

Page 1 of 92

APPLICATION CERTIFICATION FCC Part 15C On Behalf of UP Global Sourcing Ltd.

Wireless Headphones Model No.: EE5117

FCC ID: 2AAR2EE5117

Prepared for : UP Global Sourcing Ltd.

Address : Manor Mill Victoria Street Chadderton Oldham OL9 0DD,

UNITED KINGDOM

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China.

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20190602

Date of Test : April 22-April 25, 2019

Date of Report : April 26, 2019

TABLE OF CONTENTS

D	Description Page			
T	est Re	port Certification		
1.	GE	NERAL INFORMATION	5	
	1.1.	Description of Device (EUT)		
	1.2.	Accessory and Auxiliary Equipment		
	1.3.	Description of Test Facility		
	1.4.	Measurement Uncertainty		
2.	ME	ASURING DEVICE AND TEST EQUIPMENT		
3.	OPI	ERATION OF EUT DURING TESTING	8	
	3.1.	Operating Mode	8	
	3.2.	Configuration and peripherals	8	
4.	TES	ST PROCEDURES AND RESULTS	9	
5.	20 D	OB BANDWIDTH TEST	10	
	5.1.	Block Diagram of Test Setup	10	
	5.2.	The Requirement For Section 15.247(a)(1)	10	
	5.3.	EUT Configuration on Measurement		
	5.4.	Operating Condition of EUT	10	
	5.5.	Test Procedure	10	
	5.6.	Test Result	11	
6.	CA	RRIER FREQUENCY SEPARATION TEST	15	
	6.1.	Block Diagram of Test Setup	15	
	6.2.	The Requirement For Section 15.247(a)(1)		
	6.3.	EUT Configuration on Measurement		
	6.4.	Operating Condition of EUT	15	
	6.5.	Test Procedure	16	
	6.6.	Test Result	16	
7.	NU]	MBER OF HOPPING FREQUENCY TEST		
	7.1.	Block Diagram of Test Setup	20	
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	20	
	7.3.	EUT Configuration on Measurement	20	
	7.4.	Operating Condition of EUT		
	7.5.	Test Procedure		
	7.6.	Test Result	21	
8.	DW	ELL TIME TEST	22	
	8.1.	Block Diagram of Test Setup		
	8.2.	The Requirement For Section 15.247(a)(1)(iii)		
	8.3.	EUT Configuration on Measurement		
	8.4.	Operating Condition of EUT		
	8.5.	Test Procedure		
	8.6.	Test Result		
9.	MA	XIMUM PEAK OUTPUT POWER TEST	33	
	9.1.	Block Diagram of Test Setup		
	9.2.	The Requirement For Section 15.247(b)(1)	33	
	9.3.	EUT Configuration on Measurement	33	
	9.4.	Operating Condition of EUT		
	9.5.	Test Procedure		
	9.6.	Test Result	34	

10. RA	DIATED EMISSION TEST	38
10.1.	Block Diagram of Test Setup	38
10.2.	The Requirement For Section 15.247(d)	39
10.3.	Transmitter Emission Limit	
10.4.	Restricted bands of operation	41
10.5.	Configuration of EUT on Measurement	41
10.6.	Test Procedure	42
10.7.	Data Sample	43
10.8.	Test Result	43
11. BA	ND EDGE COMPLIANCE TEST	7 1
11.1.	Block Diagram of Test Setup	71
11.2.	The Requirement For Section 15.247(d)	71
11.3.	EUT Configuration on Measurement	71
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	72
11.6.	Test Result	72
12. AC	POWER LINE CONDUCTED EMISSION TEST	82
12.1.	Block Diagram of Test Setup	82
12.2.	Test System Setup	82
12.3.	Test Limits	83
12.4.	Configuration of EUT on Measurement	
12.5.	Operating Condition of EUT	
12.6.	Test Procedure	
12.7.	Data Sample	
12.8.	Test Result	
13. CC	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	87
13.1.	Block Diagram of Test Setup	87
13.2.	The Requirement For Section 15.247(d)	87
13.3.	EUT Configuration on Measurement	87
13.4.	Operating Condition of EUT	87
13.5.	Test Procedure	
13.6.	Test Result	88
14. AN	TENNA REQUIREMENT	92

The Requirement92

14.1. 14.2.

Report No.: ATE20190602

Page 4 of 92

Test Report Certification

Applicant : UP Global Sourcing Ltd.

Address : Manor Mill Victoria Street Chadderton Oldham OL9 0DD, UNITED

KINGDOM

Factory : CHANCO ELECTRONICS FACTORY

Address : NO.27, Sha Jin South Street, Changan Town, Dongguan City,

Guangdong Province, China

Product : Wireless Headphones

Model No. : EE5117

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	April 22-April 25, 2019
Date of Report:	April 26, 2019
Prepared by :	(S YAR-F-SIDER) APPROVED APPROVED
Approved & Authorized Signer:	Temm
	(Sean Liu, Manager)

Page 5 of 92

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Product : Wireless Headphones

Model Number : EE5117

Bluetooth version : V5.0 (Single Mode)

Frequency Range : 2402-2480MHz

Channel Spacing : 1MHz

Number of Channels : 79

Antenna Gain(Max) : 0dBi

Antenna type : Integral Antenna

Modulation mode : GFSK, $\pi/4$ DQPSK

Trade Mark : PRIMARK

Rating : Input: 5 V

1.2. Accessory and Auxiliary Equipment

Notebook PC: Manufacturer: Lenovo

M/N: ThinkPad X240

S/N: n.a

Page 6 of 92

1.3. Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm Shenzhen Accurate Technology Co., Ltd.

Site Location 1/F., Building A, Changyuan New Material Port, Science

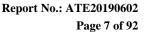
& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty 2.23dB, k=2

Radiated emission expanded uncertainty 3.08dB, k=2

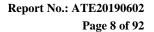

(9kHz-30MHz)

Radiated emission expanded uncertainty 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty 4.06dB, k=2

(Above 1GHz)



2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 05, 2019	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 05, 2019	One Year
Pre-Amplifier	Agilent	8447D	294A10619	Jan. 05, 2019	One Year
Pre-Amplifier	Compliance Direction	RSU-M2	38322	Jan. 05, 2019	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 05, 2019	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-23 75/2510-60/11SS	N/A	Jan. 05, 2019	One Year
Conducted Emission Measurement Software: ES-K1 V1.71					

Radiated Emission Measurement Software: EZ_EMC V1.1.4.2

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode


Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

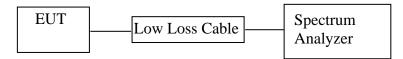
3.2.Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Radiated Emission Test	Compliant
Section 15.209		
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant


Report No.: ATE20190602

Page 10 of 92

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

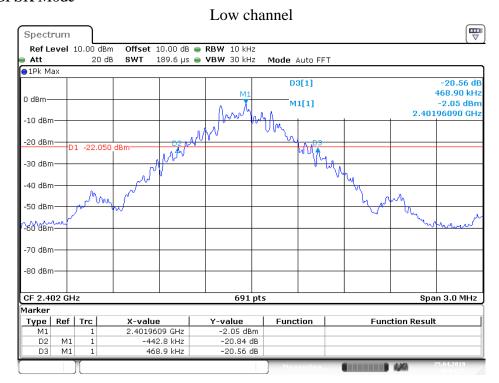
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2. The RBW should be 1%~5% of OBW.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

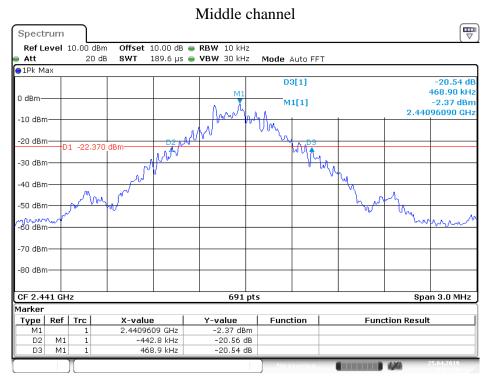


5.6.Test Result

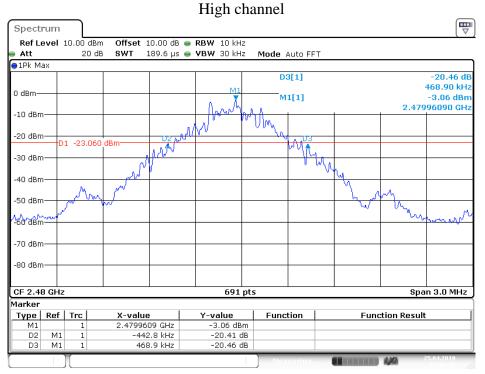
Channel	Frequency (MHz)	GFSK mode 20dB Bandwidth (MHz)	π /4 DQPSK mode 20dB Bandwidth (MHz)	Result
Low	2402	0.912	1.272	Pass
Middle	2441	0.912	1.289	Pass
High	2480	0.912	1.285	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

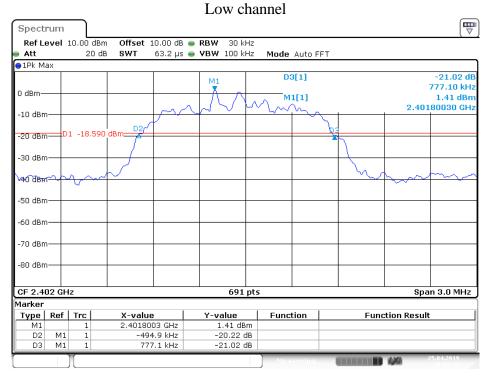


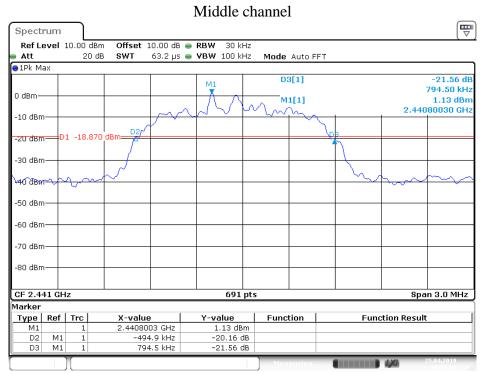
Date: 25.APR.2019 16:14:25

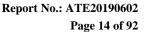


Page 12 of 92

Date: 25.APR.2019 16:13:07


Date: 25.APR.2019 16:11:50


Page 13 of 92


π /4 DQPSK Mode

Date: 25.APR.2019 16:17:45

Date: 25.APR.2019 16:19:07

High channel Spectrum Ref Level 10.00 dBm Att 20 dB Offset 10.00 dB • RBW 30 kHz SWT 63.2 µs • VBW 100 kHz Mode Auto FFT Att ●1Pk Max D3[1] -21.12 dB 785.80 kHz 0 dBm-M1[1] 0.43 dBm 2.47980030 GHz -10 dBm D1 -19.570 dBm -20 dBm -30 dBm -50 dBm -60 dBm--70 dBm--80 dBm-CF 2.48 GHz 691 pts Span 3.0 MHz Marker Y-value 0.43 dBm -20.27 dB -21.12 dB Type Ref Trc **X-value** 2.4798003 GHz **Function Result**

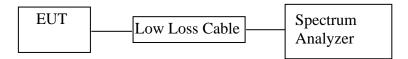
Function

Date: 25.APR.2019 16:21:38

-499.3 kHz 785.8 kHz

M1 M1 D2

DЗ



Page 15 of 92

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20190602 Page 16 of 92

6.5.Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. Adjust Span to 3MHz.
- 6.5.3.Set the adjacent channel of the EUT Maxhold another trace.
- 6.5.4. Measurement the channel separation

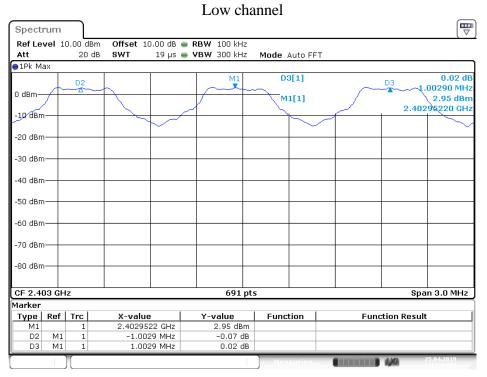
6.6.Test Result

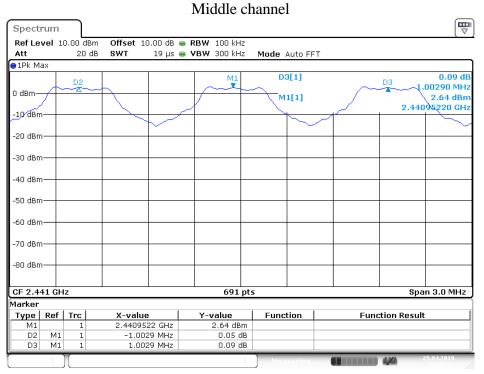
GFSK mode

	-			
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 20dB	Dage
LOW	2403	1.0029	bandwidth	Pass Pass
Middle	2440	1.0029	25KHz or 20dB	Dogg
Milaule	2441	1.0029	bandwidth	rass
High	2479	1.0029	25KHz or 20dB	Pass
Iligii	2480	1.0029	bandwidth	rass

π /4 DQPSK Mode

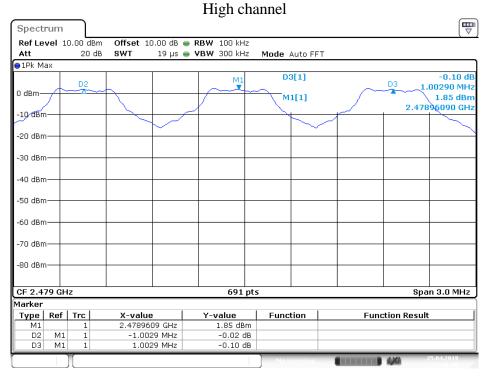
	7.2 (2.512.1.1000					
Channel	Frequency	Channel	Limit	Result		
Chainei	(MHz)	Separation(MHz)	(MHz)	Result		
Low	2402	1.0029	25KHz or 2/3*20dB	Dogg		
Low	2403	1.0029	bandwidth	Pass		
Middle	2440	1.0029	25KHz or 2/3*20dB	Dogg		
Middle	2441	1.0029	bandwidth	Pass		
Uich	2479	1.0029	25KHz or 2/3*20dB	Dogg		
High	2480	1.0029	bandwidth	Pass		


The spectrum analyzer plots are attached as below.

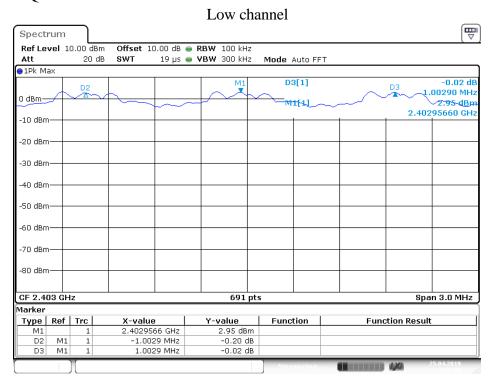


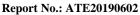
GFSK Mode

Date: 25.APR.2019 13:44:08



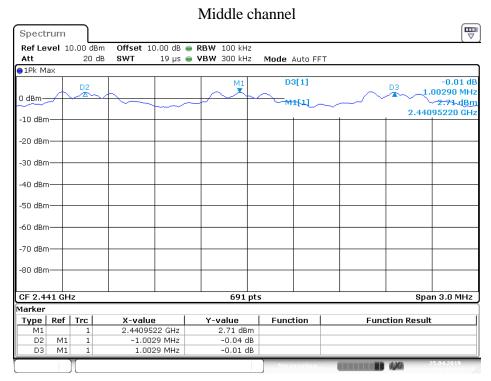
Date: 25.APR.2019 13:45:24


Page 18 of 92

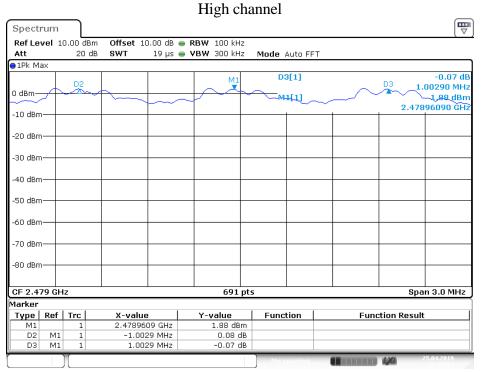


Date: 25.APR.2019 13:46:46

π /4 DQPSK Mode



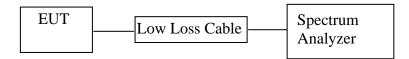
Date: 25.APR.2019 13:50:20



Page 19 of 92

Date: 25.APR.2019 13:49:14

Date: 25.APR.2019 13:47:54



Page 20 of 92

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

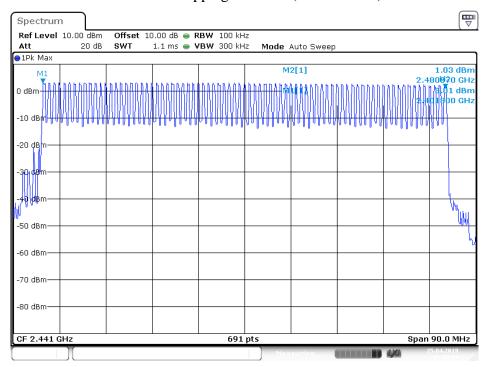
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5. Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=90MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.



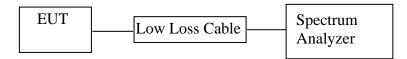
7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	79	≥15	Pass

The spectrum analyzer plots are attached as below.

Number of hopping channels (GFSK Mode)

Date: 25.APR.2019 13:42:08


Report No.: ATE20190602

Page 22 of 92

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

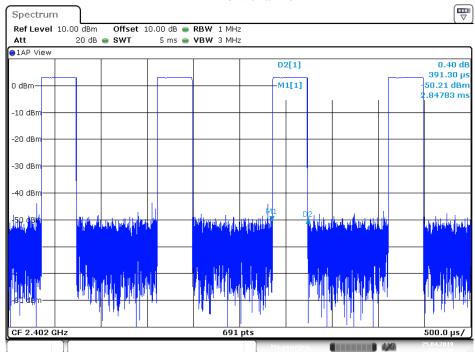
GFSK Mode

Mode	Channel Frequency	Pulse Time	Dwell Time	Limit
	(MHz)	(ms)	(ms)	(ms)
	2402	0.391	125.12	400
DH1	2441	0.391	125.12	400
	2480	0.391	125.12	400
A period t	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	ilse time \times (1600/(2**	79))×31.6
	2402	1.667	266.72	400
DH3	2441	1.667	266.72	400
	2480	1.667	266.72	400
A period t	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6
	2402	2.935	313.07	400
DH5	2441	2.935	313.07	400
	2480	2.935	313.07	400
A period transi	$mit time = 0.4 \times 79 = 31.6$	5 Dwell time = pulse t	ime × (1600/(6*79))	×31.6

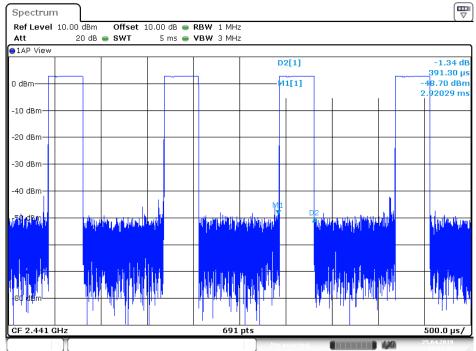
π /4 DQPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.406	129.92	400	
2DH1	2441	0.406	129.92	400	
	2480	0.399	127.68	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	ulse time \times (1600/(2*)	79))×31.6	
	2402	1.667	266.72	400	
2DH3	2441	1.681	268.96	400	
	2480	1.667	266.72	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	ulse time \times (1600/(4*)	79))×31.6	
	2402	2.935	313.07	400	
2DH5	2441	2.935	313.07	400	
	2480	2.935	313.07	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

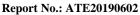
The spectrum analyzer plots are attached as below.

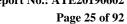


Page 24 of 92

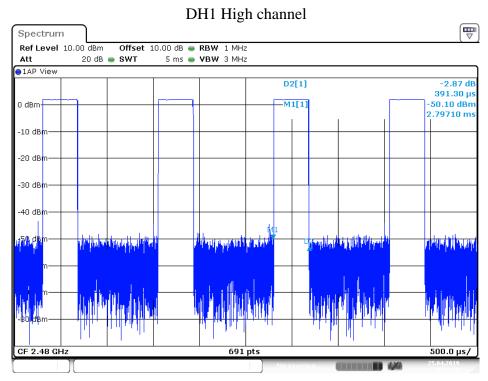

GFSK Mode

DH1 Low channel

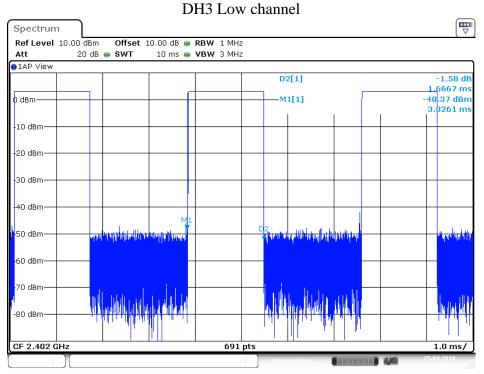


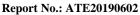

Date: 25.APR.2019 14:10:31

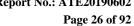
DH1 Middle channel



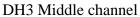
Date: 25.APR.2019 14:11:15

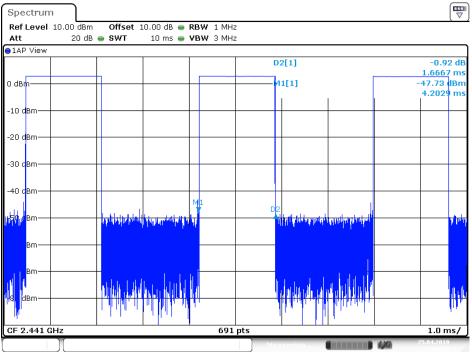


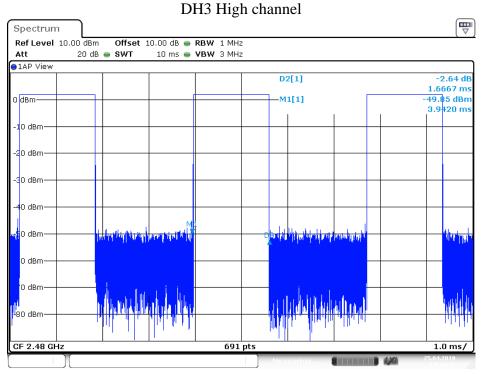


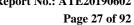


Date: 25.APR.2019 14:12:04

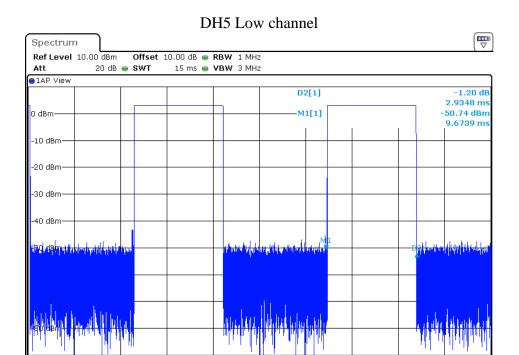



Date: 25.APR.2019 14:15:22

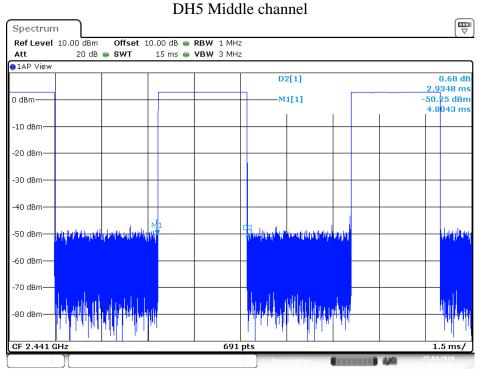


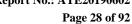


Date: 25.APR.2019 14:14:29

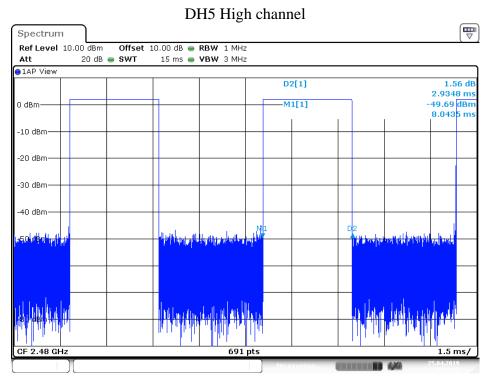


Date: 25.APR.2019 14:13:35

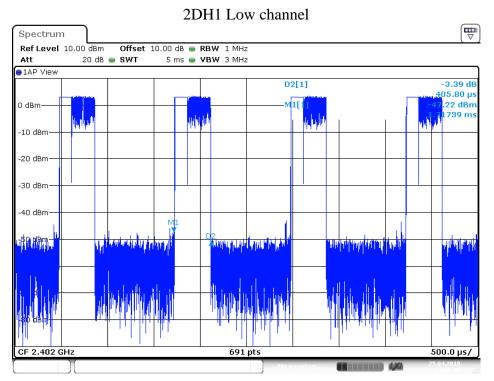


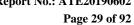


Date: 25.APR.2019 14:16:20

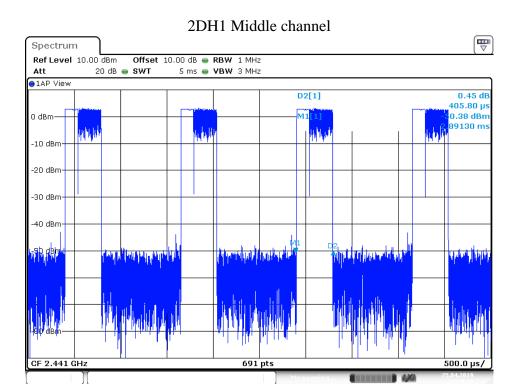


Date: 25.APR.2019 14:17:04

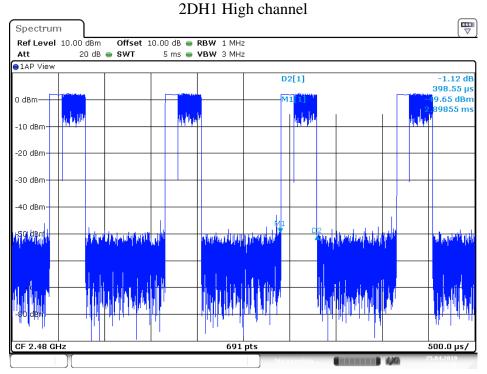



Date: 25.APR.2019 14:18:03

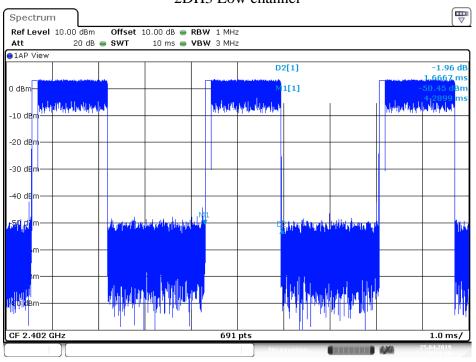
π /4 DQPSK Mode

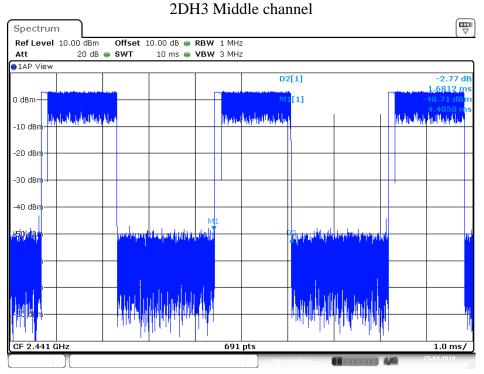


Date: 25.APR.2019 14:25:06



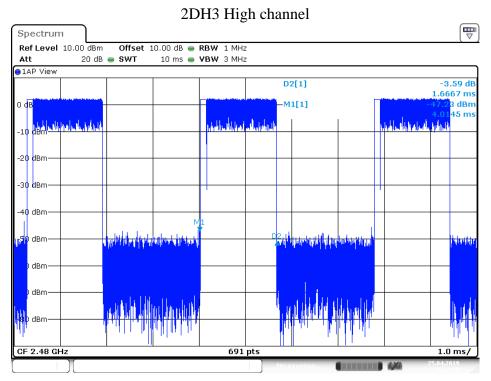
Date: 25.APR.2019 14:24:20


Date: 25.APR.2019 14:23:37

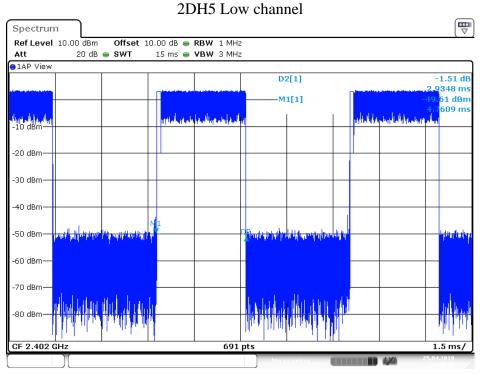

Page 30 of 92

2DH3 Low channel

Date: 25.APR.2019 14:21:16

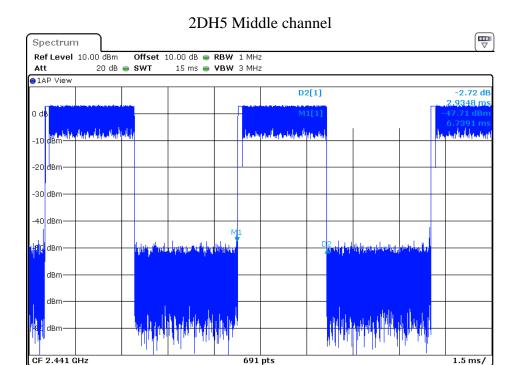


Date: 25.APR.2019 14:22:00

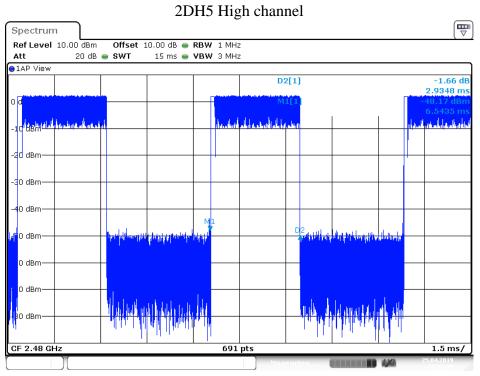


Page 31 of 92

Date: 25.APR.2019 14:22:50



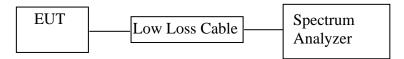
Date: 25.APR.2019 14:20:19



Page 32 of 92

Date: 25.APR.2019 14:19:37

Date: 25.APR.2019 14:18:49


Report No.: ATE20190602

Page 33 of 92

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

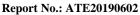
- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz
- 9.5.3. Measurement the maximum peak output power.

9.6.Test Result

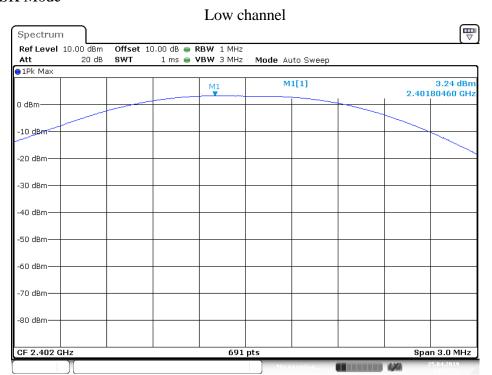
GFSK Mode

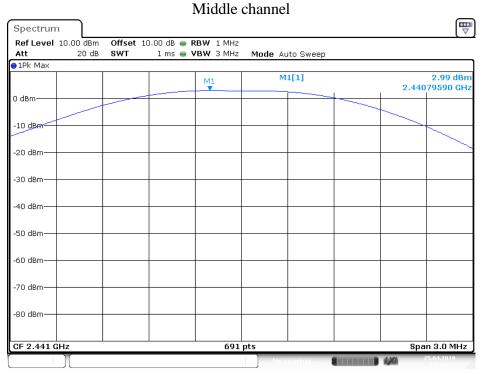

Frequency (MHz)	Maximum peak conducted output power (dBm/W)	e.i.r.p. (dBm/W)	Limits dBm / W	Result
2402	3.24/0.0021	3.24/0.0021	30 / 1.000	Pass
2441	2.99/0.0020	2.99/0.0020	30 / 1.000	Pass
2480	2.22/0.0017	2.22/0.0017	30 / 1.000	Pass

π /4 DQPSK Mode

Frequency (MHz)	Maximum peak conducted output power (dBm/W)	e.i.r.p. (dBm/W)	Limits dBm / W	Result
2402	4.03/0.0025	4.03/0.0025	21 / 0.125	Pass
2441	3.79/0.0024	3.79/0.0024	21 / 0.125	Pass
2480	3.01/0.0020	3.01/0.0020	21 / 0.125	Pass

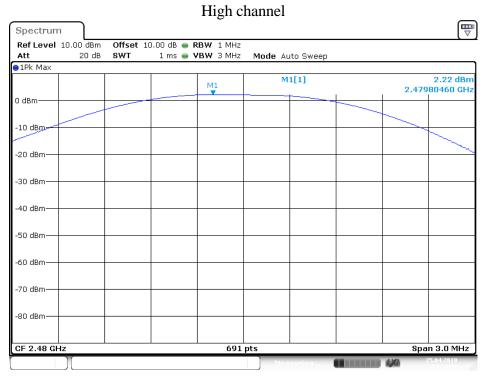
Note: e.i.r.p= Maximum peak conducted output power+antenna gain(0dBi)


The spectrum analyzer plots are attached as below.

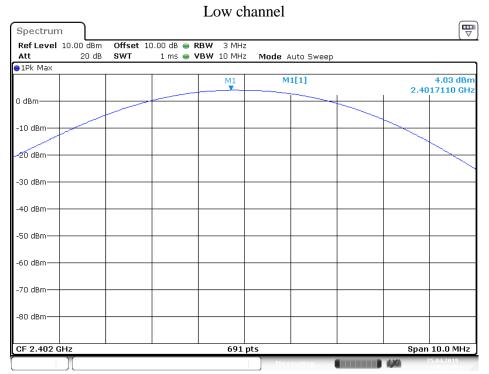


GFSK Mode

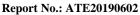
Date: 25.APR.2019 14:32:54



Date: 25.APR.2019 14:31:53

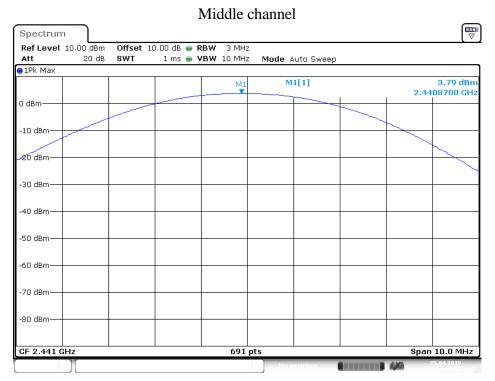


Page 36 of 92

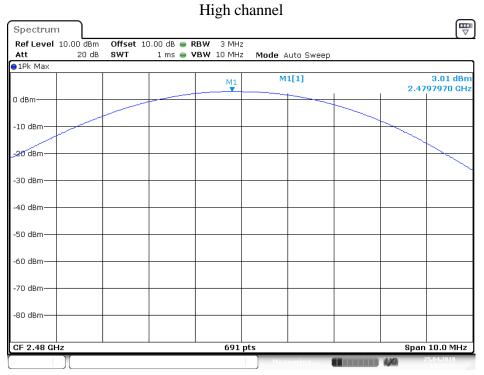


Date: 25.APR.2019 14:30:27

π /4 DQPSK Mode



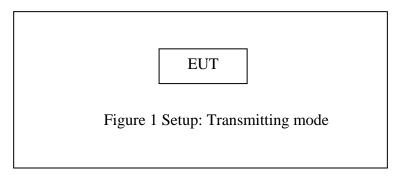
Date: 25.APR.2019 14:27:45

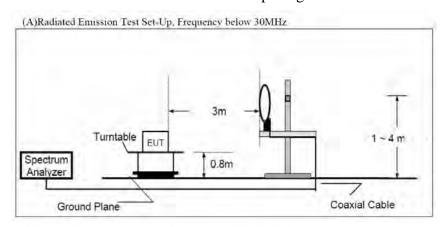


Page 37 of 92

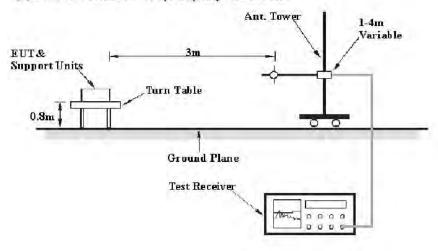
Date: 25.APR.2019 14:28:36

Date: 25.APR.2019 14:29:37

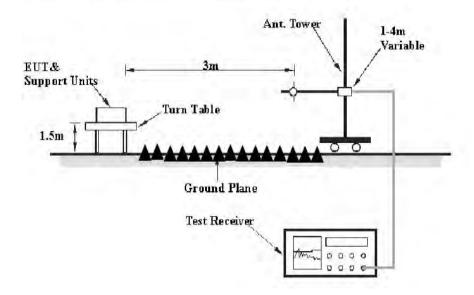

Report No.: ATE20190602 Page 38 of 92


10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup


10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram


(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

Page 39 of 92

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

10.2. The Requirement For Section 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Transmitter Emission Limit

Radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5 - General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (μV/m at 3 m)
30 – 88	100
88 – 216	150
216 - 960	200
Above 960	500

Table 6 - General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H- Field) (μA/m)	Measurement distance (m)		
9 - 490 kHz ¹	6.37/F (F in kHz)	300		
49 <mark>0 - 1</mark> 705 kHz	63.7/F (F in kHz)	30		
1.705 - 30 MHz	0.08	30		

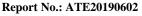
Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

10.4.Restricted bands of operation

10.4.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

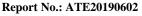

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.5. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6


Page 42 of 92

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Page 43 of 92

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu v$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain

Result($dB\mu\nu/m$) = Reading($dB\mu\nu$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8.Test Result

Pass.

The frequency range from 9KHz to 26.5GHz is investigated.

Note: 1.We tested GFSK mode, $\pi/4$ DQPSK Mode, and recorded the worse case data ($\pi/4$ DQPSK mode) for all test mode.

The spectrum analyzer plots are attached as below.

Page 44 of 92

9kHz-30MHz test data

ACCURATE TECHNOLOGY CO., LTD

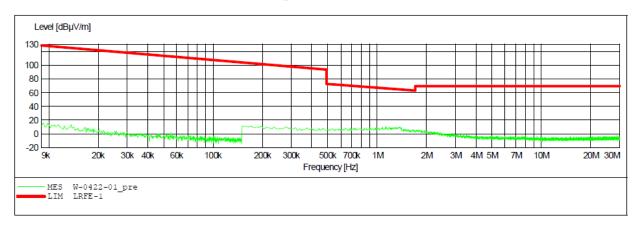
FCC Part 15C 3m Radiated

Wireless Headphones M/N:EE5117

PRIMARK Manufacturer: Operating Condition: TX 2402MHz Test Site: 2# Chamber Operator: WADE

Test Specification: DC 3.7V Comment: Χ

Comment:


SCAN TABLE: "LFRE Fin"
Short Description:

_SUB_STD_VTERM2 1.70

Detector Meas. ΙF Transducer Start Stop Step

Frequency Frequency Width Time Bandw.

100.0 Hz QuasiPeak 1.0 s 150.0 kHz 200 Hz 1516M 9.0 kHz 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 45 of 92

ACCURATE TECHNOLOGY CO., LTD

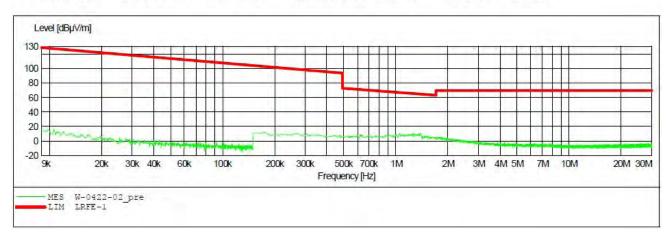
FCC Part 15C 3m Radiated

EUT: Wireless Headphones M/N:EE5117

Manufacturer: PRIMARK
Operating Condition: TX 2402MHz
Test Site: 2# Chamber

Operator: WADE Test Specification: DC 3.7V Comment: Y

Comment:


SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 46 of 92

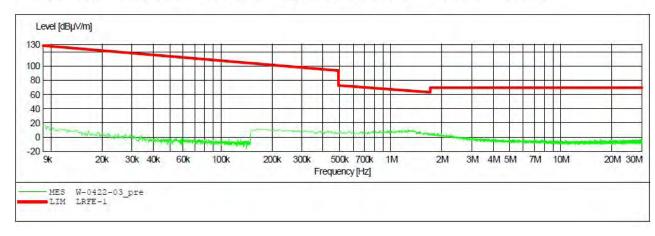
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3m Radiated

EUT: Wireless Headphones M/N:EE5117

Manufacturer: PRIMARK Operating Condition: TX 2402MHz Test Site: 2# Chamber

Operator: WADE Test Specification: DC 3.7V Z


Comment: Comment:

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

Stop Start Step Detector Meas. IF Transducer

Time Frequency Frequency Width Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 47 of 92

ACCURATE TECHNOLOGY CO., LTD

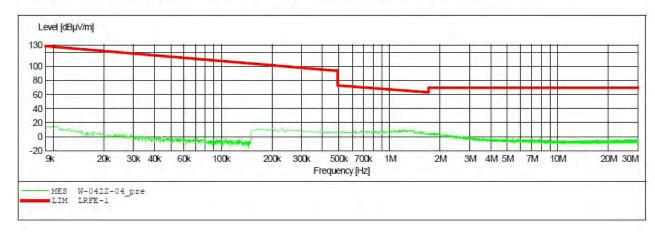
FCC Part 15C 3m Radiated

EUT: Wireless Headphones M/N:EE5117

Manufacturer: PRIMARK Operating Condition: TX 2441MHz Test Site: 2# Chamber

WADE Operator: Test Specification: DC 3.7V X Comment:

Comment:


SCAN TABLE: "LFRE Fin"

_SUB_STD_VTERM2 1.70 Short Description:

Stop Start Step Detector Meas. IF Transducer

Time Bandw.

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 48 of 92

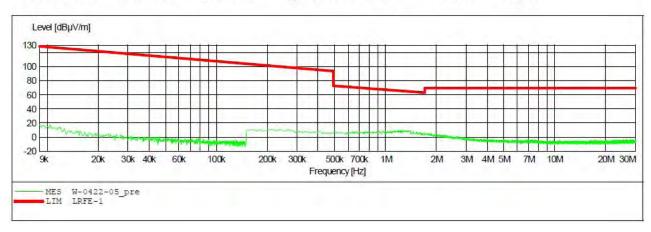
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3m Radiated

Wireless Headphones M/N:EE5117

Manufacturer: PRIMARK Operating Condition: TX 2441MHz 2# Chamber Test Site:

Operator: WADE Test Specification: DC 3.7V


Comment: Comment:

SCAN TABLE: "LFRE Fin" _SUB_STD_VTERM2 1.70 Short Description:

IF Start Stop Step Detector Meas. Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 49 of 92

ACCURATE TECHNOLOGY CO., LTD

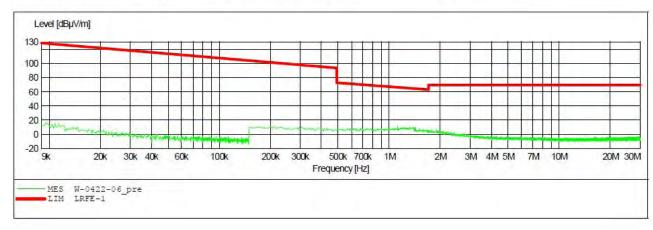
FCC Part 15C 3m Radiated

EUT: Wireless Headphones M/N:EE5117

Manufacturer: PRIMARK Operating Condition: TX 2441MHz 2# Chamber Test Site:

Operator: WADE Test Specification: DC 3.7V Comment: Z

Comment:


SCAN TABLE: "LFRE Fin"

SUB STD VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. IF Transducer

Bandw. Frequency Frequency Width Time

150.0 kHz 100.0 Hz 200 Hz 9.0 kHz QuasiPeak 1.0 s 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 50 of 92

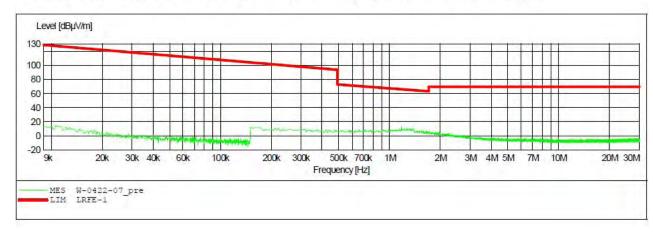
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3m Radiated

Wireless Headphones M/N:EE5117

PRIMARK Manufacturer: Operating Condition: TX 2480MHz Test Site: 2# Chamber

Operator: WADE Test Specification: DC 3.7V X


Comment: Comment:

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

Stop Start Step Detector Meas. IF Transducer

Time Bandw.

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 51 of 92

ACCURATE TECHNOLOGY CO., LTD

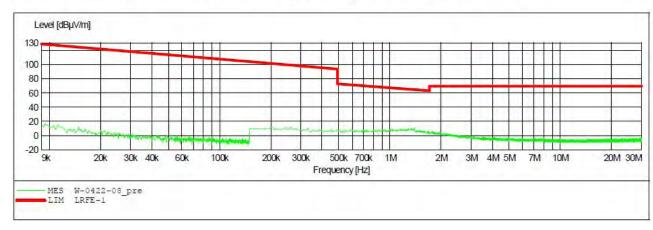
FCC Part 15C 3m Radiated

EUT: Wireless Headphones M/N:EE5117

PRIMARK Manufacturer: Operating Condition: TX 2480MHz Test Site: 2# Chamber

Operator: WADE Test Specification: DC 3.7V Y

Comment:


Comment:


SCAN TABLE: "LFRE Fin"
Short Description: SUB_STD VTERM2 1.70

Start Stop IF Transducer Step Detector Meas.

Time Frequency Frequency Width Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 5.0 kHz 9 kHz 1516M

Page 52 of 92

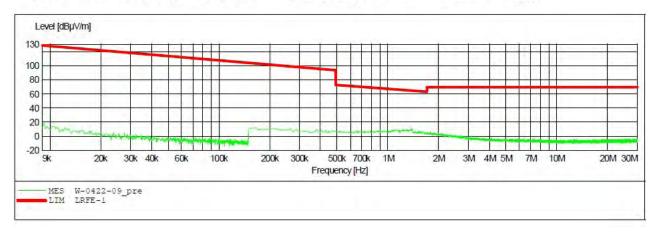
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3m Radiated

EUT: Wireless Headphones M/N:EE5117

PRIMARK Manufacturer: Operating Condition: TX 2480MHz Test Site: 2# Chamber

Operator: WADE Test Specification: DC 3.7V Z.


Comment: Comment:

SCAN TABLE: "LFRE Fin"
Short Description: SUB STD VTERM2 1.70

Start IF Stop Step Detector Meas. Transducer

Time Bandw.

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 5.0 kHz 9 kHz 1516M

Page 53 of 92

30MHz-1GHz Test data

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1171

Standard: FCC Part 15C 3M Radiated

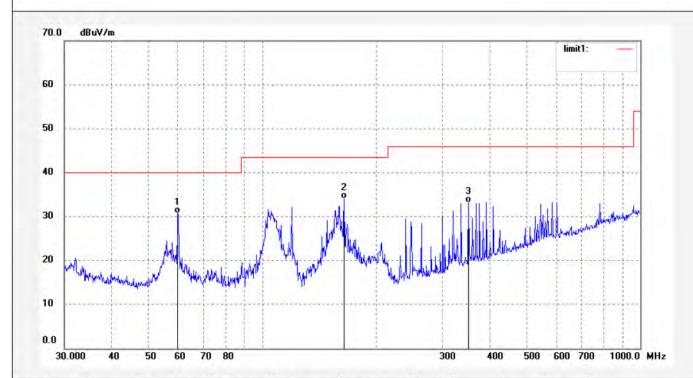
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

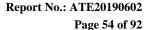
Mode: TX 2402MHz
Model: EE5117
Manufacturer: PRIMARK

Polarization: Horizontal

Power Source: DC 3.7V


Date: 19/04/22/

Time:


Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	59.8588	44.64	-13.88	30.76	40.00	-9.24	QP			
2	164.9074	48.38	-14.32	34.06	43.50	-9.44	QP			
3	351.7078	40.54	-7.40	33.14	46.00	-12.86	QP	- i,		

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

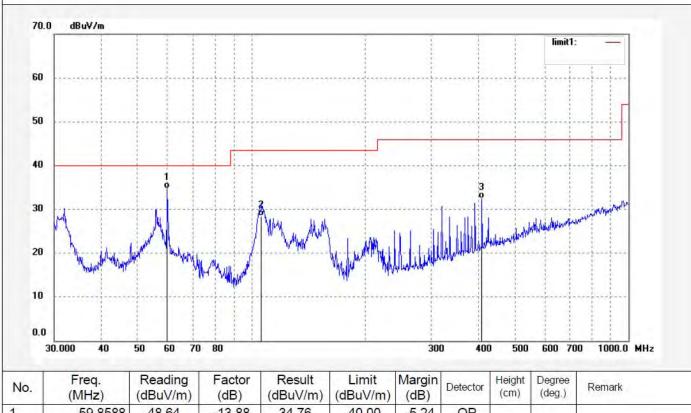
Job No.: LGW2019 #1172

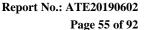
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz
Model: EE5117
Manufacturer: PRIMARK


Polarization: Vertical


Power Source: DC 3.7V Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

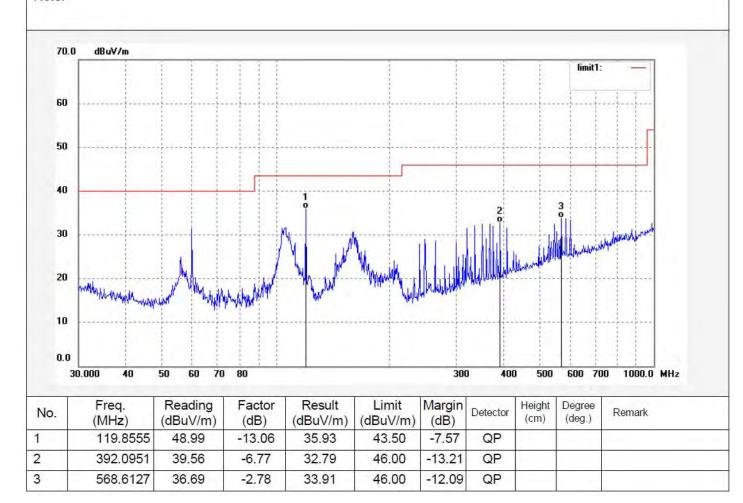
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

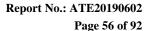
Job No.: LGW2019 #1174

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones


Mode: TX 2441MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

Site: 2# Chamber

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Tel:+86-0755-26503290 Fax:+86-0755-26503396

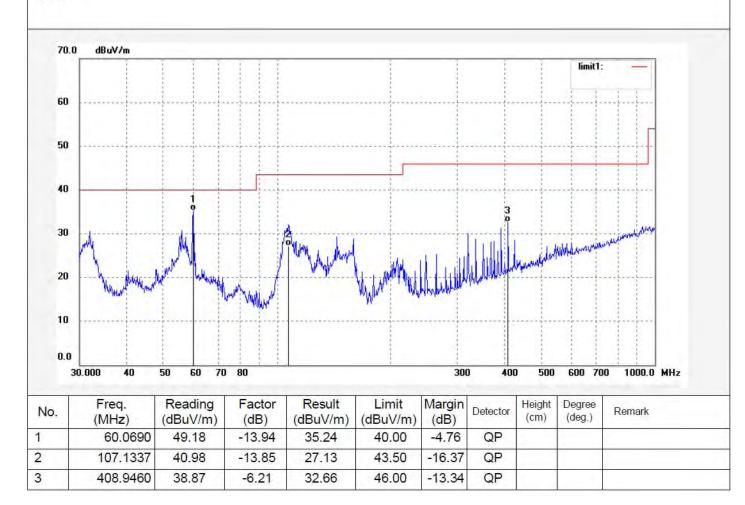
Job No.: LGW2019 #1173

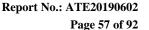
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2441MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Vertical


Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

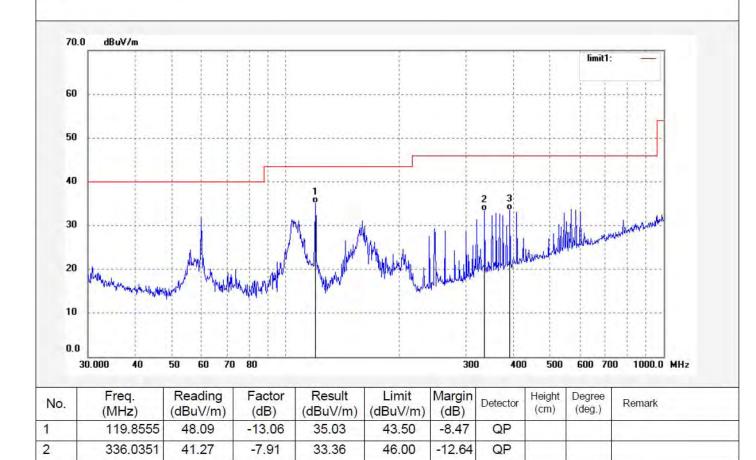
Job No.: LGW2019 #1175

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2480MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

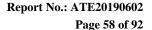
Distance: 3m

Note:

46.00

QP

-12.57


33.43

-6.77

3

40.20

392.0951

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1176

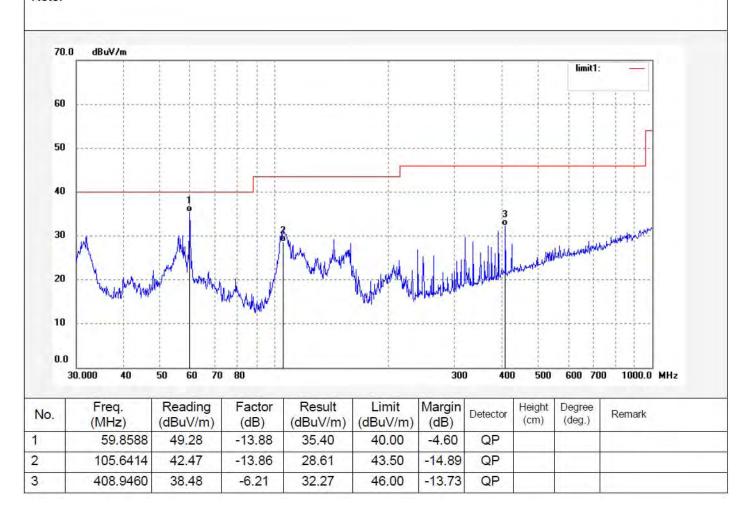
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2480MHz
Model: EE5117
Manufacturer: PRIMARK

Polarization: Vertical


Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

Page 59 of 92

1GHz-18GHz test data

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

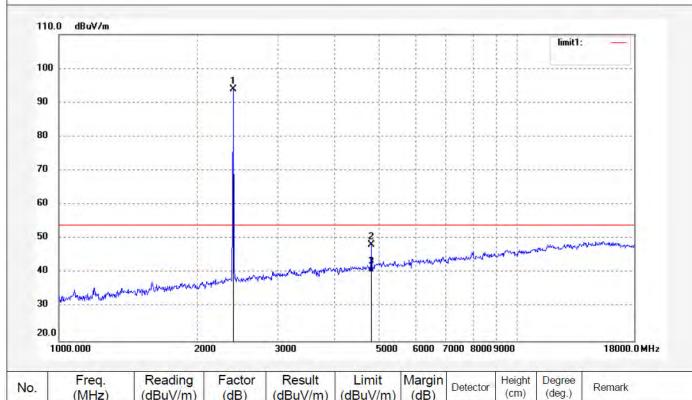
Job No.: LGW2019 #1139

Standard: FCC Part 15C 3M Radiated

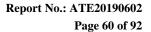
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal


Power Source: DC 3.7V

Date: 19/04/22/


Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2402.000	92.99	0.89	93.88	1	1	peak				
2	4804.026	40.87	7.40	48.27	74.00	-25.73	peak				
3	4804.026	32.85	7.40	40.25	54.00	-13.75	AVG				

Site: 2# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Vertical

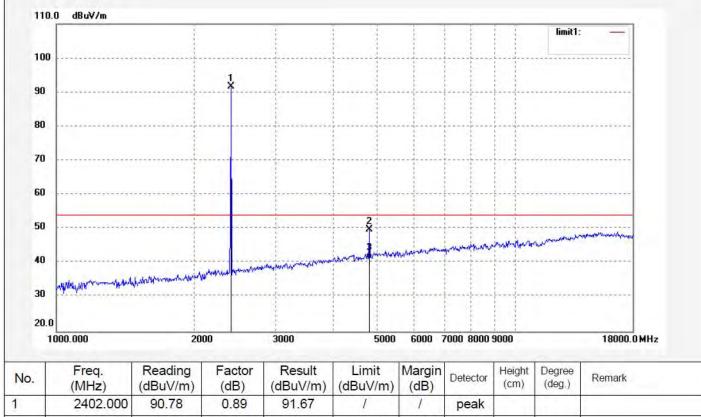
Power Source: DC 3.7V

Date: 19/04/22/

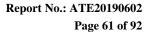
Time:

Engineer Signature: WADE

Distance: 3m


Job No.: LGW2019 #1140

Standard: FCC Part 15C 3M Radiated


Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz Model: EE5117 Manufacturer: PRIMARK

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2402.000	90.78	0.89	91.67	1	1	peak			
2	4804.027	42.35	7.40	49.75	74.00	-24.25	peak			
3	4804.027	33.95	7.40	41.35	54.00	-12.65	AVG			

ACCURATE TECHNOLOGY CO., LTD.

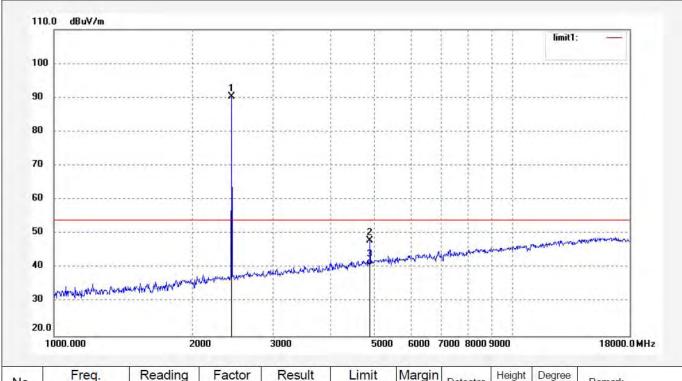
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1143

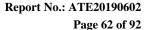
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones


Mode: TX 2441MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal Power Source: DC 3.7V

Date: 19/04/22/


Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2441.000	89.31	1.06	90.37	1	1	peak				
2	4882.028	39.99	8.11	48.10	74.00	-25.90	peak				
3	4882.028	32.67	8.11	40.78	54.00	-13.22	AVG		1 41		

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

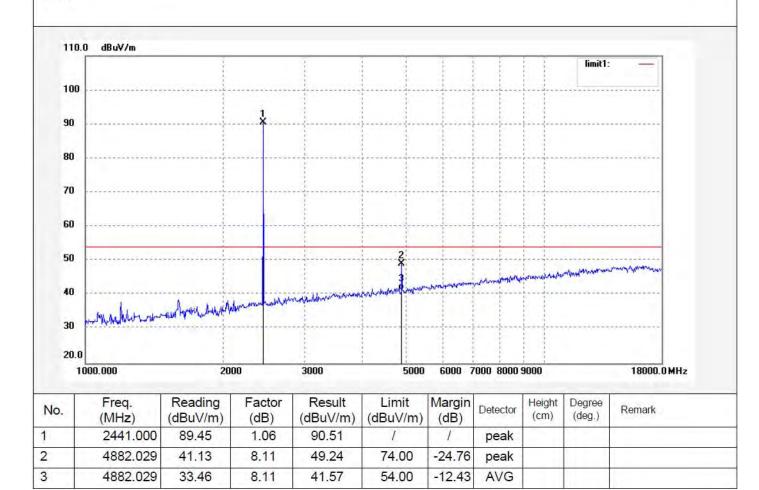
Job No.: LGW2019 #1144

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2441MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Vertical


Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

Page 63 of 92

ACCURATE TECHNOLOGY CO., LTD.

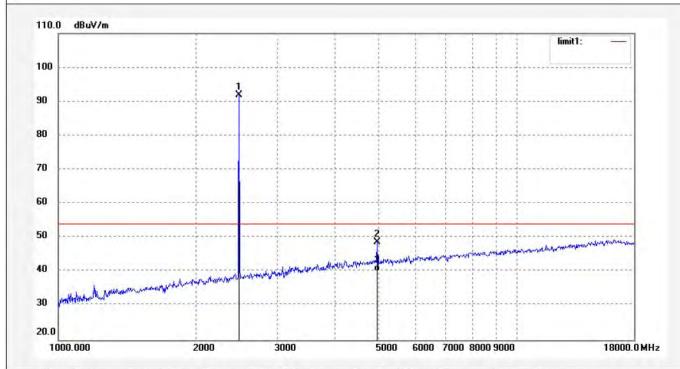
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1146

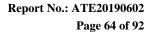
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones


Mode: TX 2480MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal Power Source: DC 3.7V

Date: 19/04/22/


Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2480.000	90.87	1.10	91.97	1	1	peak				
2	4960.032	40.00	8.60	48.60	74.00	-25.40	peak				
3	4960.032	31.61	8.60	40.21	54.00	-13.79	AVG				

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1145

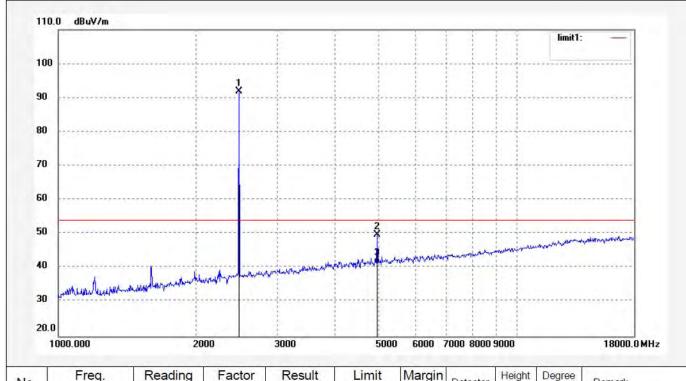
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2480MHz
Model: EE5117
Manufacturer: PRIMARK

Polarization: Vertical


Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.000	90.78	1.10	91.88	1	1	peak			
2	4960.030	41.19	8.60	49.79	74.00	-24.21	peak			
3	4960.030	32.64	8.60	41.24	54.00	-12.76	AVG			

Page 65 of 92

18GHz-26.5GHz test data

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

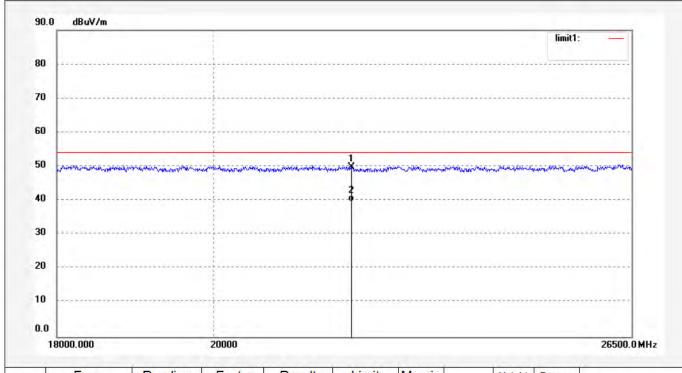
Job No.: LGW2019 #1150

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal


Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	21941.932	17.84	32.09	49.93	74.00	-24.07	peak		1		
2	21941.932	7.60	32.09	39.69	54.00	-14.31	AVG				

Page 66 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1149

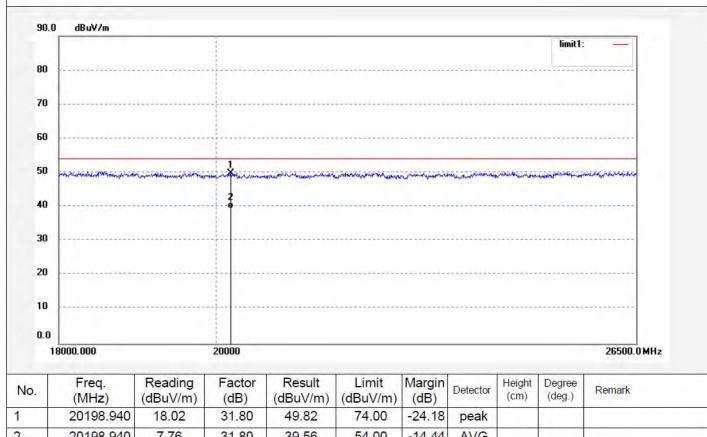
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz Model: EE5117 Manufacturer: PRIMARK

Vertical Polarization:


Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	20198.940	18.02	31.80	49.82	74.00	-24.18	peak			
2	20198.940	7.76	31.80	39.56	54.00	-14.44	AVG			

Page 67 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

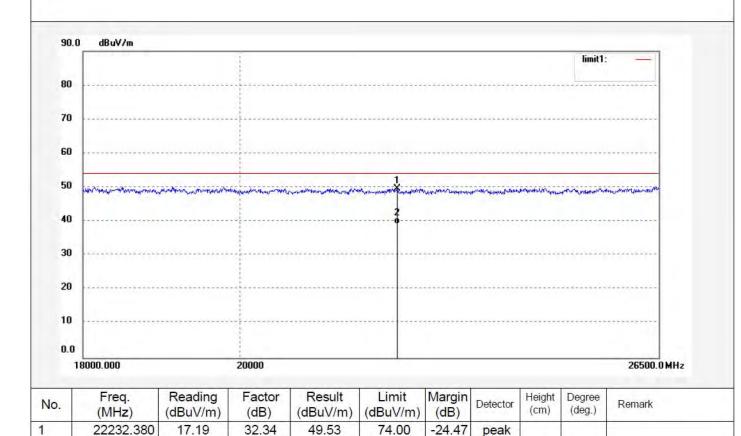
Job No.: LGW2019 #1151

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2441MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

Note:

22232.380

2

7.00

32.34

39.34

54.00

-14.66

AVG

Page 68 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

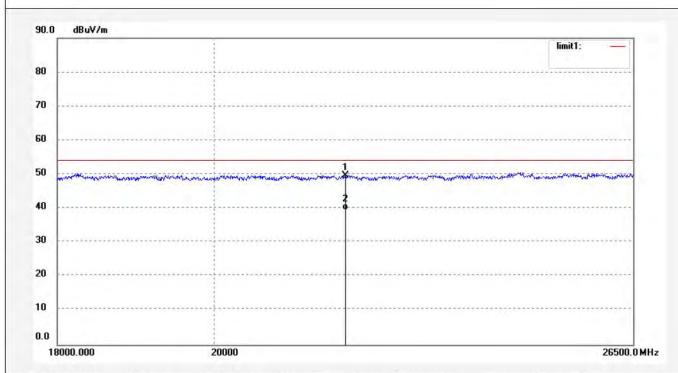
Job No.: LGW2019 #1152

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2441MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Vertical


Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	21848.779	17.60	32.04	49.64	74.00	-24.36	peak			
2	21848.779	7.52	32.04	39.56	54.00	-14.44	AVG			

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 69 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: LGW2019 #1154

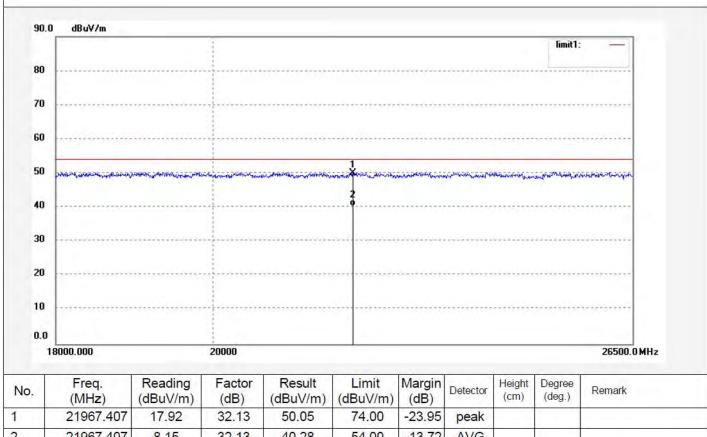
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2480MHz EE5117 Model:

Manufacturer: PRIMARK


Polarization: Horizontal Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	21967.407	17.92	32.13	50.05	74.00	-23.95	peak			
2	21967.407	8.15	32.13	40.28	54.00	-13.72	AVG			

Page 70 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1153

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

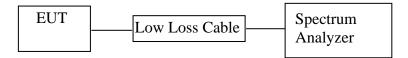

Mode: TX 2480MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Vertical Power Source: DC 3.7V

Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m



Page 71 of 92

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2.The Requirement For Section 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

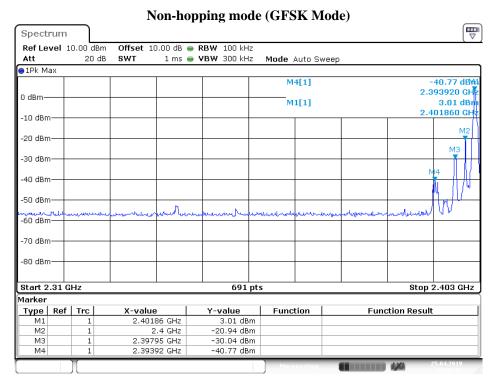
Page 72 of 92

11.5.Test Procedure

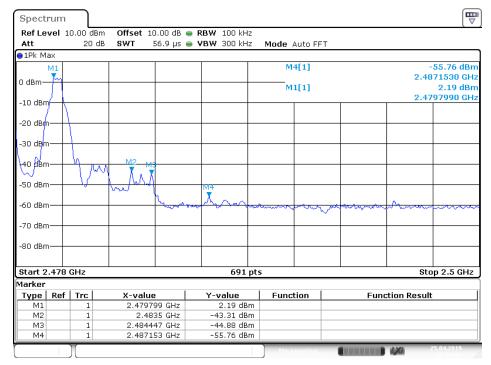
- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

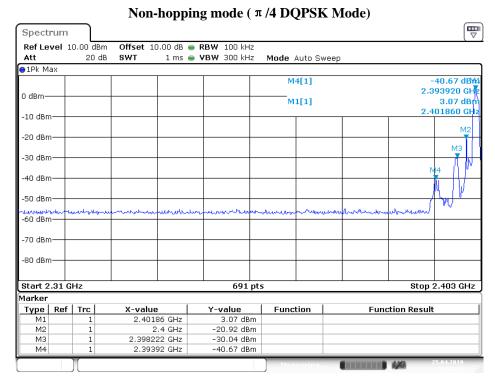
Non-hopping mode


Frequency	Result of Band Edge	Limit of Band Edge	Result						
(MHz)	(dBc)	(dBc)							
GFSK mode									
2400.00	23.95	> 20dBc	Pass						
2483.50	45.50	> 20dBc	Pass						
π /4 DQPSK mode									
2400.00	23.99	> 20dBc	Pass						
2483.50	45.26	> 20dBc	Pass						

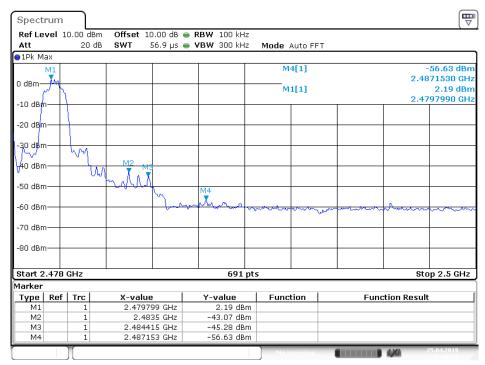
Hopping mode


moue										
Frequency	Result of Band Edge	Limit of Band Edge	Result							
(MHz)	(dBc)	(dBc)								
(WITIZ)	(ubc)	(ubc)								
GFSK mode										
2400.00	24.07	> 20dBc	Pass							
2483.94	45.77	> 20dBc	Pass							
π /4 DQPSK mode										
2400.00	24.17	> 20dBc	Pass							
2483.91	46.17	> 20dBc	Pass							

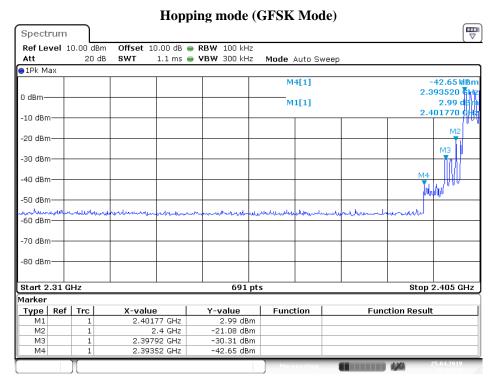
The spectrum analyzer plots are attached as below.



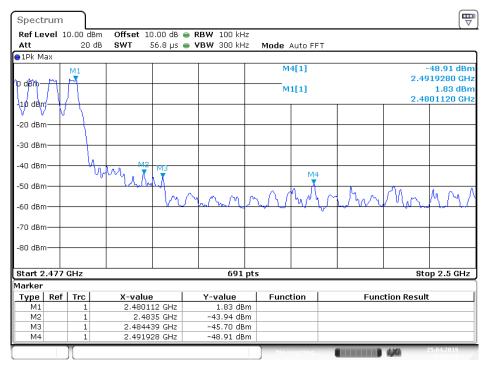
Date: 25.APR.2019 15:50:53



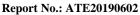
Date: 25.APR.2019 15:52:04



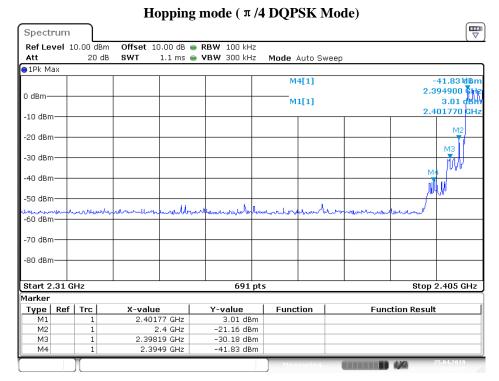
Date: 25.APR.2019 15:44:57



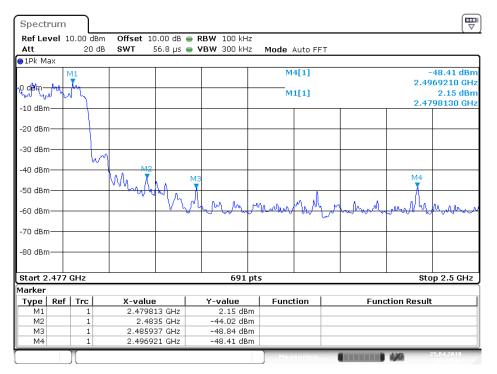
Date: 25.APR.2019 15:46:28

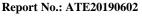


Date: 25.APR.2019 16:01:27



Date: 25.APR.2019 16:00:07





Date: 25.APR.2019 16:02:39

Date: 25.APR.2019 16:04:17

Page 77 of 92

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz
- 3.All modes of operation were investigated and the worse case(GFSK) emissions are reported.

Report No.: ATE20190602

Page 78 of 92

Non-hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1142 Standard: FCC (Band Edge) Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Horizontal Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2389.760	42.39	0.79	43.18	74.00	-30.82	peak				1
2	2389.760	32.47	0.79	33.26	54.00	-20.74	AVG				

Report No.: ATE20190602

Page 79 of 92

ACCURATE TECHNOLOGY CO., LTD.

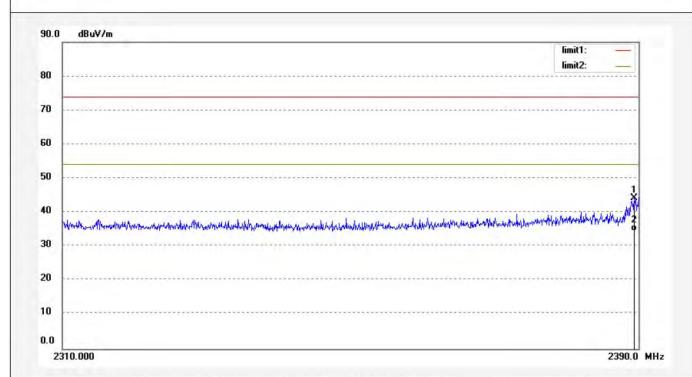
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1141
Standard: FCC (Band Edge)
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2402MHz
Model: EE5117
Manufacturer: PRIMARK

Polarization: Vertical Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2389.360	43.44	0.79	44.23	74.00	-29.77	peak			
2	2389.360	33.66	0.79	34.45	54.00	-19.55	AVG			

Report No.: ATE20190602

Page 80 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1147 Standard: FCC (Band Edge) Test item: Radiation Test

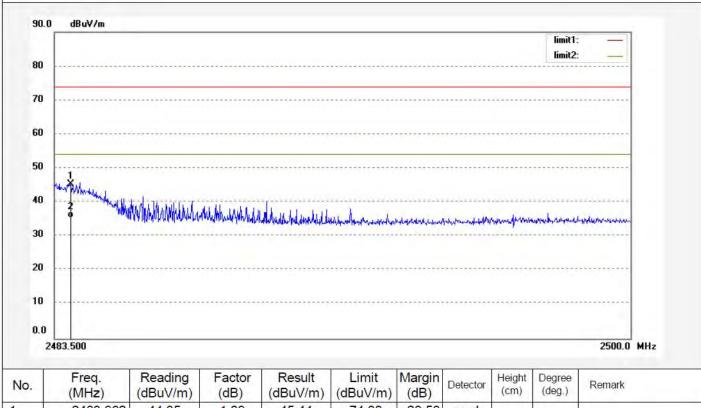
Temp.(C)/Hum.(%) 23 C / 48 % EUT:

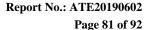
Mode: TX 2480MHz Model: EE5117

Manufacturer: PRIMARK

Wireless Headphones

Note:


Polarization: Horizontal Power Source: DC 3.7V


Date: 19/04/22/

Time:

Engineer Signature: WADE

Distance: 3m

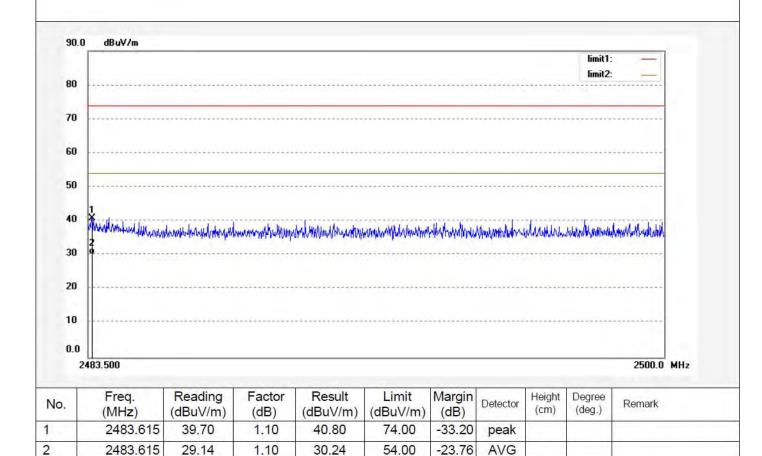
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1148
Standard: FCC (Band Edge)
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Wireless Headphones

Mode: TX 2480MHz Model: EE5117 Manufacturer: PRIMARK Polarization: Vertical
Power Source: DC 3.7V

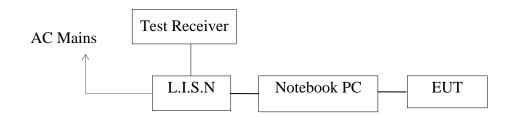

Date: 19/04/22/

Time:

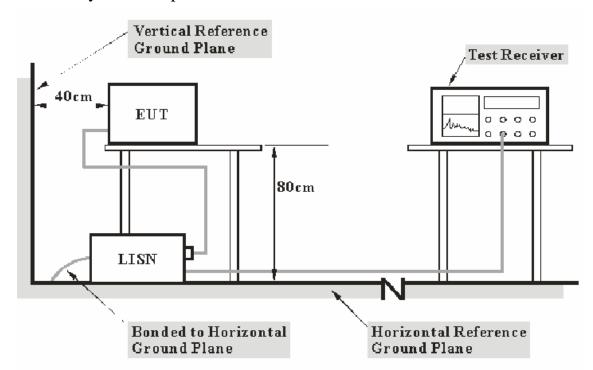
Engineer Signature: WADE

Distance: 3m

Note:



Report No.: ATE20190602 Page 82 of 92



12.AC POWER LINE CONDUCTED EMISSION TEST

12.1.Block Diagram of Test Setup

12.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 83 of 92

12.3.Test Limits

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

12.4. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.5.2. Turn on the power of all equipment.
- 12.5.3.Let the EUT work in test mode and measure it.

12.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 84 of 92

12.7.Data Sample

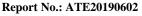
Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

$$\label{eq:frequency} \begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \end{split}$$

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

12.8.Test Result

Pass.


The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

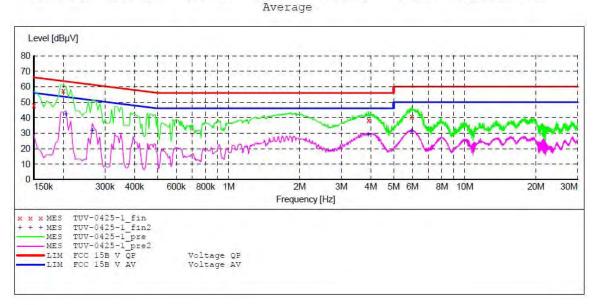
CONDUCTED EMISSION STANDARD FCC PART 15 B

Wireless Headphones M/N:EE5117

PRIMARK Manufacturer:

Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: WADE


Test Specification: L 120V/60Hz

Comment:

Start of Test: 4/25/2019 /

SCAN TABLE: "V 9K-30MHz fin" Short Description: _SU

_SUB_STD_VTERM2 1.70 Stop Step Detector Meas. Transducer Frequency Frequency Width Time Bandw. 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 9.0 kHz Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "TUV-0425-1 fin"

4/25/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.200000	48.20 57.60	10.5	66 64	17.8	QP OP	L1	GND GND
3.910000 5.970000	38.10 40.70	11.1 11.2	56 60	17.9 19.3	QP QP	L1 L1	GND GND

MEASUREMENT RESULT: "TUV-0425-1 fin2"

4/25/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.205000	42.10	10.5	53	11.3	AV	L1	GND
0.265000	31.80	10.6	51	19.5	AV	L1	GND
3.900000	29.10	11.1	46	16.9	AV	L1	GND
5.970000	31.20	11.2	50	18.8	AV	L1	GND

Page 86 of 92

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

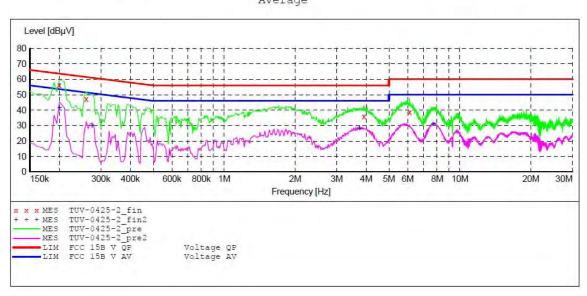
Wireless Headphones M/N:EE5117

Manufacturer: PRIMARK

Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: WADE

Test Specification: N 120V/60Hz


Comment:

Start of Test: 4/25/2019 /

SCAN TABLE: "V 9K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description: Step IF Start Stop Detector Meas. Transducer Bandw. Frequency Frequency Width Time 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 9.0 kHz Average

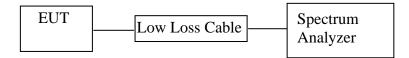
150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "TUV-0425-2 fin"

4/25/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.200000	56.40	10.5	64	7.2	QP	N	GND
0.260000	47.20	10.6	61	14.2	QP	N	GND
3.910000	36.10	11.1	56	19.9	QP	N	GND
6.110000	38.50	11.2	60	21.5	QP	N	GND

MEASUREMENT RESULT: "TUV-0425-2 fin2"

25/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.200000	41.30	10.5	54	12.3	AV	N	GND
0.275000	29.70	10.6	51	21.3	AV	N	GND
3.750000	28.00	11.1	46	18.0	AV	N	GND
7.680000	31.00	11.2	50	19.0	AV	N	GND
	Frequency MHz 0.200000 0.275000 3.750000	Frequency MHz dBμV 0.200000 41.30 0.275000 29.70 3.750000 28.00	Frequency MHz dBμV dB 0.200000 41.30 10.5 0.275000 29.70 10.6 3.750000 28.00 11.1	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV 0.200000 41.30 10.5 54 0.275000 29.70 10.6 51 3.750000 28.00 11.1 46	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV Margin dB 0.200000 41.30 10.5 54 12.3 0.275000 29.70 10.6 51 21.3 3.750000 28.00 11.1 46 18.0	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV Margin dB Detector dB 0.200000 41.30 10.5 54 12.3 AV 0.275000 29.70 10.6 51 21.3 AV 3.750000 28.00 11.1 46 18.0 AV	Frequency MHz Level dBμV Transd dB dBμV Limit dBμV Margin dB Detector Line dB 0.200000 41.30 10.5 54 12.3 AV N 0.275000 29.70 10.6 51 21.3 AV N 3.750000 28.00 11.1 46 18.0 AV N

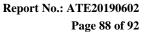


Page 87 of 92

13. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

13.1.Block Diagram of Test Setup

13.2. The Requirement For Section 15.247(d)

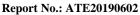

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

13.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

13.4. Operating Condition of EUT

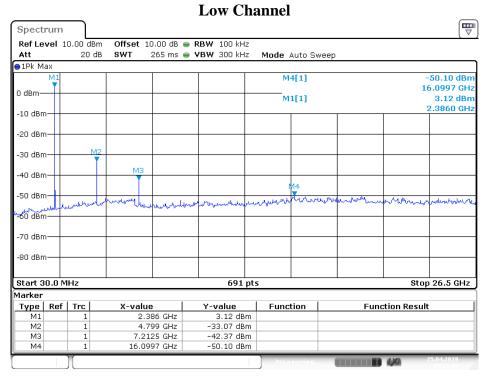
- 13.4.1. Setup the EUT and simulator as shown as Section 13.1.
- 13.4.2. Turn on the power of all equipment.
- 13.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

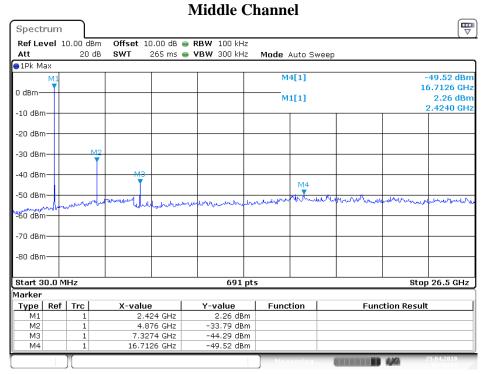

- 13.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 13.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 13.5.3. The Conducted Spurious Emission was measured and recorded.

13.6.Test Result

13.5.Test Procedure

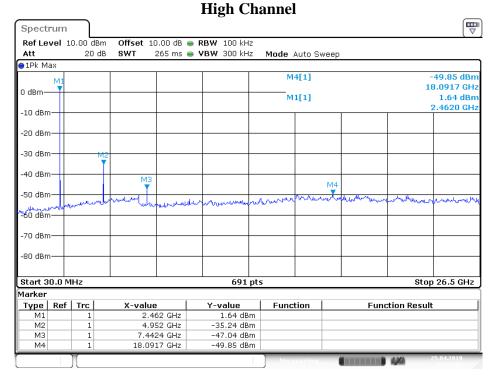
Pass.


The spectrum analyzer plots are attached as below.

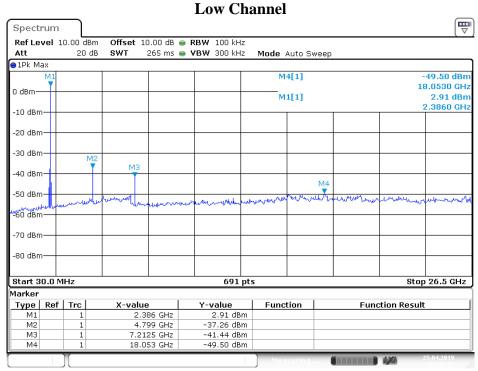


GFSK mode

Date: 25.APR.2019 14:34:49

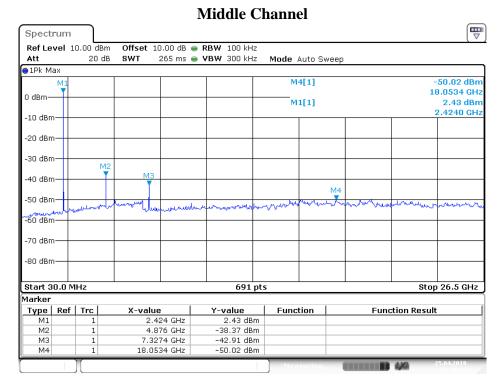


Date: 25.APR.2019 14:36:00

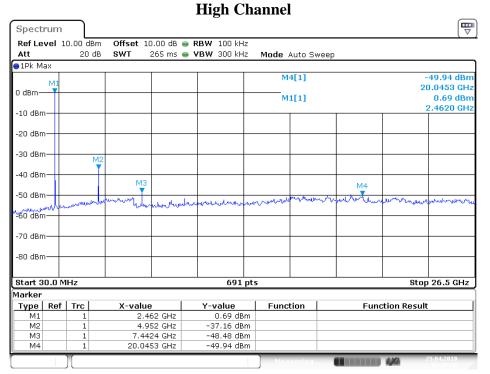


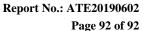
Date: 25.APR.2019 14:37:02

π /4 DQPSK mode



Date: 25.APR.2019 14:41:15





Date: 25.APR.2019 14:40:23

Date: 25.APR.2019 14:38:48

14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****