1.1.1. DAE4 Calibration Certificate

Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn	http://www.caict.a	ac.cn	CNAS L0570
Client : HT	W	Certificate	e No: 24J02Z000320
CALIBRATION	CERTIFIC	ATE	
Dbject	DAE	E4 - SN: 1549	
Calibration Procedure(s	FE-	Z11-002-01	
		bration Procedure for the Data Acqu	isition Electronics
Calibration date:	Apri	il 16, 2024	
bages and are part of th	e certificate.	and the uncertainties with confidence pro	
bages and are part of th All calibrations have b	e certificate. een conducted	in the closed laboratory facility: enviro	onment temperature(22±3)℃ and
bages and are part of th All calibrations have b humidity<70%. Calibration Equipment u	e certificate. een conducted sed (M&TE critic	in the closed laboratory facility: enviro al for calibration)	onment temperature(22±3)℃ and
bages and are part of th All calibrations have b numidity<70%. Calibration Equipment u Primary Standards	e certificate. een conducted sed (M&TE critic	in the closed laboratory facility: enviro al for calibration) Cal Date(Calibrated by, Certificate No.) 12-Jun-23 (CTTL, No.J23X05436)	Scheduled Calibration
bages and are part of th All calibrations have b numidity<70%. Calibration Equipment u Primary Standards	e certificate. een conducted sed (M&TE critic ID # 1971018	in the closed laboratory facility: enviro eal for calibration) Cal Date(Calibrated by, Certificate No.) 12-Jun-23 (CTTL, No.J23X05436) Function	onment temperature(22±3)℃ and Scheduled Calibration
bages and are part of th All calibrations have b numidity<70%. Calibration Equipment u Primary Standards Process Calibrator 753	e certificate. een conducted sed (M&TE critic ID # 1971018	in the closed laboratory facility: enviro eal for calibration) Cal Date(Calibrated by, Certificate No.) 12-Jun-23 (CTTL, No.J23X05436) Function	Scheduled Calibration Jun-24

Certificate No: 24J02Z000320

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 24J02Z000320

Page 2 of 3

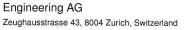
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	406.369 ± 0.15% (k=2)	406.051 ± 0.15% (k=2)	406.200 ± 0.15% (k=2)
Low Range	3.98561 ± 0.7% (k=2)	3.99305 ± 0.7% (k=2)	3.99389 ± 0.7% (k=2)

Connector Angle


Connector Angle to be used in DASY system	17.5°±1°
---	----------

Certificate No: 24J02Z000320

Page 3 of 3

1.2. Probe Calibration Certificate

Calibration Laboratory of	
Schmid & Partner	
Engineering AC	

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

HTW Client

Shenzhen

Certificate No.

EX-7494_Oct23

CALIBRATION CER	RTIFICATE
Object	EX3DV4 - SN:7494
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	October 24, 2023
This calibration certificate docum The measurements and the unce	ents the traceability to national standards, which realize the physical units of measurements (SI). rtainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been conduc	cted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\rm C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check	
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24	
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24	
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24	

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician 🥢	te le
Approved by	Sven Kühn	Technical Manager	Sa
This calibration certificate sha	all not be reproduced except in full w	vithout written approval of the labo	Issued: October 26, 2023 pratory.

Certificate No: EX-7494_Oct23

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S So C Se So So So So

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900MHz in TEM-cell; f > 1800MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7494_Oct23

Page 2 of 9

October 24, 2023

Parameters of Probe: EX3DV4 - SN:7494

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm (μV/(V/m)²) ^A	0.40	0.47	0.39	±10.1%
DCP (mV) ^B	96.8	98.4	99.9	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	Х	0.00	0.00	1.00	0.00	141.5	±3.8%	±4.7%
		Υ	0.00	0.00	1.00		132.2		
		Ζ	0.00	0.00	1.00		144.7		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5).

The uncertainties of Norm X, r,2 do not allied and E - inducing induction into the cost of the second and its expressed for the square of the field value.
 E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-7494_Oct23

Page 3 of 9

October 24, 2023

Parameters of Probe: EX3DV4 - SN:7494

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	21.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7494_Oct23

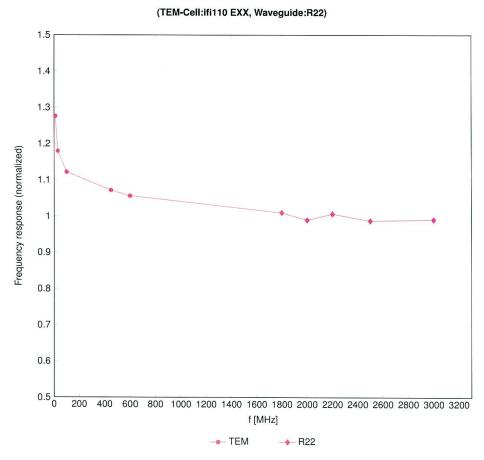
Page 4 of 9

October 24, 2023

Parameters of Probe: EX3DV4 - SN:7494

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
150	52.3	0.76	13.40	13.40	13.40	0.00	1.00	±13.3%
450	43.5	0.87	11.69	11.69	11.69	0.16	1.30	±13.3%

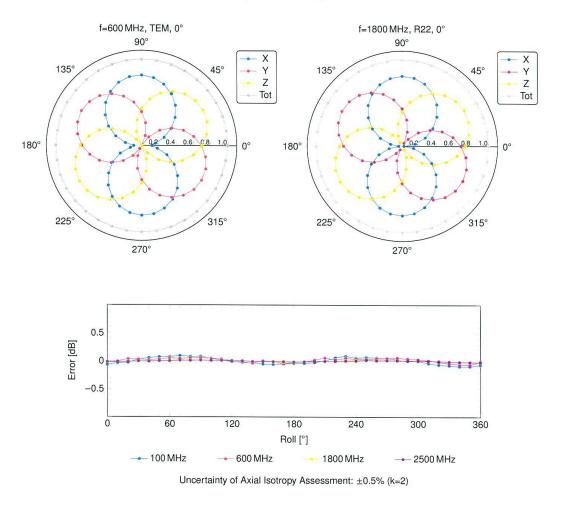

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$. If TSL with deviations for the target of less than $\pm 5\%$ are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-7494_Oct23

Page 5 of 9

October 24, 2023

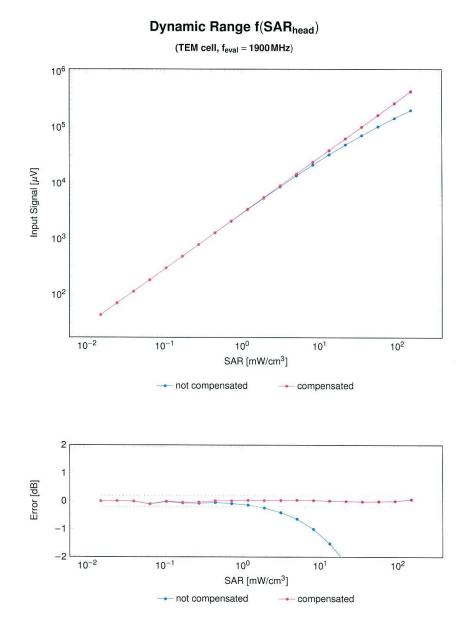

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Certificate No: EX-7494_Oct23

Page 6 of 9

October 24, 2023

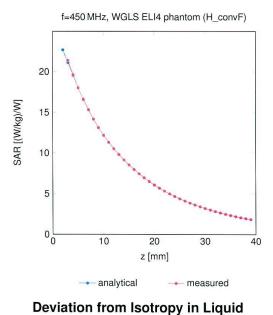


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

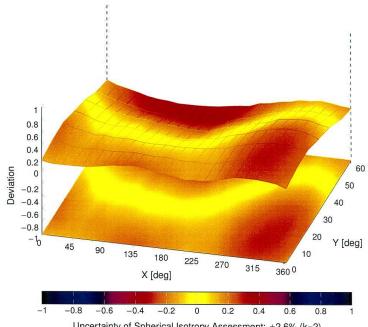
Certificate No: EX-7494_Oct23

Page 7 of 9

October 24, 2023


Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-7494_Oct23


Page 8 of 9

October 24, 2023

Conversion Factor Assessment

Error (ϕ , θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

Certificate No: EX-7494_Oct23

Page 9 of 9

1.1. CLA150 Dipole Calibration Certificate

Engineering AG Leughausstrasse 43, 8004 Zurich, S	of Switzerland	S C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accreditatio The Swiss Accreditation Service i Multilateral Agreement for the rec	s one of the signatories		Accreditation No.: SCS 0108
Client HTW Shenzhen		Certificate No.	CLA150-4024_Jan24
CALIBRATION C	ERTIFICATE		
Object	CLA150 - SN: 402	24	
Calibration procedure(s)	QA CAL-15.v10 Calibration Proce	dure for SAR Validation Sources	s below 700 MHz
Calibration date:	January 22, 2024		
Calibration Equipment used (M&TE Primary Standards	critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	IVIdI-24
Power sensor NRP-Z91	SN: 103245		Mar-24
	011 000000 (00)	30-Mar-23 (No. 217-03805)	
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	Mar-24 Mar-24 Mar-24 Mar-24
		30-Mar-23 (No. 217-03809)	Mar-24 Mar-24 Mar-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 310982 / 06327 SN: 3877 SN: 654	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24)	Mar-24 Mar-24 Mar-24 Mar-24 Jan-25 Jan-25
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 310982 / 06327 SN: 3877 SN: 654	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house)	Mar-24 Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22)	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 310982 / 06327 SN: 3877 SN: 654	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22)	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22)	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22)	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22)	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24 In house check: Dec-24 In house check: Jun-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Jan-24 In house check: Jan-24 In house check: Jan-24
Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700 SN: US341080477 Name	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-24 (No. EX3-3877_Jan24) 15-Jan-24 (No. DAE4-654_Jan24) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function	Mar-24 Mar-24 Mar-24 Jan-25 Jan-25 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Jan-24 In house check: Jan-24 In house check: Jan-24

Certificate No: CLA150-4024_Jan24

Page 1 of 6

2 of 12

ac-ME

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4024_Jan24

Page 2 of 6

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.65 W/kg ± 18.4 % (k=2)
SAD every and ever 40 cm ³ (40 c) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 1 W input power	2.46 W/kg

Certificate No: CLA150-4024_Jan24

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 6.3 jΩ	
Return Loss	- 24.0 dB	

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

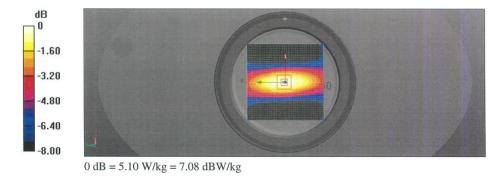
Certificate No: CLA150-4024_Jan24

Page 4 of 6

DASY5 Validation Report for Head TSL

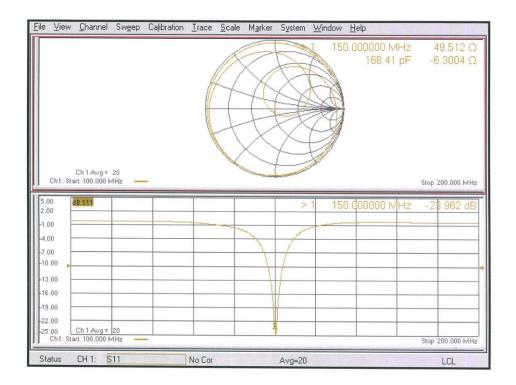
Date: 22.01.2024

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4024

Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.76 S/m; ε_r = 50.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN3877; ConvF(12.51, 12.51, 12.51) @ 150 MHz; Calibrated: 10.01.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn908; Calibrated: 15.01.2024
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 82.56 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 6.73 W/kg SAR(1 g) = 3.67 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 81.5% Maximum value of SAR (measured) = 5.10 W/kg

Certificate No: CLA150-4024_Jan24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: CLA150-4024_Jan24

Page 6 of 6

1.2. D450V3 Dipole Calibration Certificate

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client HTW

Shenzhen

Accredited by the Swiss Accreditation Service (SAS)

- HARDING CONTAINED S
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No. D450V3-1102_Jan24

CALIBRATION C	ERTIFICATE		
Dbject	D450V3 - SN:110	02	
Calibration procedure(s)	QA CAL-15.v10 Calibration Proce	dure for SAR Validation Sources	s below 700 MHz
Calibration date:	January 24, 2024		
The measurements and the uncerta	ainties with confidence pr	conal standards, which realize the physical un robability are given on the following pages ar y facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
ower sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
ower sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
ype-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
eference Probe EX3DV4	SN: 3877	10-Jan-24 (No. EX3-3877 Jan24)	Jan-25
DAE4	SN: 654	15-Jan-24 (No. DAE4-654_Jan24)	Jan-25
econdary Standards	ID#	Check Date (in house)	Scheduled Check
ower meter NRP2	SN: 107193	08-Nov-21 (in house check Dec-22)	In house check: Dec-24
ower sensor NRP-Z91	SN: 100922	15-Dec-09 (in house check Dec-22)	In house check: Dec-24
ower sensor NRP-Z91	SN: 100418	01-Jan-04 (in house check Dec-22)	In house check: Dec-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Krešimir Franjić	Laboratory Technician	K
Approved by:	Sven Kühn	Technical Manager	Son

Certificate No: D450V3-1102_Jan24

Page 1 of 6

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1102_Jan24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1

inter system comgaration, as lar as not	1	1
DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.9 ± 6 %	0.87 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	1.15 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	4.61 W/kg ± 18.1 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	0.768 W/kg	

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	58.4 Ω - 3.5 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.344 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPE/	٩G	

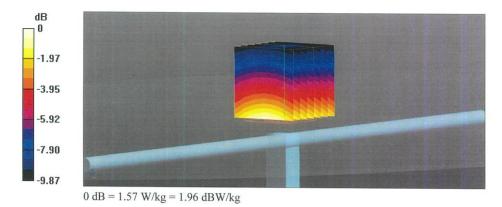
Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 24.01.2024

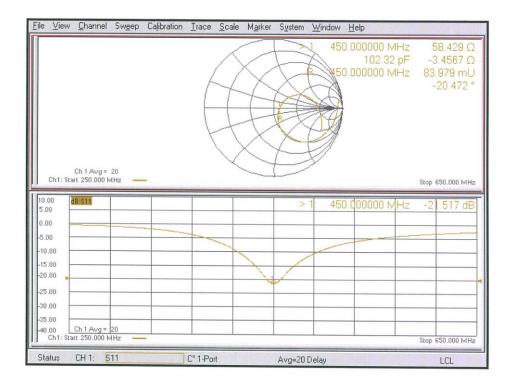
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1102


 $\begin{array}{l} \mbox{Communication System: UID 0 - CW; Frequency: 450 MHz} \\ \mbox{Medium parameters used: } f = 450 MHz; \mbox{σ} = 0.87 \mbox{ S/m}; \mbox{ϵ}_r = 43.9; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 10.01.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 15.01.2024
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.01 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.82 W/kg **SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.768 W/kg** Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 63.3% Maximum value of SAR (measured) = 1.57 W/kg

Certificate No: D450V3-1102_Jan24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1102_Jan24

Page 6 of 6