBuV/m

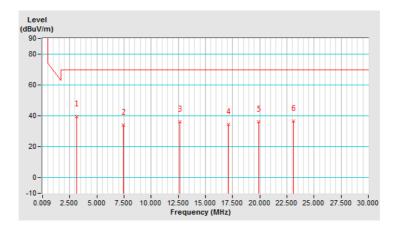
	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 30m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)				
1	*13.56	6.1 QP	84.0	-77.9				


Remarks: Emission Level at 30m = Emission Level at $3m + 20\log(3/30)^2$

EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	3.23	42.8 QP	69.5	-26.7	1.00	318	22.9	19.9	
2	18.32	37.5 QP	69.5	-32.0	1.00	350	15.5	22.0	
3	18.95	39.4 QP	69.5	-30.1	1.00	181	17.4	22.0	
4	22.17	39.5 QP	69.5	-30.0	1.00	273	17.4	22.1	
5	24.04	39.5 QP	69.5	-30.0	1.00	105	17.4	22.1	
6	25.29	39.5 QP	69.5	-30.0	1.00	187	17.4	22.1	

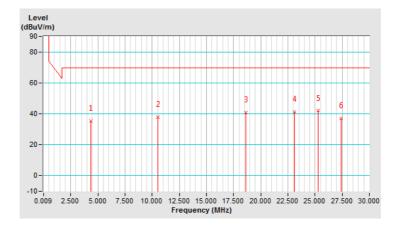
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 30MHz	
Input Power	Input Power 220Vac, 60Hz		Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	3.18	39.7 QP	69.5	-29.8	1.00	320	19.8	19.9	
2	7.46	34.0 QP	69.5	-35.5	1.00	134	13.1	20.9	
3	12.65	36.3 QP	69.5	-33.2	1.00	262	14.5	21.8	
4	17.12	34.3 QP	69.5	-35.2	1.00	244	12.3	22.0	
5	19.91	36.0 QP	69.5	-33.5	1.00	347	13.9	22.1	
6	23.13	36.6 QP	69.5	-32.9	1.00	187	14.5	22.1	

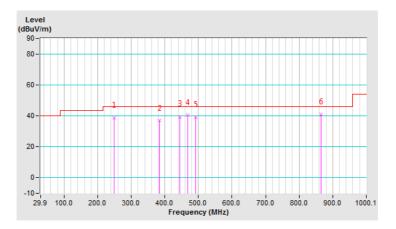
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	Below 30MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions 23 deg. C, 67% RH		Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	4.38	35.4 QP	69.5	-34.1	1.00	267	15.4	20.0		
2	10.53	37.9 QP	69.5	-31.6	1.00	116	16.2	21.7		
3	18.66	41.0 QP	69.5	-28.5	1.00	242	19.0	22.0		
4	23.13	41.4 QP	69.5	-28.1	1.00	334	19.3	22.1		
5	25.29	41.9 QP	69.5	-27.6	1.00	67	19.8	22.1		
6	27.40	37.1 QP	69.5	-32.4	1.00	62	14.9	22.2		

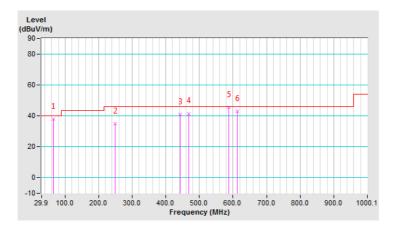
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	Below 1000MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Horizontal At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	249.25	38.7 QP	46.0	-7.3	1.50 H	167	47.9	-9.2		
2	384.23	36.8 QP	46.0	-9.2	1.00 H	115	41.8	-5.0		
3	444.70	39.4 QP	46.0	-6.6	1.00 H	314	42.2	-2.8		
4	468.60	40.4 QP	46.0	-5.6	1.50 H	100	42.7	-2.3		
5	492.50	39.1 QP	46.0	-6.9	1.00 H	97	40.8	-1.7		
6	865.12	40.7 QP	46.0	-5.3	2.00 H	351	36.7	4.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

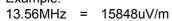


EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	Below 1000MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Vertical At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	65.05	38.0 QP	40.0	-2.0	2.00 V	322	48.1	-10.1		
2	249.25	34.9 QP	46.0	-11.1	1.00 V	164	44.1	-9.2		
3	443.29	40.7 QP	46.0	-5.3	1.50 V	182	43.5	-2.8		
4	468.60	41.5 QP	46.0	-4.5	1.00 V	174	43.8	-2.3		
5	588.12	45.5 QP	46.0	-0.5	1.50 V	302	44.8	0.7		
6	612.02	43.1 QP	46.0	-2.9	1.00 V	302	41.9	1.2		

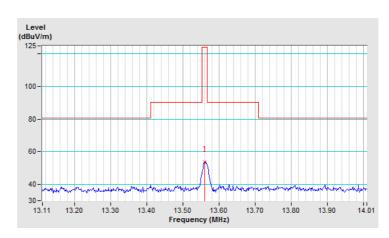
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Type F


EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*13.56	53.9 QP	124.0	-70.1	1.00	349	32.1	21.8

Remarks:


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * " : Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

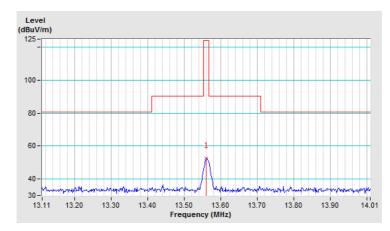
- = 84dBuV/m 30r = $84+20log(30/3)^2$ 3m
 - = 124dBuV/m

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 30m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)				
1	*13.56	13.9 QP	84.0	-70.1				

Remarks: Emission Level at 30m = Emission Level at $3m + 20\log(3/30)^2$

EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions 23 deg. C, 67% RH		Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m							
	Freq. (MHz)	Emission	Emission	Margin (dB)	Antenna	Table	Raw	Correction
No.		Level	(dBuV/m)		Height	Angle	Value	Factor
		(dBuV/m)	(aba v/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)
1	*13.56	52.4 QP	124.0	-71.6	1.00	264	30.6	21.8


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

30m

- 4. Margin value = Emission Level Limit value
- 5. "*": Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

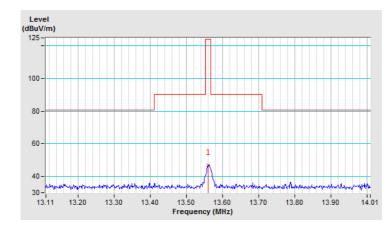
- 13.56MHz = 15848uV/m
 - 30m = 84dBuV/m 3m
 - $= 84+20\log(30/3)^2$
 - = 124dBuV/m

Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 30m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)				
1	*13.56	12.4 QP	84.0	-71.6				

Remarks: Emission Level at 30m = Emission Level at 3m + 20log(3/30)²

EUT Test Condition		Measurement Detail		
Channel	Channel Channel 1		13.553 ~ 13.567MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions 23 deg. C, 67% RH		Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m									
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor		
	(=)	(dBuV/m)	· · ·	· · ·	(m)	(Degree)	(dBuV)	(dB/m)		
1	*13.56	46.9 QP	124.0	-77.1	1.00	334	25.1	21.8		


- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.

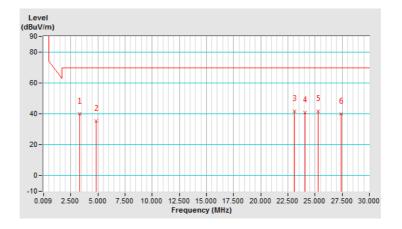
30m

- 4. Margin value = Emission Level Limit value
- 5. "*": Fundamental frequency
- 6. Above limits have been translated by the formula

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

- 13.56MHz = 15848uV/m
 - 30m = 84dBuV/m 3m
 - = 84+20log(30/3)²
 - = 124dBuV/m

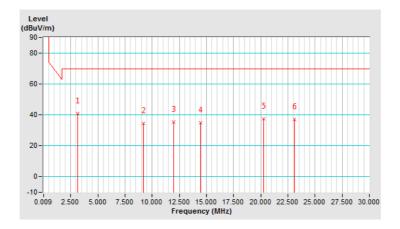
	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 30m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)					
1	*13.56	6.9 QP	84.0	-77.1					


Remarks: Emission Level at 30m = Emission Level at $3m + 20\log(3/30)^2$

EUT Test Condition		Measurement Detail		
Channel Channel 1		Frequency Range	Below 30MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 67% RH		Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	3.33	40.0 QP	69.5	-29.5	1.00	55	20.0	20.0		
2	4.86	35.4 QP	69.5	-34.1	1.00	329	15.3	20.1		
3	23.08	41.9 QP	69.5	-27.6	1.00	87	19.8	22.1		
4	24.09	40.7 QP	69.5	-28.8	1.00	304	18.6	22.1		
5	25.29	41.7 QP	69.5	-27.8	1.00	256	19.6	22.1		
6	27.40	39.8 QP	69.5	-29.7	1.00	260	17.6	22.2		

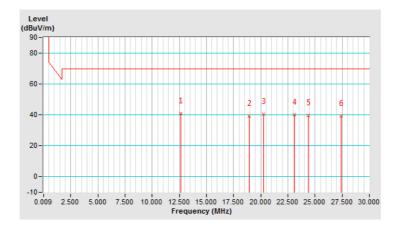
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel Channel 1		Below 30MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Perpendicular At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	3.18	40.8 QP	69.5	-28.7	1.00	123	20.9	19.9		
2	9.19	34.3 QP	69.5	-35.2	1.00	103	12.9	21.4		
3	11.98	35.4 QP	69.5	-34.1	1.00	22	13.6	21.8		
4	14.48	34.9 QP	69.5	-34.6	1.00	299	13.0	21.9		
5	20.24	37.3 QP	69.5	-32.2	1.00	195	15.2	22.1		
6	23.13	37.2 QP	69.5	-32.3	1.00	217	15.1	22.1		

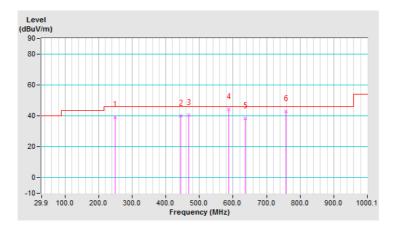
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel Channel 1		Below 30MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	Environmental Conditions 23 deg. C, 67% RH		Titah Hsu	

	Antenna Polarity & Test Distance: Loop Antenna Ground-Parallel At 3m									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	12.65	40.7 QP	69.5	-28.8	1.00	314	18.9	21.8		
2	18.95	39.3 QP	69.5	-30.2	1.00	183	17.3	22.0		
3	20.29	40.5 QP	69.5	-29.0	1.00	300	18.4	22.1		
4	23.13	39.8 QP	69.5	-29.7	1.00	359	17.7	22.1		
5	24.38	39.7 QP	69.5	-29.8	1.00	290	17.6	22.1		
6	27.40	39.2 QP	69.5	-30.3	1.00	242	17.0	22.2		

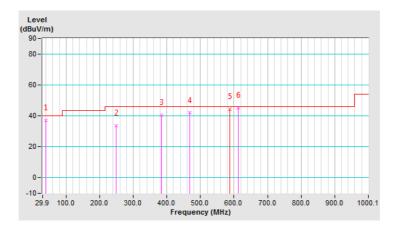
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel Channel 1		Below 1000MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Horizontal At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	249.25	39.0 QP	46.0	-7.0	1.50 H	165	48.2	-9.2			
2	444.70	40.2 QP	46.0	-5.8	1.00 H	321	43.0	-2.8			
3	468.60	40.5 QP	46.0	-5.5	2.00 H	97	42.8	-2.3			
4	588.12	44.2 QP	46.0	-1.8	1.00 H	145	43.5	0.7			
5	635.92	38.3 QP	46.0	-7.7	1.50 H	178	36.8	1.5			
6	756.85	42.9 QP	46.0	-3.1	1.00 H	259	40.0	2.9			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



EUT Test Condition		Measurement Detail		
Channel	Channel 1	Frequency Range	Below 1000MHz	
Input Power	220Vac, 60Hz	Detector Function	Quasi-Peak	
Environmental Conditions	23 deg. C, 67% RH	Tested By	Titah Hsu	

	Antenna Polarity & Test Distance: Vertical At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	39.74	37.2 QP	40.0	-2.8	1.50 V	79	46.9	-9.7			
2	249.25	33.7 QP	46.0	-12.3	1.00 V	159	42.9	-9.2			
3	384.23	40.5 QP	46.0	-5.5	2.00 V	210	45.5	-5.0			
4	468.60	41.9 QP	46.0	-4.1	1.00 V	171	44.2	-2.3			
5	588.03	44.1 QP	46.0	-1.9	1.00 V	156	43.4	0.7			
6	612.02	44.9 QP	46.0	-1.1	1.50 V	144	43.7	1.2			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

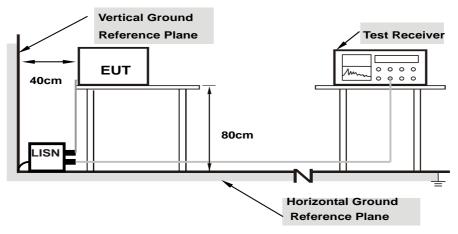
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 10, 2018	Dec. 09, 2019
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2019	Sep. 04, 2020
LISN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 21, 2019	Feb. 20, 2020
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 22, 2019	Aug. 21, 2020
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-12040.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results

Type A

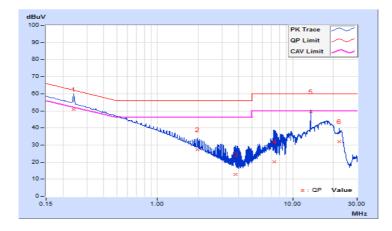
Phase Line (L)						Detector Function Quasi-Peak (QP) / Average (AV)				/
	Crog Cor		r. Reading Value		Emissic	n Level	Lir	nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16173	9.67	46.54	35.87	56.21	45.54	65.37	55.37	-9.16	-9.83
2	1.17442	9.74	23.36	15.76	33.10	25.50	56.00	46.00	-22.90	-20.50
3	3.93097	9.84	10.96	9.50	20.80	19.34	56.00	46.00	-35.20	-26.66
4	7.45388	9.89	24.10	23.56	33.99	33.45	60.00	50.00	-26.01	-16.55
5	13.56130	9.95	40.75	39.25	50.70	49.20	60.00	50.00	-9.30	-0.80
6	17.96005	9.97	19.87	14.67	29.84	24.64	60.00	50.00	-30.16	-25.36

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase Neutral (N)						Detector Function Quasi-Peak (QP) / Average (AV)					
	Freq. Con		Corr. Reading Value		Emissio	on Level	Lir	nit	Ма	rgin	
No	1104.	Factor	tor [dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.23993	9.64	41.37	30.64	51.01	40.28	62.10	52.10	-11.09	-11.82	
2	1.98770	9.75	17.63	14.62	27.38	24.37	56.00	46.00	-28.62	-21.63	
3	3.79803	9.80	2.99	1.23	12.79	11.03	56.00	46.00	-43.21	-34.97	
4	7.35613	9.87	10.49	2.28	20.36	12.15	60.00	50.00	-39.64	-37.85	
5	13.56130	9.97	39.46	39.44	49.43	49.41	60.00	50.00	-10.57	-0.59	
6	22.12029	10.07	21.99	21.31	32.06	31.38	60.00	50.00	-27.94	-18.62	

Remarks:

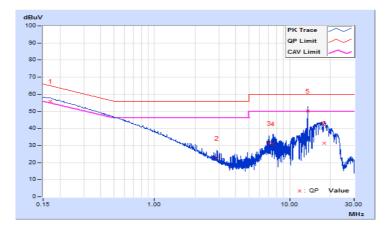

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.



Туре В

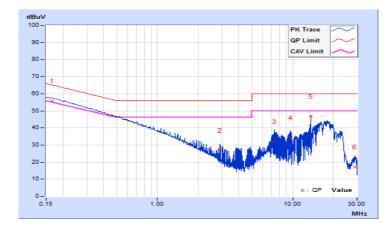
Phase Line (L)						Detector Function Quasi-Peak (QP) / Average (AV)				
	Cor		Corr. Reading Value		Emissi	on Level	Lir	nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB	(uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16955	9.67	46.08	35.45	55.75	45.12	64.98	54.98	-9.23	-9.86
2	2.87918	9.81	12.62	10.41	22.43	20.22	56.00	46.00	-33.57	-25.78
3	7.05506	9.89	21.41	19.80	31.30	29.69	60.00	50.00	-28.70	-20.31
4	7.52426	9.89	21.13	19.99	31.02	29.88	60.00	50.00	-28.98	-20.12
5	13.56130	9.95	40.28	39.44	50.23	49.39	60.00	50.00	-9.77	-0.61
6	18.04998	9.97	21.24	15.17	31.21	25.14	60.00	50.00	-28.79	-24.86

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Phase Neutral (N)						Detector Function Quasi-Peak (QP) /				
								Average	e (AV)		
	Freq.	Corr.	Reading	Reading Value Em			nission Level Lim			rgin	
No	Fieq.	Factor	actor [dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16564	9.64	46.31	35.64	55.95	45.28	65.18	55.18	-9.23	-9.90	
2	2.88309	9.78	17.29	16.42	27.07	26.20	56.00	46.00	-28.93	-19.80	
3	7.35613	9.87	22.04	20.81	31.91	30.68	60.00	50.00	-28.09	-19.32	
4	9.65130	9.90	24.37	23.05	34.27	32.95	60.00	50.00	-25.73	-17.05	
5	13.56130	9.97	36.73	36.68	46.70	46.65	60.00	50.00	-13.30	-3.35	
6	28.95888	10.10	7.02	2.13	17.12	12.23	60.00	50.00	-42.88	-37.77	

Remarks:

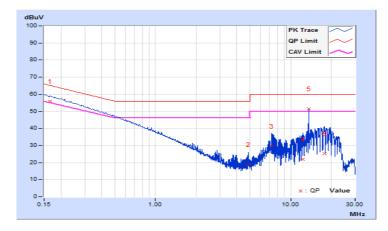

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.



Type F

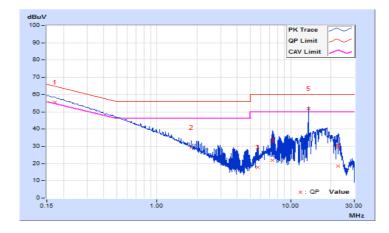
Phase Line (L)					De	Detector Function Quasi-Peak (QP) / Average (AV)				
	Erea Cor		r. Reading Value		Emissio	on Level	Lir	nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16526	9.67	46.35	35.68	56.02	45.35	65.20	55.20	-9.18	-9.85
2	4.84982	9.85	9.13	7.13	18.98	16.98	56.00	46.00	-37.02	-29.02
3	7.24665	9.89	19.78	18.02	29.67	27.91	60.00	50.00	-30.33	-22.09
4	12.38830	9.95	11.90	7.30	21.85	17.25	60.00	50.00	-38.15	-32.75
5	13.56130	9.95	41.50	39.22	51.45	49.17	60.00	50.00	-8.55	-0.83
6	17.88185	9.97	15.43	10.14	25.40	20.11	60.00	50.00	-34.60	-29.89

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase Neutral (N)						Detector Function Quasi-Peak (QP) / Average (AV)					
No	Freq.	Freq. Corr. Factor		Reading Value E		Emission Level [dB (uV)]		nit uV)]	Margin (dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.17346	9.64	45.76	35.26	55.40	44.90	64.79	54.79	-9.39	-9.89	
2	1.80803	9.74	19.71	15.87	29.45	25.61	56.00	46.00	-26.55	-20.39	
3	5.65137	9.84	8.03	-2.57	17.87	7.27	60.00	50.00	-42.13	-42.73	
4	7.34440	9.87	12.02	7.67	21.89	17.54	60.00	50.00	-38.11	-32.46	
5	13.56130	9.97	9.97 41.93 39.56		51.90	49.53	60.00	50.00	-8.10	-0.47	
6	22.78890	10.07	8.29	2.54	18.36	12.61	60.00	50.00	-41.64	-37.39	

Remarks:

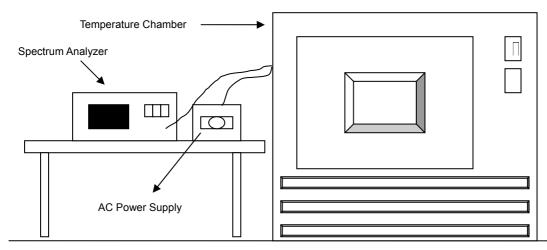

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/-0.01% of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100040	Sep. 23, 2019	Sep. 22, 2020
WIT Standard Temperature And Humidity Chamber	TH-4S-C	W981030	Jun. 03, 2019	Jun. 02, 2020
Digital Multimeter Fluke	87-III	70360742	Jun. 28, 2019	Jun. 27, 2020
AC Power Supply Extech	CFW-105	E000603	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeat step d with every 10 degrees reduction until the lowest temperature achieved.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

Туре В

	Frequency Stability Versus Temp.									
		0 Mi	0 Minute		2 Minute		nute	10 Minute		
TEMP. (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%	
50	220	13.55995	-0.00037	13.55995	-0.00037	13.55995	-0.00037	13.55995	-0.00037	
40	220	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015	13.56001	0.00007	
30	220	13.55999	-0.00007	13.55999	-0.00007	13.55999	-0.00007	13.55999	-0.00007	
20	220	13.56002	0.00015	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015	
10	220	13.56001	0.00007	13.56003	0.00022	13.56002	0.00015	13.56002	0.00015	
0	220	13.55993	-0.00052	13.55993	-0.00052	13.55994	-0.00044	13.55992	-0.00059	
-10	220	13.55995	-0.00037	13.55996	-0.00029	13.55994	-0.00044	13.55995	-0.00037	
-20	220	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015	

	Frequency Stability Versus Voltage									
		0 Minute		2 Minute		5 Mi	nute	10 Minute		
TEMP. (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%	
	253	13.56002	0.00015	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015	
20	220	13.56002	0.00015	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015	
	187	13.56002	0.00015	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015	

4.4 20dB Bandwidth

4.4.1 Limits of 20dB Bandwidth Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

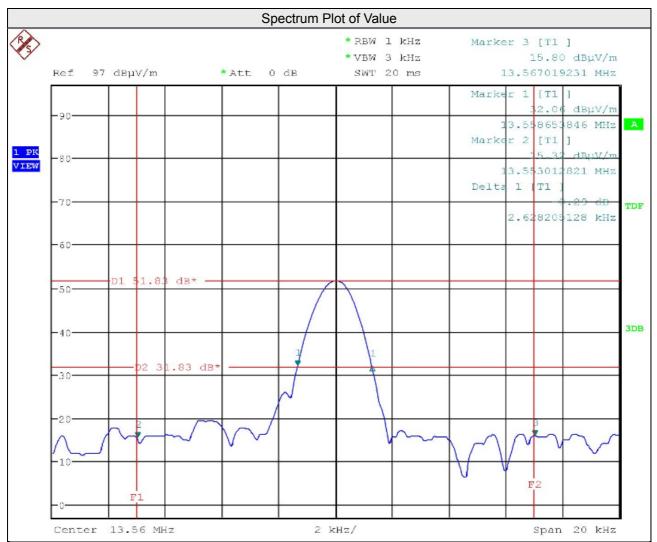
4.4.4 Test Procedures

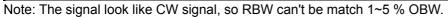
The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

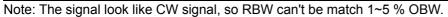

Same as Item 4.1.6.



4.4.7 Test Results

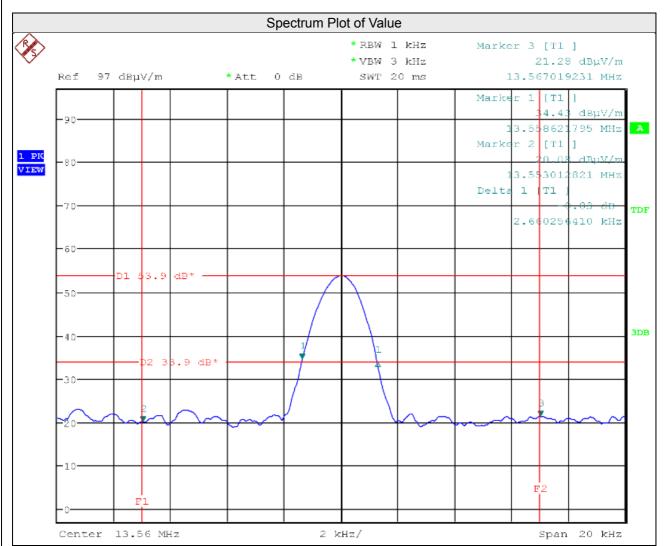
Туре А

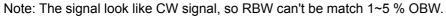
20dBc point (Low)	20dBc point (Low) 20dBc point (High)		Pass / Fail
13.558653846	13.5612820511	13.553~13.567	Pass



Туре В

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass / Fail
13.558621795	13.5612820514	13.553~13.567	Pass





Type F

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass / Fail
13.558621795	13.5612820514	13.553~13.567	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---