

Report No.: ATE20190327

Page 1 of 93

APPLICATION CERTIFICATION FCC Part 15C On Behalf of UP Global Sourcing Ltd.

Industrial Speaker Model No.: EE4456

FCC ID: 2AAR2EE4456

Prepared for : UP Global Sourcing Ltd.

Address : Manor Mill Victoria Street Chadderton Oldham OL9 0DD,

UNITED KINGDOM

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China.

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20190327

Date of Test : March 5-March 12, 2019

Date of Report : March 14, 2019

TABLE OF CONTENTS

D	Description Page				
T	est Re	eport Certification			
1.	GE	NERAL INFORMATION	5		
	1.1.	Description of Device (EUT)			
	1.2.	Accessory and Auxiliary Equipment			
	1.3.	Description of Test Facility			
	1.4.	Measurement Uncertainty			
2.	ME	ASURING DEVICE AND TEST EQUIPMENT	7		
3.		ERATION OF EUT DURING TESTING			
	3.1.	Operating Mode	8		
	3.2.	Configuration and peripherals			
4.	TE	ST PROCEDURES AND RESULTS	9		
5.	201	OB BANDWIDTH TEST	10		
	5.1.	Block Diagram of Test Setup	10		
	5.2.	The Requirement For Section 15.247(a)(1)			
	5.3.	EUT Configuration on Measurement			
	5.4.	Operating Condition of EUT	10		
	5.5.	Test Procedure	10		
	5.6.	Test Result	11		
6.	CA	RRIER FREQUENCY SEPARATION TEST	15		
	6.1.	Block Diagram of Test Setup	15		
	6.2.	The Requirement For Section 15.247(a)(1)			
	6.3.	EUT Configuration on Measurement			
	6.4.	Operating Condition of EUT	15		
	6.5.	Test Procedure	16		
	6.6.	Test Result	16		
7.	NU	MBER OF HOPPING FREQUENCY TEST			
	7.1.	Block Diagram of Test Setup	20		
	7.2.	The Requirement For Section 15.247(a)(1)(iii)			
	7.3.	EUT Configuration on Measurement			
	7.4.	Operating Condition of EUT			
	7.5.	Test Procedure			
	7.6.	Test Result			
8.	DW	/ELL TIME TEST			
	8.1.	Block Diagram of Test Setup			
	8.2.	The Requirement For Section 15.247(a)(1)(iii)			
	8.3.	EUT Configuration on Measurement			
	8.4.	Operating Condition of EUT			
	8.5.	Test Procedure			
	8.6.	Test Result			
9.		XIMUM PEAK OUTPUT POWER TEST			
	9.1.	Block Diagram of Test Setup			
	9.2.	The Requirement For Section 15.247(b)(1)			
	9.3.	EUT Configuration on Measurement			
	9.4.	Operating Condition of EUT			
	9.5.	Test Procedure			
	9.6.	Test Result	35		

Page 3 of 93

10. RA	ADIATED EMISSION TEST	39
10.1.	Block Diagram of Test Setup	39
10.2.	The Requirement For Section 15.247(d)	
10.3.	Transmitter Emission Limit	
10.4.	Restricted bands of operation	42
10.5.	Configuration of EUT on Measurement	42
10.6.	Test Procedure	43
10.7.	Data Sample	44
10.8.	Test Result	44
11. BA	AND EDGE COMPLIANCE TEST	72
11.1.	Block Diagram of Test Setup	72
11.2.	The Requirement For Section 15.247(d)	
11.3.	EUT Configuration on Measurement	72
11.4.	Operating Condition of EUT	72
11.5.	Test Procedure	73
11.6.	Test Result	73
12. AC	C POWER LINE CONDUCTED EMISSION TEST	83
12.1.	Block Diagram of Test Setup	83
12.2.	Test System Setup	83
12.3.	Test Limits	84
12.4.	Configuration of EUT on Measurement	84
12.5.	Operating Condition of EUT	
12.6.	Test Procedure	
12.7.	Data Sample	
12.8.	Test Result	85
13. CC	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	88
13.1.	Block Diagram of Test Setup	88
13.2.	The Requirement For Section 15.247(d)	
13.3.	EUT Configuration on Measurement	
13.4.	Operating Condition of EUT	88
13.5.	Test Procedure	89
13.6.	Test Result	89
14. AN	TENNA REQUIREMENT	93
14.1.	The Requirement	
	Antanna Construction	

Report No.: ATE20190327

Page 4 of 93

Test Report Certification

Applicant : UP Global Sourcing Ltd.

Address : Manor Mill Victoria Street Chadderton Oldham OL9 0DD, UNITED

KINGDOM

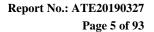
Factory : CHANCO ELECTRONICS FACTORY

Address : NO.27, Sha Jin South Street, Changan Town, Dongguan City,

Guangdong Province, China

Product : Industrial Speaker

Model No. : EE4456


Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	March 5-March 12, 2019	
Date of Report:	March 14, 2019	
Prepared by :	(S Yar Form er)	_
Approved & Authorized Signer :	(Sean Liu, Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Product : Industrial Speaker

Model Number : EE4456

Bluetooth version : V5.0

Frequency Range : 2402-2480MHz

Channel Spacing : 1MHz

Number of Channels : 79

Antenna Gain(Max) : 0dBi

Antenna type : Integral Antenna

Modulation mode : GFSK, $\pi/4$ DQPSK

Trade Mark : PRIMARK

Rating : DC 3.7V or

USB Port DC 5.0V

Report No.: ATE20190327

Page 6 of 93

1.2. Accessory and Auxiliary Equipment

Notebook PC: Manufacturer: Lenovo

M/N: ThinkPad X240

S/N: n.a

1.3.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

Site Location : 1/F., Building A, Changyuan New Material Port, Science

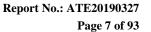
& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2


(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 05, 2019	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 05, 2019	One Year
Pre-Amplifier	Agilent	8447D	294A10619	Jan. 05, 2019	One Year
Pre-Amplifier	Compliance Direction	RSU-M2	38322	Jan. 05, 2019	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 05, 2019	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-23 75/2510-60/11SS	N/A	Jan. 05, 2019	One Year
Conducted Emission Measurement Software: ES-K1 V1.71					

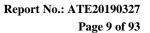
Radiated Emission Measurement Software: EZ_EMC V1.1.4.2

Page 8 of 93

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode


Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

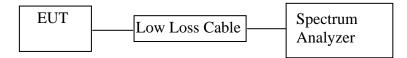
Hopping

3.2.Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Radiated Emission Test	Compliant
Section 15.209		
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20190327 Page 10 of 93

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

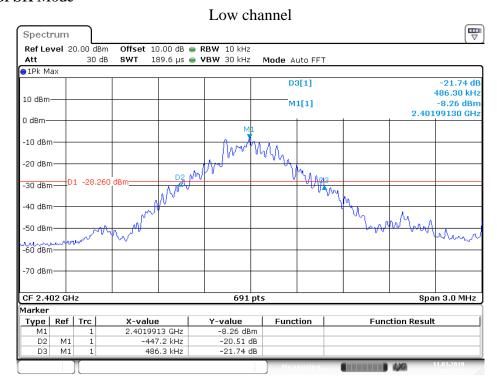
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2. The RBW should be 1%~5% of OBW.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

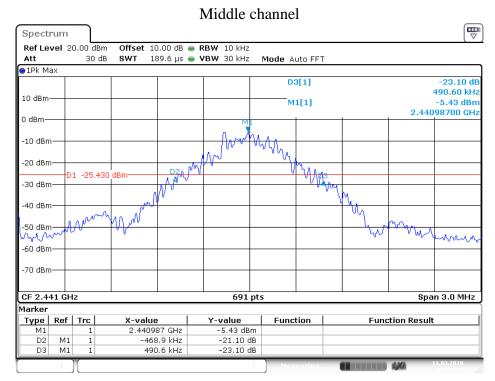


5.6.Test Result

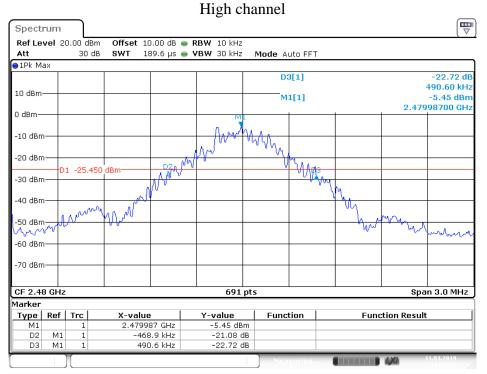
Channel	Frequency (MHz)	GFSK mode 20dB Bandwidth (MHz)	π /4 DQPSK mode 20dB Bandwidth (MHz)	Result
Low	2402	0.934	1.216	Pass
Middle	2441	0.960	1.224	Pass
High	2480	0.960	1.229	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

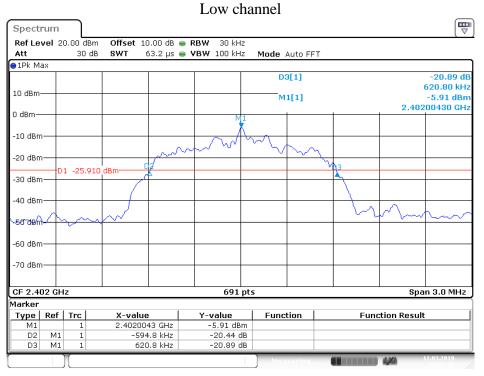


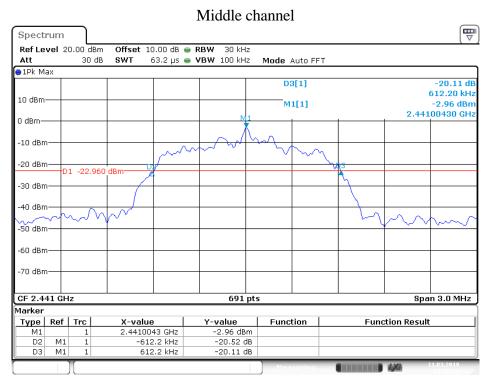
Date: 11.MAR.2019 11:15:22



Page 12 of 93

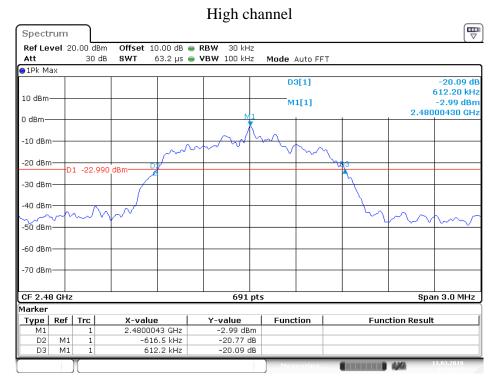
Date: 11.MAR.2019 11:13:39


Date: 11.MAR.2019 11:11:51

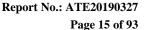

Page 13 of 93

π /4 DQPSK Mode

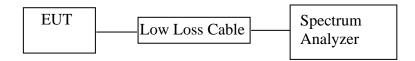
Date: 11.MAR.2019 11:07:38



Date: 11.MAR.2019 11:08:55



Page 14 of 93


Date: 11.MAR.2019 11:10:08

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20190327 Page 16 of 93

6.5.Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz. Adjust Span to 3MHz.
- 6.5.3.Set the adjacent channel of the EUT Maxhold another trace.
- 6.5.4. Measurement the channel separation

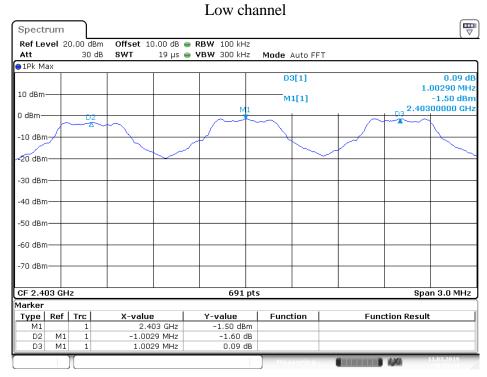
6.6.Test Result

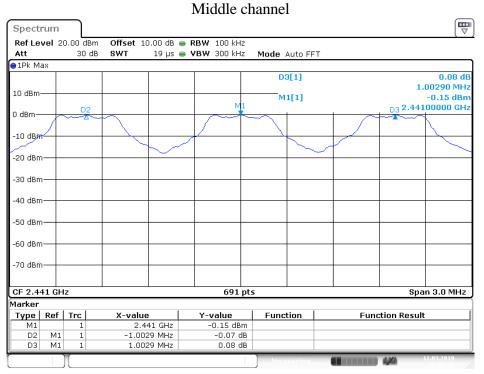
GFSK mode

	-			
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 20dB	Dage
LOW	2403	1.0029	bandwidth	rass
Middle	2440	1.0029	25KHz or 20dB	Dogg
Milaule	2441	1.0029	bandwidth	rass
High	2479	1.0029	25KHz or 20dB	Dage
Iligii	2480	1.0029	bandwidth	Pass Pass Pass

π /4 DQPSK Mode

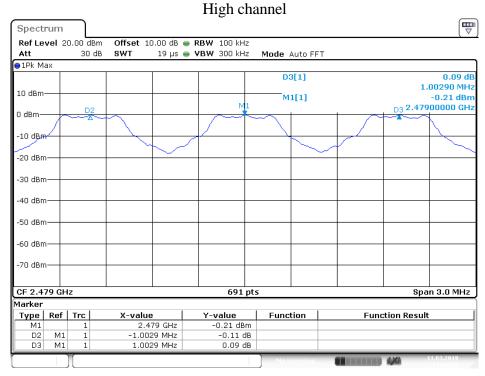
7 1 = Q 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Channel	Frequency	Channel	Limit	Result
Chamie	(MHz)	Separation(MHz)	(MHz)	Kesuit
Low	2402	1.0029	25KHz or 2/3*20dB	Pass
Low	2403	1.0029	bandwidth	rass
Middle	2440	1.0029	25KHz or 2/3*20dB	Dogg
Middle	2441	1.0029	bandwidth	Pass
High	2479	1.0029	25KHz or 2/3*20dB	Dogg
High	2480	1.0029	bandwidth	Pass


The spectrum analyzer plots are attached as below.

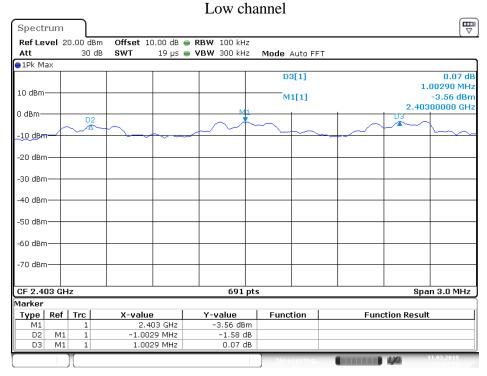


GFSK Mode

Date: 11.MAR.2019 10:58:42

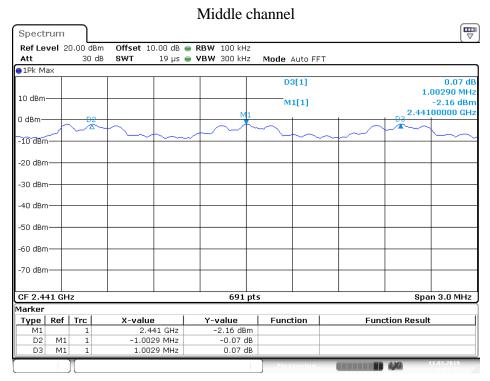


Date: 11.MAR.2019 10:59:48

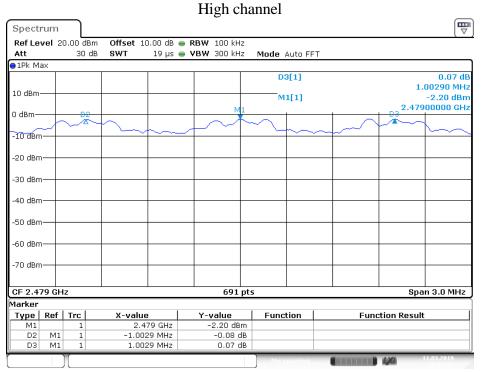

Page 18 of 93

Date: 11.MAR.2019 11:00:59

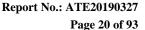
π /4 DQPSK Mode



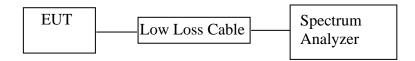
Date: 11.MAR.2019 11:04:53



Page 19 of 93



Date: 11.MAR.2019 11:03:37


Date: 11.MAR.2019 11:02:23

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

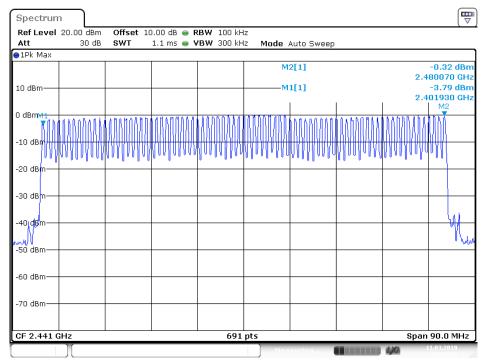
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2. Set the spectrum analyzer as Span=90MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.



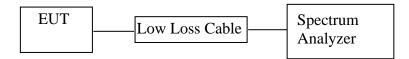
7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	79	≥15	Pass

The spectrum analyzer plots are attached as below.

Number of hopping channels (GFSK Mode)

Date: 11.MAR.2019 10:57:00

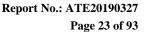

Report No.: ATE20190327

Page 22 of 93

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

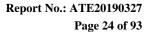

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

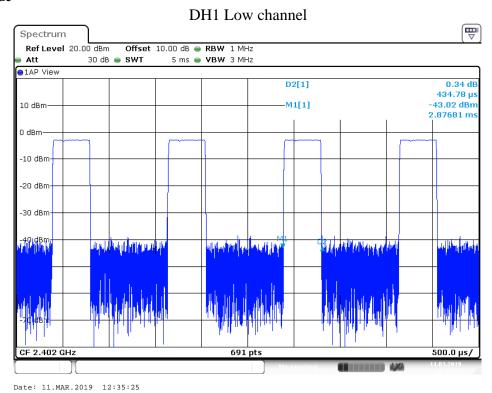

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.435	139.20	400	
DH1	2441	0.435	139.20	400	
	2480	0.435	139.20	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.696	271.36	400	
DH3	2441	1.696	271.36	400	
	2480	1.696	271.36	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	alse time \times (1600/(4*)	79))×31.6	
	2402	2.978	317.65	400	
DH5	2441	2.978	317.65	400	
	2480	2.957	315.41	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

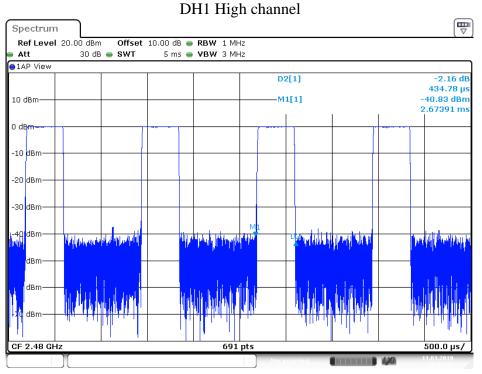


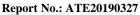
 π /4 DQPSK Mode

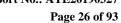
Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.442	141.44	400	
2DH1	2441	0.449	143.68	400	
	2480	0.449	143.68	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6	
	2402	1.710	273.60	400	
2DH3	2441	1.725	276.00	400	
	2480	1.710	273.60	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	ulse time \times (1600/(4*)	79))×31.6	
	2402	3.000	320.00	400	
2DH5	2441	2.978	317.65	400	
	2480	2.978	317.65	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

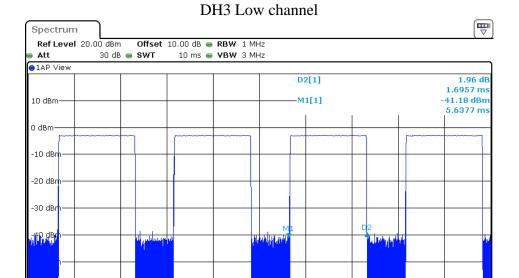

GFSK Mode



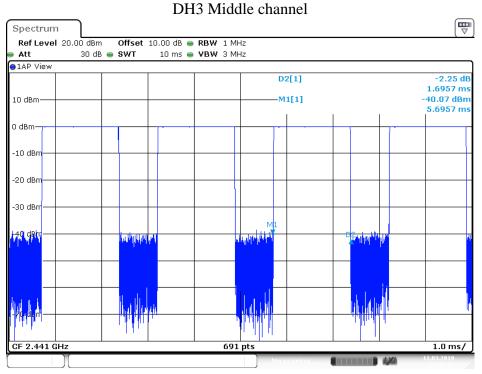




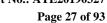
Date: 11.MAR.2019 12:34:44

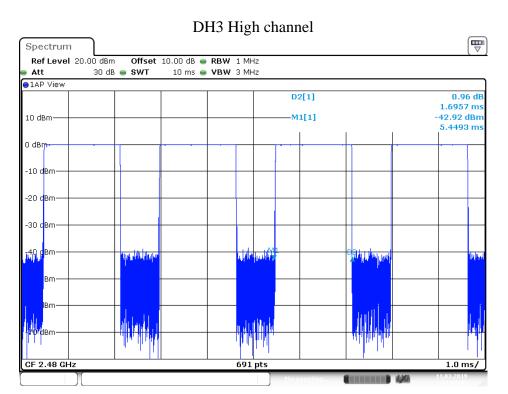


Date: 11.MAR.2019 12:33:58

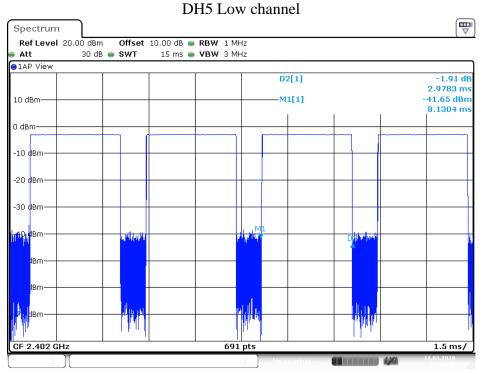


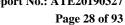
691 pts


Date: 11.MAR.2019 12:31:50

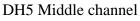

Date: 11.MAR.2019 12:32:33

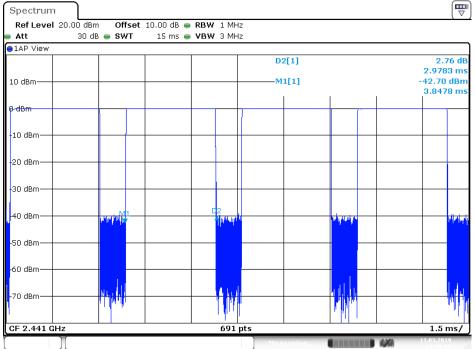
1.0 ms/

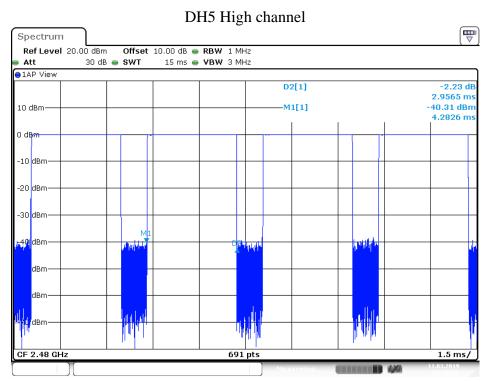


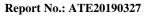


Date: 11.MAR.2019 12:33:13



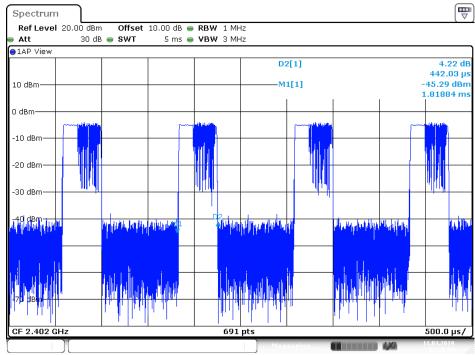

Date: 11.MAR.2019 12:30:48



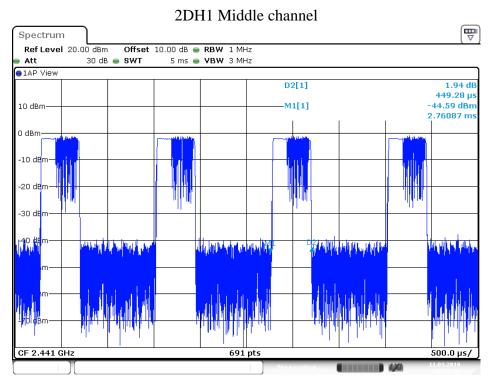


Date: 11.MAR.2019 12:30:10

Date: 11.MAR.2019 12:29:27



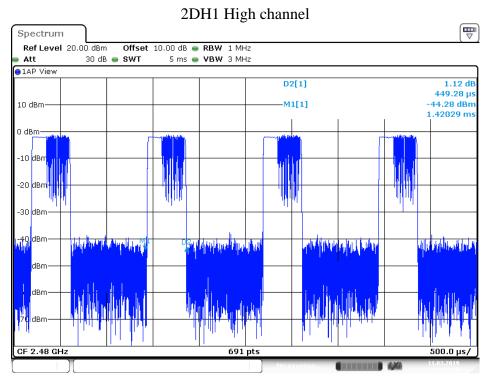
Page 29 of 93



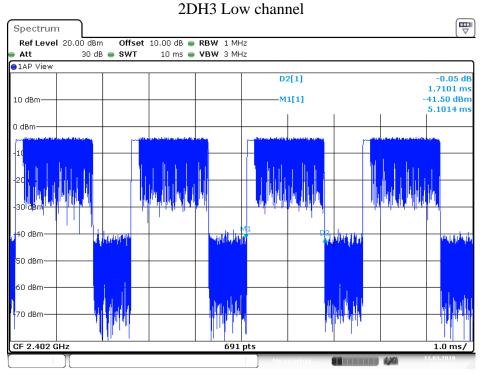
π /4 DQPSK Mode

2DH1 Low channel

Date: 11.MAR.2019 12:21:51

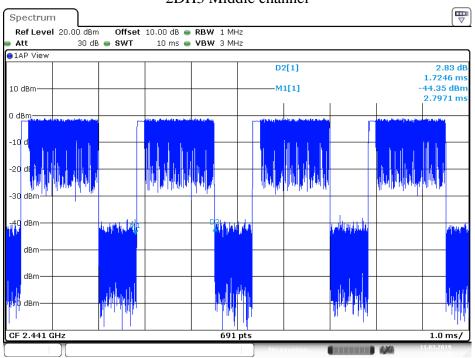


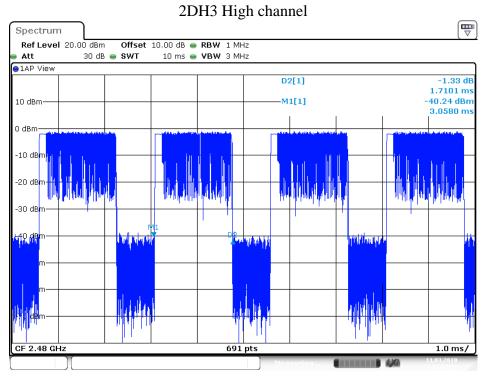
Date: 11.MAR.2019 12:22:29



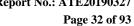
Page 30 of 93

Date: 11.MAR.2019 12:23:26

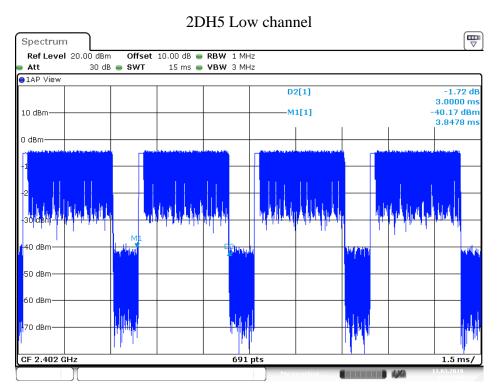

Date: 11.MAR.2019 12:25:53


Page 31 of 93

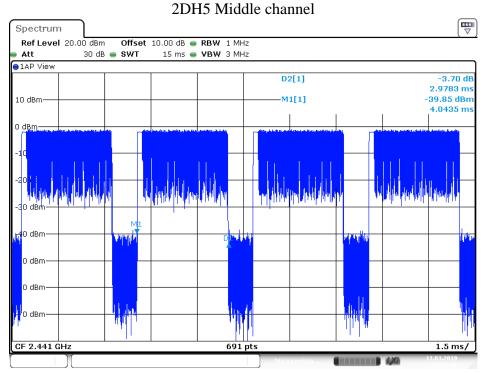
2DH3 Middle channel



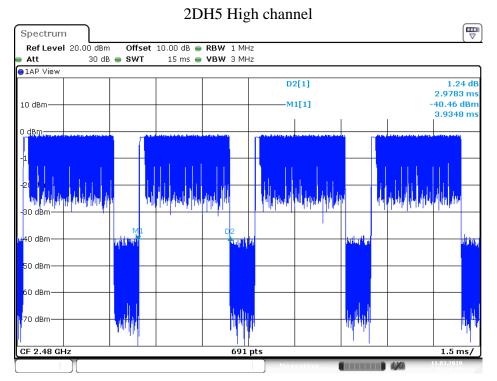
Date: 11.MAR.2019 12:25:11



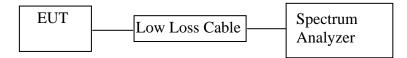
Date: 11.MAR.2019 12:24:36



Date: 11.MAR.2019 12:27:07



Date: 11.MAR.2019 12:27:42


Date: 11.MAR.2019 12:28:19

Report No.: ATE20190327 Page 34 of 93

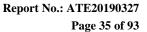
9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement


The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz
- 9.5.3. Measurement the maximum peak output power.

9.6.Test Result

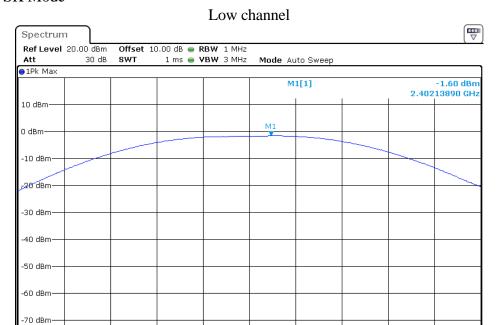
GFSK Mode

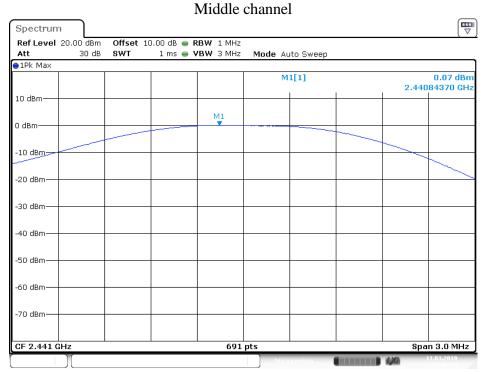
Frequency (MHz)	Maximum peak conducted output power (dBm/W)	e.i.r.p. (dBm/W)	Limits dBm / W	Result
2402	-1.60/0.0007	-1.60/0.0007	30 / 1.000	Pass
2441	0.07/0.0010	0.07/0.0010	30 / 1.000	Pass
2480	-0.01/0.0010	-0.01/0.0010	30 / 1.000	Pass

π /4 DQPSK Mode

Frequency (MHz)	Maximum peak conducted output power (dBm/W)	e.i.r.p. (dBm/W)	Limits dBm / W	Result
2402	-1.61/0.0007	-1.61/0.0007	21 / 0.125	Pass
2441	-0.46/0.0009	-0.46/0.0009	21 / 0.125	Pass
2480	-0.49/0.0009	-0.49/0.0009	21 / 0.125	Pass

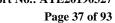
Note: e.i.r.p= Maximum peak conducted output power+antenna gain(0dBi)

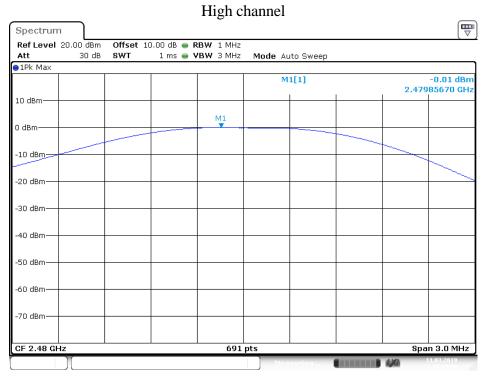

The spectrum analyzer plots are attached as below.


GFSK Mode

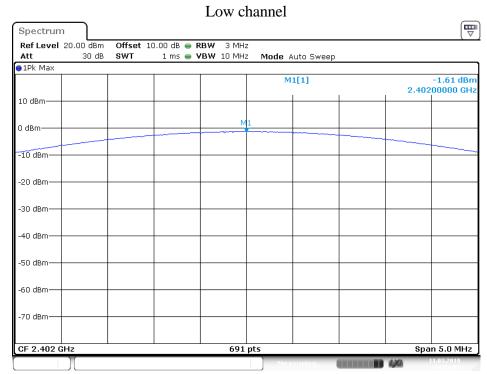
691 pts

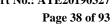
Date: 11.MAR.2019 10:46:24


CF 2.402 GHz

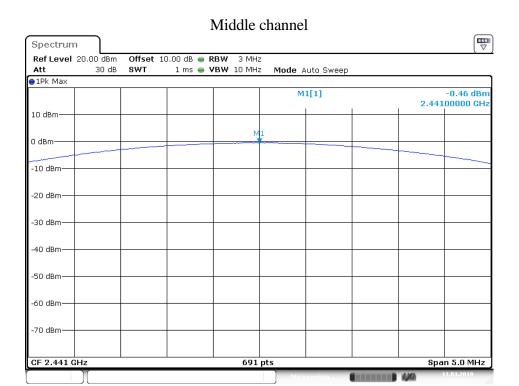

Date: 11.MAR.2019 10:48:55

Span 3.0 MHz

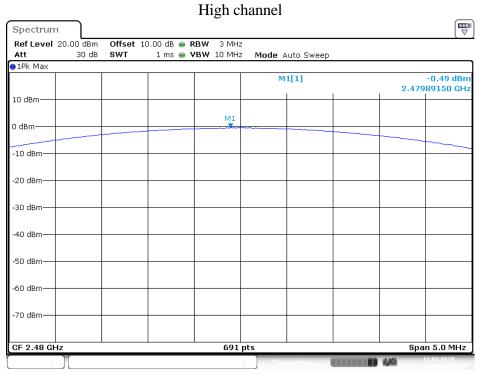



Date: 11.MAR.2019 10:49:40

π /4 DQPSK Mode

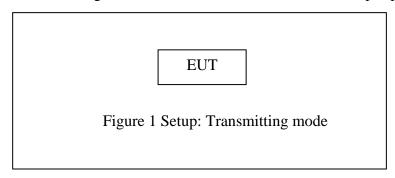


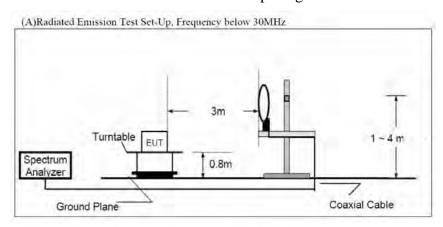
Date: 11.MAR.2019 10:54:03



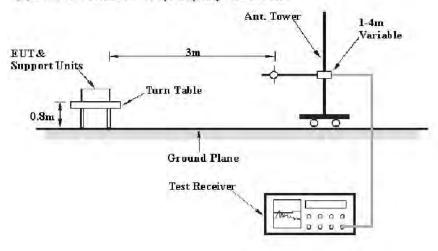
Date: 11.MAR.2019 10:52:14

Date: 11.MAR.2019 10:51:39

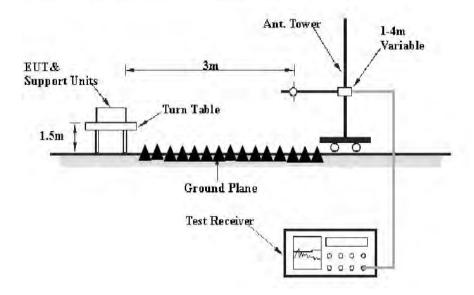

Report No.: ATE20190327 Page 39 of 93


10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup


10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram


(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

Page 40 of 93

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3. Transmitter Emission Limit

Radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5 - General field strength limits at frequencies above 30 MHz

Frequency (MHz)	Field strength (μV/m at 3 m)
30 – 88	100
88 – 216	150
216 – 960	200
Above 960	500

Table 6 - General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H- Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ¹	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

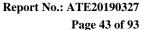
Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

10.4.Restricted bands of operation

10.4.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

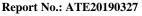

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.5. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6



10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Page 44 of 93

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain

Result($dB\mu\nu/m$) = Reading($dB\mu\nu$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8.Test Result

Pass.

The frequency range from 9KHz to 26.5GHz is investigated.

Note: 1.We tested GFSK mode, $\prod/4$ -DQPSK Mode, and recorded the worse case data(GFSK mode) for all test mode.

The spectrum analyzer plots are attached as below.

Page 45 of 93

9kHz-30MHz test data

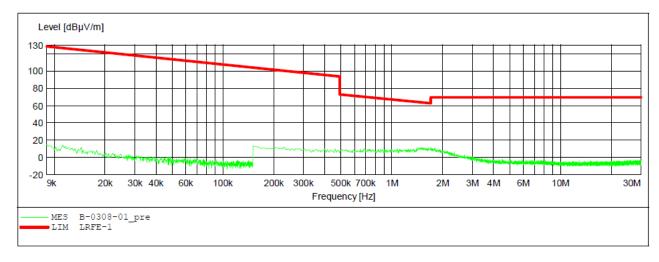
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

EUT: Industrial Speaker M/N:EE4456
Manufacturer: UP Global Sourcing UK Limited,

Operating Condition: TX 2402MHz
Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 3.7V

Comment: X


Start of Test: 2019-03-08 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70
Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 46 of 93

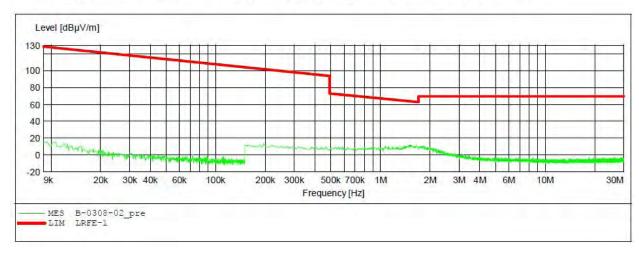
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

EUT: Industrial Speaker M/N:EE4456 Manufacturer: UP Global Sourcing UK Limited,

Operating Condition: TX 2402MHz Test Site: 2# Chamber Operator: WADE Test Specification: DC 3.7V

Comment:


Start of Test: 2019-03-08 /

SCAN TABLE: "LFRE Fin"
Short Description:

_SUB_STD_VTERM2 1.70 IF Start Stop Step Detector Meas. Transducer

Width Time Bandw. Frequency Frequency

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M QuasiPeak 1.0 s 9 kHz 150.0 kHz 30.0 MHz 5.0 kHz 1516M

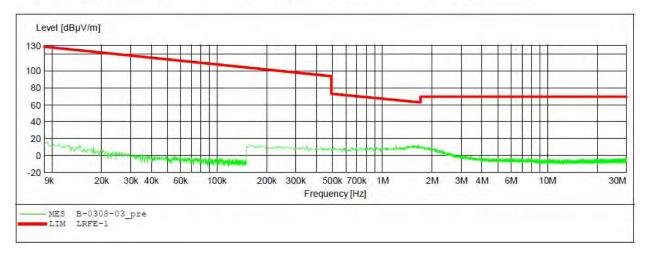
Page 47 of 93

ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

Industrial Speaker M/N:EE4456 EUT: UP Global Sourcing UK Limited, Manufacturer:

Operating Condition: TX 2402MHz Test Site: 2# Chamber Operator: WADE Test Specification: DC 3.7V


Comment:

2019-03-08 / Start of Test:

SCAN TABLE: "LFRE Fin"
Short Description: SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw. 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 1516M 5.0 kHz 9 kHz

Page 48 of 93

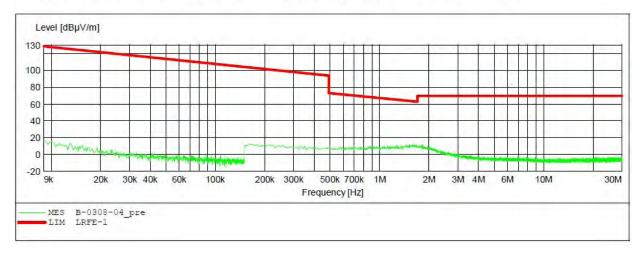
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

EUT: Industrial Speaker M/N:EE4456 Manufacturer: UP Global Sourcing UK Limited,

Operating Condition: TX 2441MHz Test Site: 2# Chamber Operator: WADE Test Specification: DC 3.7V

Comment: X


Start of Test: 2019-03-08 /

SCAN TABLE: "LFRE Fin"
Short Description:

_SUB_STD_VTERM2 1.70 IF Start Stop Step Detector Meas. Transducer

Width Time Bandw. Frequency Frequency

100.0 Hz QuasiPeak 1.0 s 9.0 kHz 150.0 kHz 200 Hz 1516M 9 kHz 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 5.0 kHz 1516M

Page 49 of 93

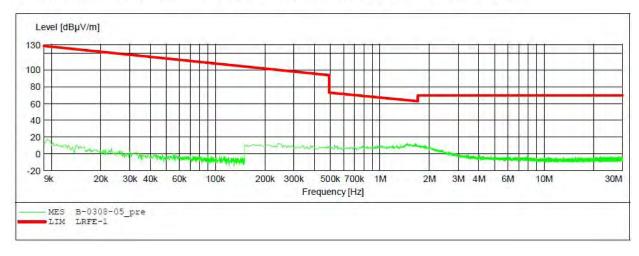
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

EUT: Industrial Speaker M/N:EE4456
Manufacturer: UP Global Sourcing UK Limited,

Operating Condition: TX 2441MHz
Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 3.7V

Comment:


Start of Test: 2019-03-08 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70
Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 50 of 93

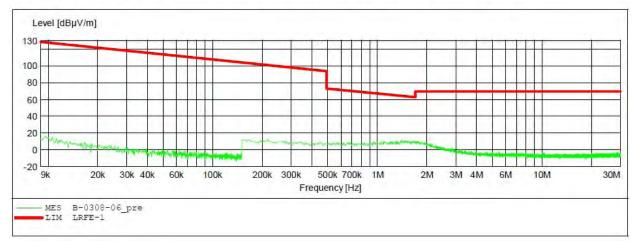
ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

Industrial Speaker M/N:EE4456 EUT: Manufacturer: UP Global Sourcing UK Limited,

Operating Condition: TX 2441MHz Test Site: 2# Chamber Operator: WADE DC 3.7V Test Specification:

Comment:


2019-03-08 / Start of Test:

SCAN TABLE: "LFRE Fin"
Short Description:

_SUB_STD_VTERM2 1.70 Stop Start Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz

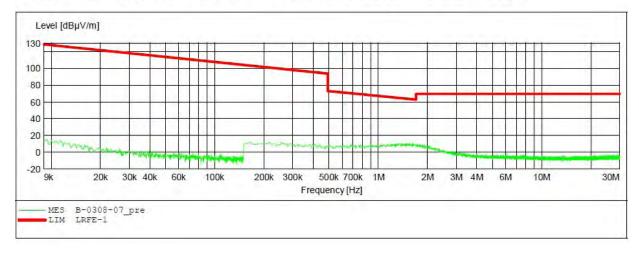
Page 51 of 93

ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

EUT: Industrial Speaker M/N:EE4456 Manufacturer: UP Global Sourcing UK Limited,

Operating Condition: TX 2480MHz Test Site: 2# Chamber Operator: WADE Test Specification: DC 3.7V


Comment: X Start of Test: 2019-03-08 /

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Bandw. Time

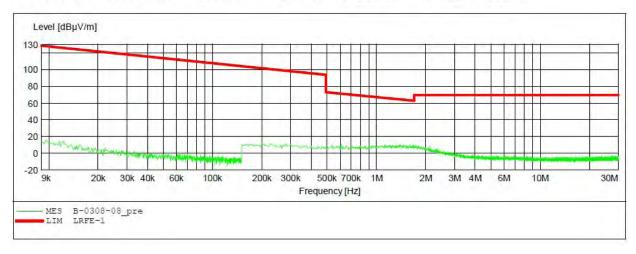
QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 52 of 93

ACCURATE TECHNOLOGY CO., LTD

FCC Part 15C 3M Radiated

EUT: Industrial Speaker M/N:EE4456 Manufacturer: UP Global Sourcing UK Limited,


Operating Condition: TX 2480MHz Test Site: 2# Chamber Operator: WADE Test Specification: DC 3.7V

Comment: Start of Test: 2019-03-08 /

SCAN TABLE: "LFRE Fin"
Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw. 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 9 kHz 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 1516M

Page 53 of 93

ACCURATE TECHNOLOGY CO., LTD

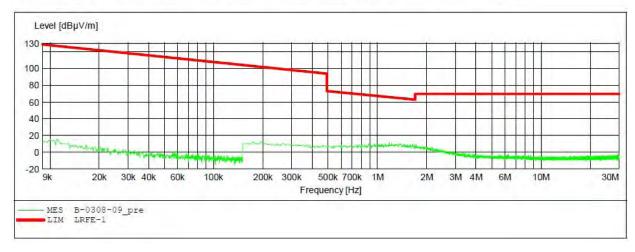
FCC Part 15C 3M Radiated

Industrial Speaker M/N:EE4456 EUT: UP Global Sourcing UK Limited, Manufacturer:

Operating Condition: TX 2480MHz 2# Chamber Test Site: Operator: WADE Test Specification: DC 3.7V

Comment:

2019-03-08 / Start of Test:


SCAN TABLE: "LFRE Fin" Short Description:

_SUB_STD_VTERM2 1.70

Start Stop Detector Meas. IF Transducer Step

Frequency Frequency Width Time Bandw.

150.0 kHz 100.0 Hz QuasiPeak 1.0 s 9.0 kHz 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Report No.: ATE20190327 Page 54 of 93

30MHz-1GHz Test data

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #546

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

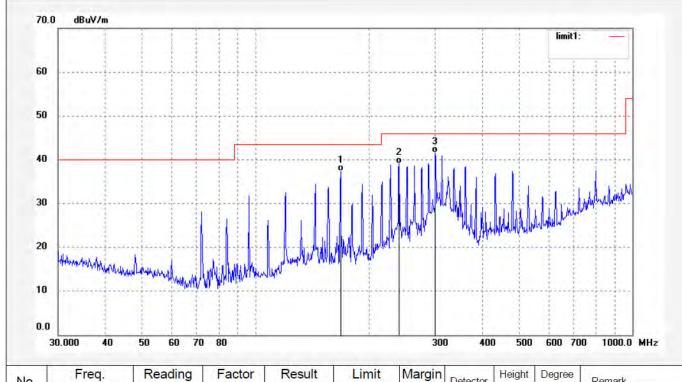
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker Mode: TX 2402MHz

Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

Polarization: Horizontal Power Source: DC 3.7V


Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3m

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	168.4138	51.12	-13.79	37.33	43.50	-6.17	QP				
2	240.8302	49.65	-10.61	39.04	46.00	-6.96	QP				1
3	300.3672	50.63	-9.01	41.62	46.00	-4.38	QP				

Report No.: ATE20190327 Page 55 of 93

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

lab No. 1 CW2010 #547

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

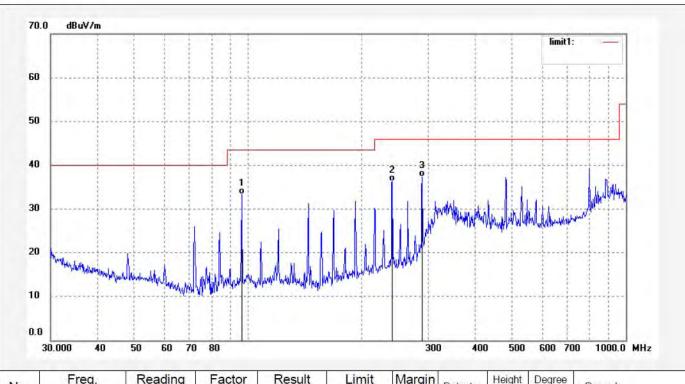
Engineer Signature: WADE

Distance: 3m

Job No.: LGW2019 #547

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test


Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2402MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	96.0986	47.77	-14.37	33.40	43.50	-10.10	QP			
2	240.8303	46.84	-10.61	36.23	46.00	-9.77	QP			
3	289.0020	46.71	-9.34	37.37	46.00	-8.63	QP			

Report No.: ATE20190327 Page 56 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd. Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #549

Standard: FCC Part 15C 3M Radiated

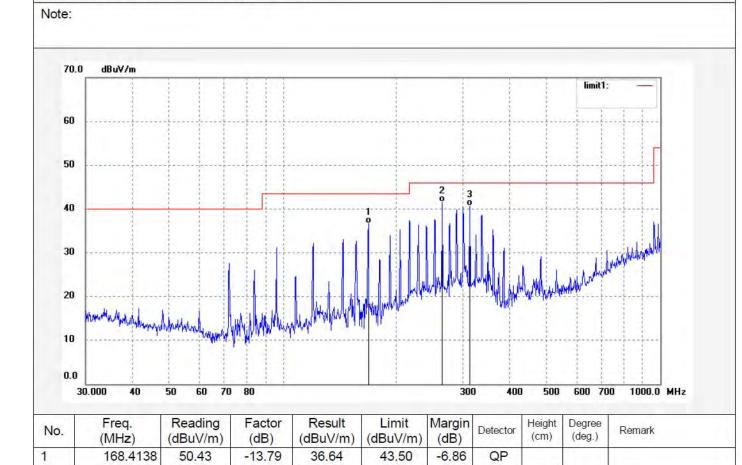
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2441MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Horizontal Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3_m

2

3

264.7456

313.2760

51.68

49.30

-10.20

-8.64

41.48

40.66

46.00

46.00

-4.52

-5.34

QP

QP

Report No.: ATE20190327 Page 57 of 93

ATC

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #548

Standard: FCC Part 15C 3M Radiated

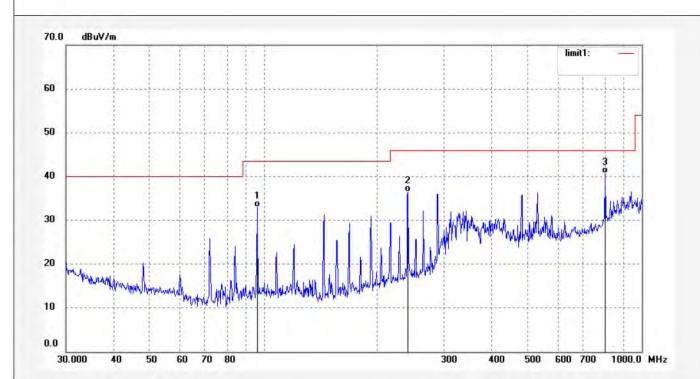
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2441MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

1	O	U	е.	

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	96.0986	47.37	-14.37	33.00	43.50	-10.50	QP				
2	240.8303	47.06	-10.61	36.45	46.00	-9.55	QP				
3	801.7862	39.83	0.87	40.70	46.00	-5.30	QP				

Report No.: ATE20190327 Page 58 of 93

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #550

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

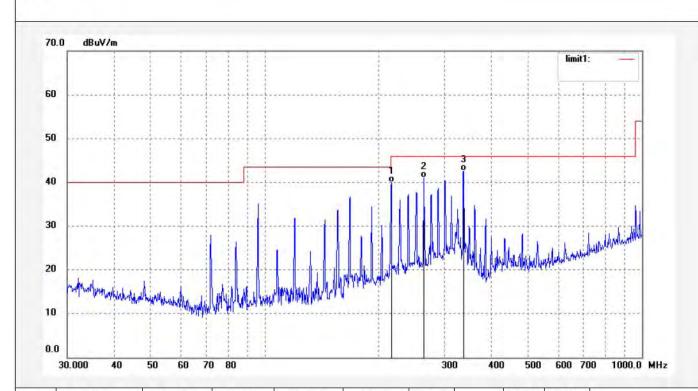
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

Polarization: Horizontal Power Source: DC 3.7V


Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3m

Science & Industry Park, Nanshan Shenzhen, P.R. China

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	216.7828	51.60	-11.62	39.98	46.00	-6.02	QP			
2	264.7456	51.31	-10.20	41.11	46.00	-4.89	QP			
3	337.2155	50.55	-7.86	42.69	46.00	-3.31	QP			

Page 59 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #551

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Note:

Manufacturer: UP Global Sourcing UK Limited,

Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

					1		1	1	limit1:	_
60										
50										
40						1 2				3
30					T-1-1;		odel political parties	4,,4,444	Way Markey	www.
20	who and made make									
	PANAL A.	proportion de la	My My My May	alliper to the state of the state of the	Marshand					
10				***********						
10 0.0		50 60 70) 80	*************		300) 400	500	600 70	0 1000.0 MHz

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	240.8303	47.57	-10.61	36.96	46.00	-9.04	QP			
2	289.0020	46.66	-9.34	37.32	46.00	-8.68	QP			
3	801.7862	39.49	0.87	40.36	46.00	-5.64	QP			

Report No.: ATE20190327 Page 60 of 93

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

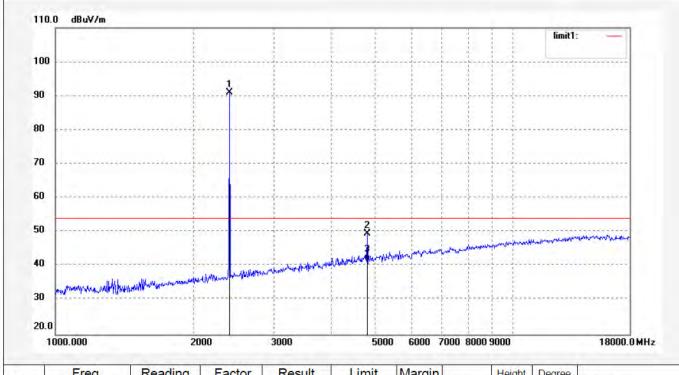
1GHz-18GHz test data

Time:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: LGW2019 #530 Polarization: Horizontal Standard: FCC Part 15C 3M Radiated Power Source: DC 3.7V


Test item: Radiation Test Date: 19/03/05/

Temp.(C)/Hum.(%) 23 C / 48 % EUT: Industrial Speaker Engineer Signature: WADE

Mode: TX 2402MHz Distance: 3m

Model: EE4456 Manufacturer: UP Global Sourcing UK Limited,

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2402.000	90.00	0.89	90.89	1	1	peak	1		
2	4804.026	42.14	7.40	49.54	74.00	-24.46	peak			
3	4804.026	34.34	7.40	41.74	54.00	-12.26	AVG	- 4	+	

Page 61 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #531

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

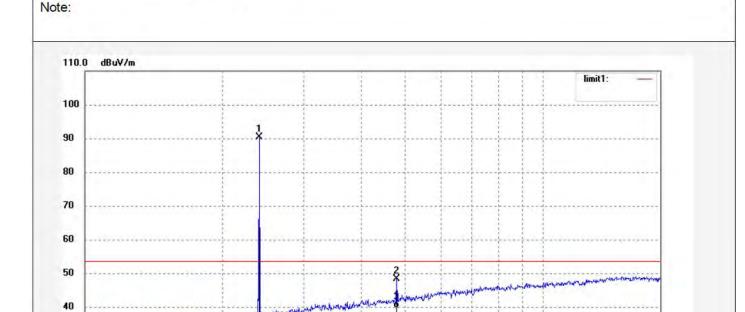
TX 2402MHz Mode: Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

2000

3000

Polarization: Vertical Power Source: DC 3.7V


Date: 19/03/05/

Time:

6000 7000 8000 9000

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2402.000	89.56	0.89	90.45	1	/	peak				
2	4804.025	41.52	7.40	48.92	74.00	-25.08	peak				
3	4804.025	32.95	7.40	40.35	54.00	-13.65	AVG				

30

20.0

1000.000

18000.0 MHz

Page 62 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #534

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

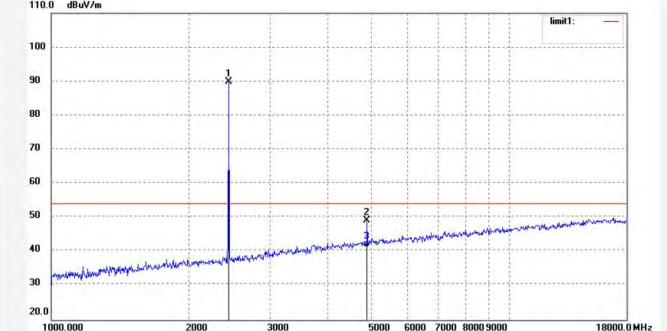
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2441MHz Model: EE4456

Note:

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Horizontal Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

110.0 dBuV/m							
		i.	1		- 1	11	limit
	6.						

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2441.000	88.86	1.06	89.92	1	1	peak			
2	4882.027	40.96	8.11	49.07	74.00	-24.93	peak			
3	4882.027	33.25	8.11	41.36	54.00	-12.64	AVG			

Page 63 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #535

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2441MHz EE4456 Model:

Note:

40

20.0

1000.000

Manufacturer: UP Global Sourcing UK Limited,

Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

6000 7000 8000 9000

Engineer Signature: WADE

Distance: 3m

	D dBuV/m				1	į	1	limit1:	-
100		 		 					
90		1.				1			
,,,									
30		 	ļ	 					*******
70	*********	 		 					
60		 							07,000,0

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2441.000	88.37	1.06	89.43	1	1	peak			
2	4882.029	41.08	8.11	49.19	74.00	-24.81	peak			
3	4882.029	33.24	8.11	41.35	54.00	-12.65	AVG			

3000

18000.0 MHz

Page 64 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #537

Standard: FCC Part 15C 3M Radiated

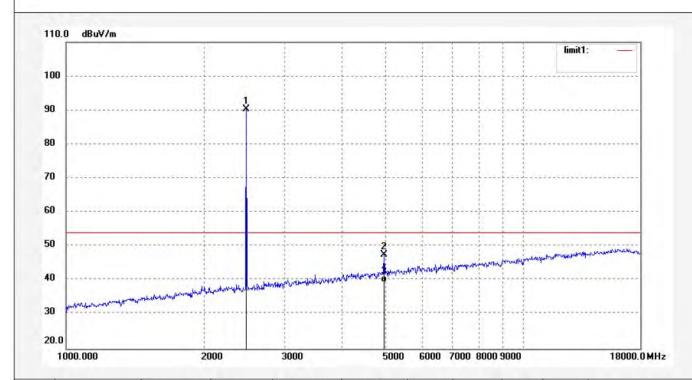
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Horizontal Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

1	IC	ot	е	•

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.000	89.23	1.10	90.33	1	1	peak			
2	4960.028	38.85	8.60	47.45	74.00	-26.55	peak			
3	4960.028	30.91	8.60	39.51	54.00	-14.49	AVG			

Page 65 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #536

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

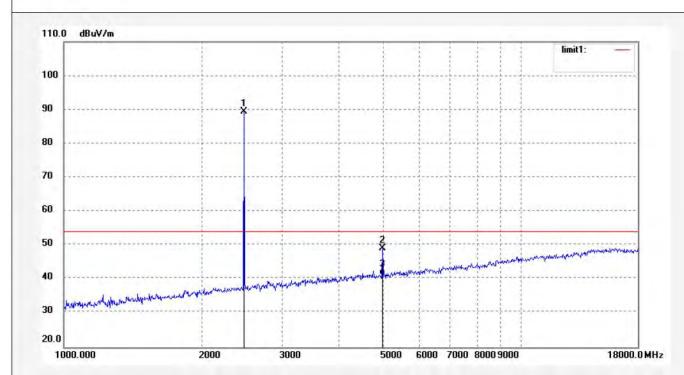
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz

Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

Γ	ıc	T	Э.
	.~		٠.

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2480.000	88.41	1.10	89.51	1	1	peak				
2	4960.030	40.52	8.60	49.12	74.00	-24.88	peak				
3	4960.030	32.75	8.60	41.35	54.00	-12.65	AVG				

Page 66 of 93

18GHz-26.5GHz test data

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Site: 2# Chamber

Job No.: LGW2019 #541

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT:

Industrial Speaker

Mode:

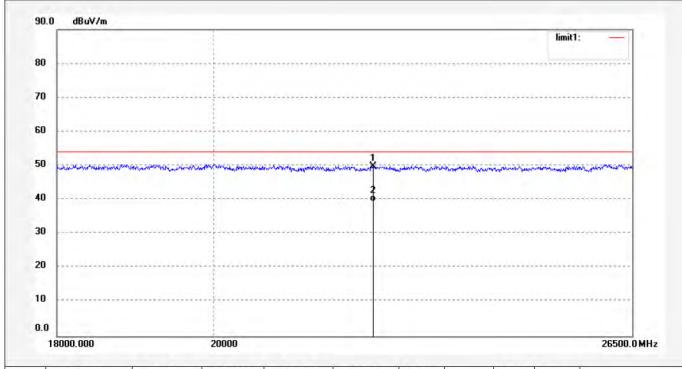
TX 2402MHz

Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

EE4450

Polarization: Horizontal Power Source: DC 3.7V


Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3m

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	22266.803	10.11	39.64	49.75	74.00	-24.25	peak		11 11 11	
2	22266.803	-0.19	39.64	39.45	54.00	-14.55	AVG			

Report No.: ATE20190327 Page 67 of 93

ATO

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #540

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

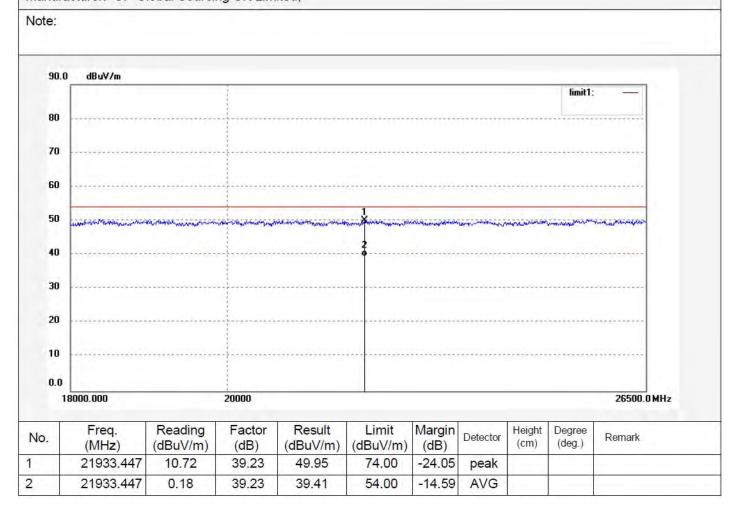
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2402MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

Polarization: Vertical


Power Source: DC 3.7V

Time:

Engineer Signature: WADE

Distance: 3m

Date: 19/03/05/

Page 68 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #542

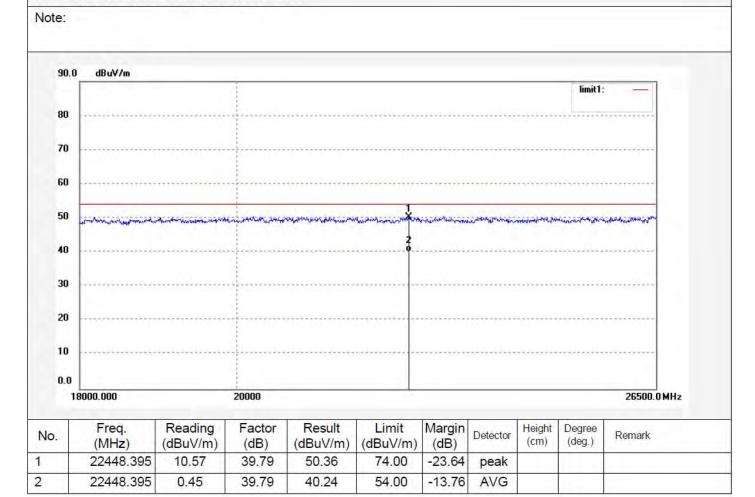
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2441MHz Model: EE4456


Manufacturer: UP Global Sourcing UK Limited,

Polarization: Horizontal Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

Page 69 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #543

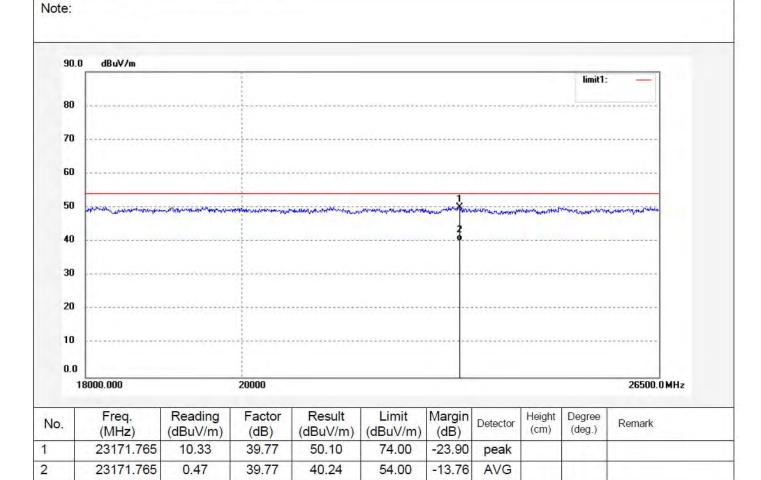
Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2441MHz Model: EE4456


Manufacturer: UP Global Sourcing UK Limited,

Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

Report No.: ATE20190327 Page 70 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #545

Standard: FCC Part 15C 3M Radiated

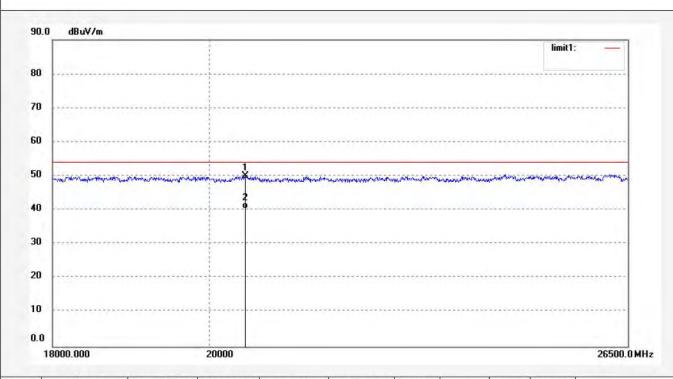
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Note:


Manufacturer: UP Global Sourcing UK Limited,

Polarization: Horizontal Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	20490.077	11.89	38.26	50.15	74.00	-23.85	peak			
2	20490.077	2.15	38.26	40.41	54.00	-13.59	AVG			

Page 71 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #544

Standard: FCC Part 15C 3M Radiated

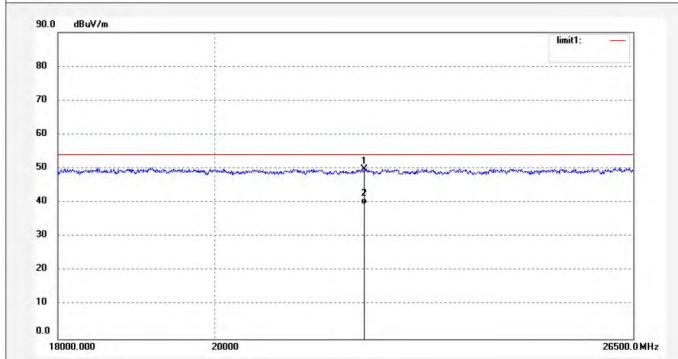
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Vertical Power Source: DC 3.7V

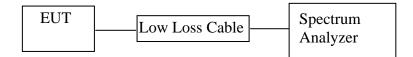
Date: 19/03/05/

Time:

Engineer Signature: WADE

N	lote	:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	22112.321	10.50	39.26	49.76	74.00	-24.24	peak			
2	22112.321	0.19	39.26	39.45	54.00	-14.55	AVG			



Page 72 of 93

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

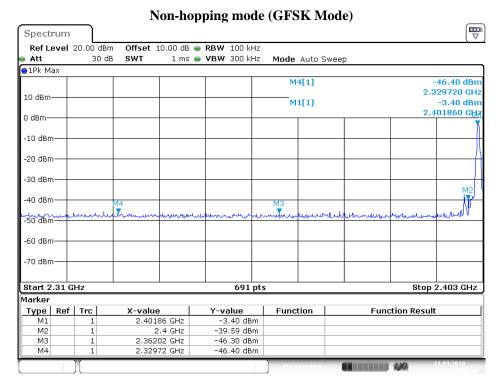
Page 73 of 93

11.5.Test Procedure

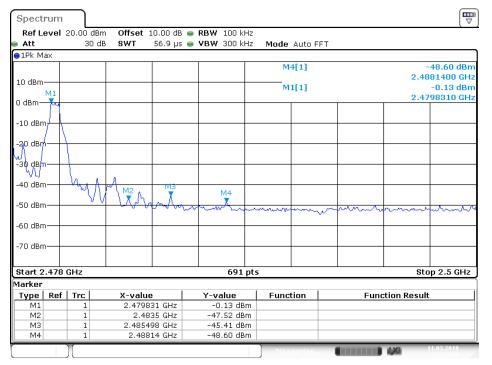
- 11.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

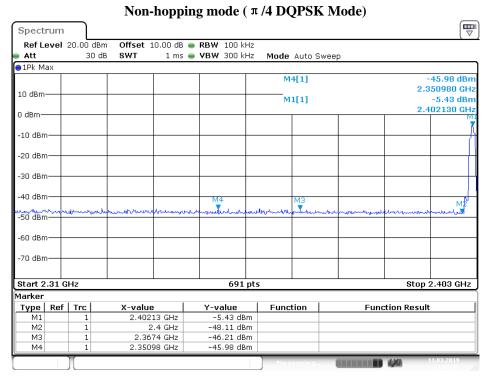
Non-hopping mode


Frequency	Result of Band Edge	Limit of Band Edge	Result
(MHz)	(dBc)	(dBc)	
	GFSK mo	de	
2400.00	36.19	> 20dBc	Pass
2485.49	45.28	> 20dBc	Pass
	π /4 DQPSK	mode	
2350.98	40.55	> 20dBc	Pass
2491.45	48.25	> 20dBc	Pass

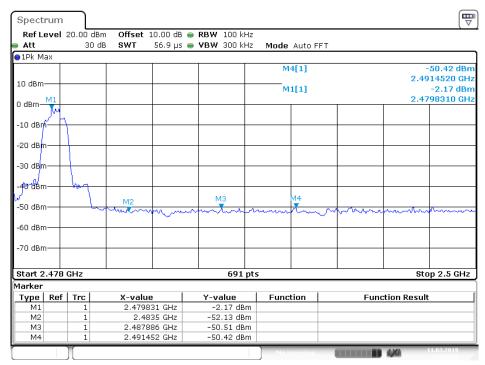
Hopping mode


Hopping mode			
Frequency	Result of Band Edge	Limit of Band Edge	Result
(MHz)	(dBc)	(dBc)	
	CEGIA	1	
	GFSK mod	de	
2400.00	33.99	> 20dBc	Pass
2485.47	45.34	> 20dBc	Pass
	π /4 DQPSK	mode	
2350.49	40.62	> 20dBc	Pass
2488.06	46.38	> 20dBc	Pass

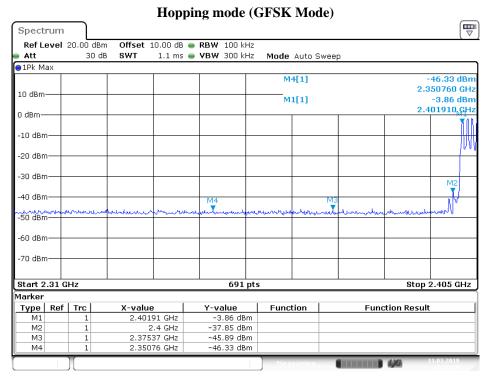
The spectrum analyzer plots are attached as below.



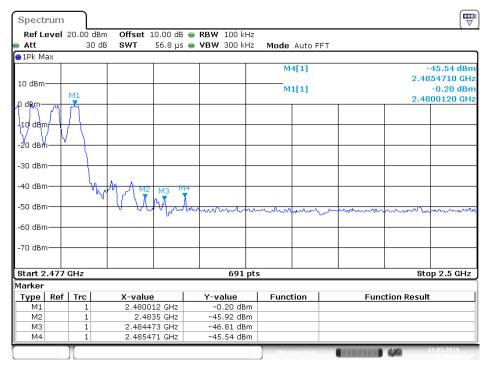
Date: 11.MAR.2019 11:27:15



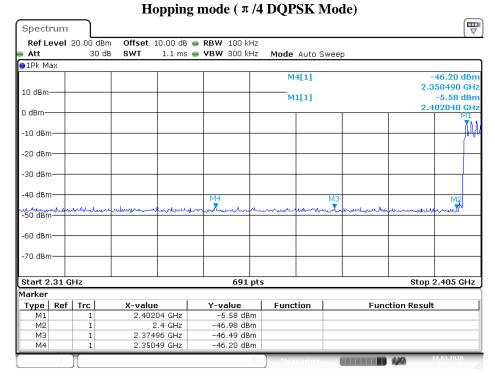
Date: 11.MAR.2019 11:26:01



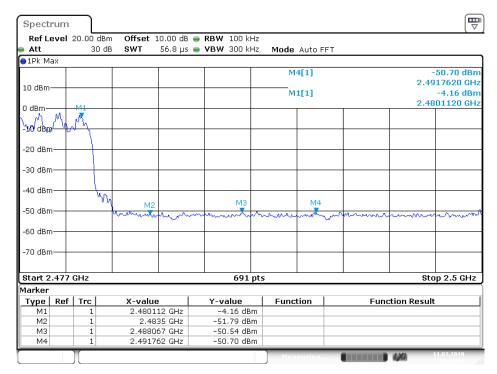
Date: 11.MAR.2019 11:23:42



Date: 11.MAR.2019 11:24:51



Date: 11.MAR.2019 11:28:59



Date: 11.MAR.2019 11:30:17

Date: 11.MAR.2019 11:32:22

Date: 11.MAR.2019 11:31:20

Page 78 of 93

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz
- 3.All modes of operation were investigated and the worse case(GFSK) emissions are reported.

Page 79 of 93

Non-hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #533 Standard: FCC (Band Edge) Test item: Radiation Test

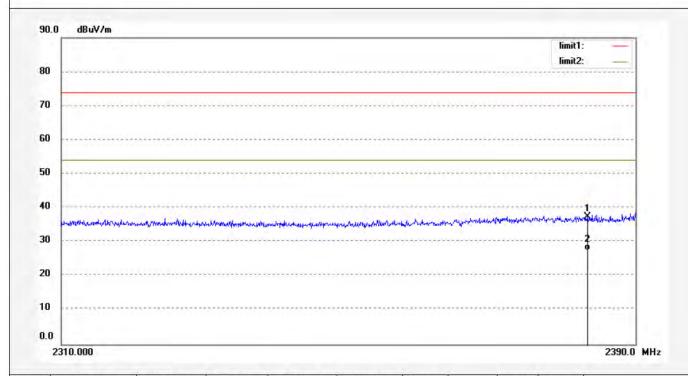
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2402MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

Polarization: Horizontal Power Source: DC 3.7V


Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3m

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2383.280	36.82	0.74	37.56	74.00	-36.44	peak			
2	2383.280	26.81	0.74	27.55	54.00	-26.45	AVG	14 7 41	11-	

Page 80 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #532 Standard: FCC (Band Edge) Test item: Radiation Test

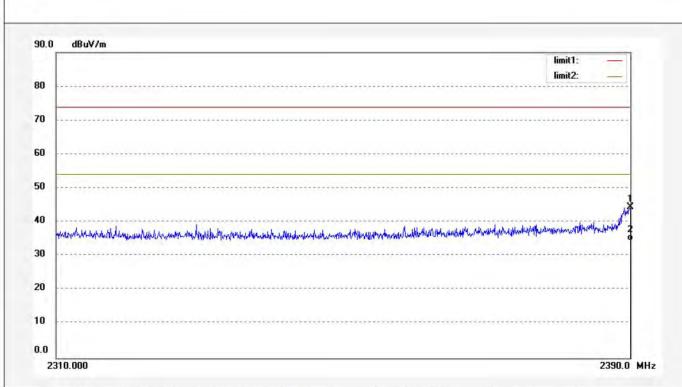
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2402MHz Model: EE4456

Note:

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	43.61	0.79	44.40	74.00	-29.60	peak			
2	2390.000	33.66	0.79	34.45	54.00	-19.55	AVG			

Page 81 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

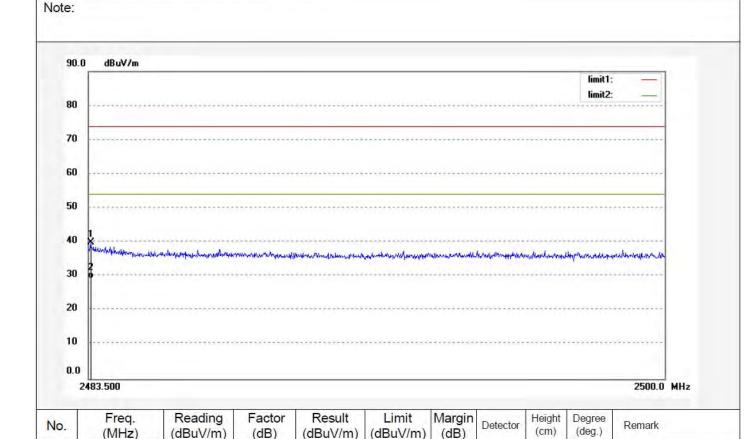
Job No.: LGW2019 #538
Standard: FCC (Band Edge)
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,


Polarization: Horizontal Power Source: DC 3.7V

Date: 19/03/05/

Time:

Engineer Signature: WADE

Distance: 3m

2

2483.566

2483,566

38.84

28.34

1.10

1.10

39.94

29.44

74.00

54.00

-34.06

-24.56

peak AVG

Report No.: ATE20190327 Page 82 of 93

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

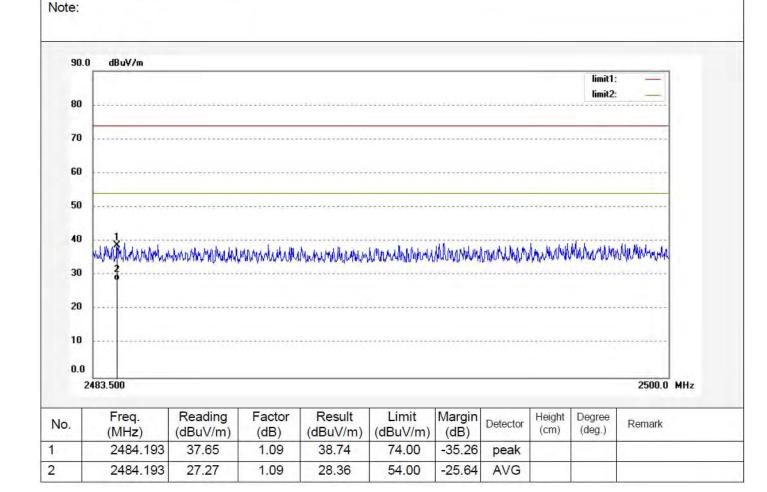
Job No.: LGW2019 #539
Standard: FCC (Band Edge)
Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: Industrial Speaker

Mode: TX 2480MHz Model: EE4456

Manufacturer: UP Global Sourcing UK Limited,

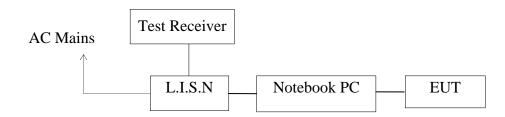

Polarization: Vertical Power Source: DC 3.7V

Date: 19/03/05/

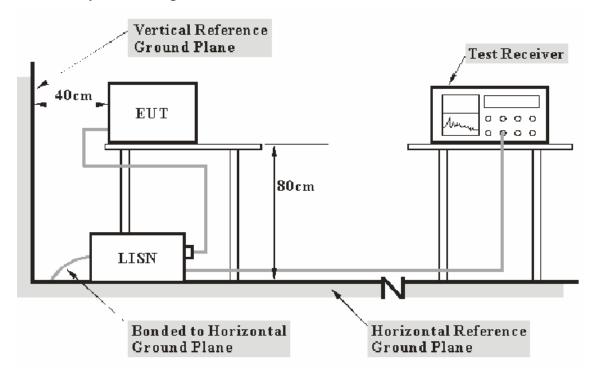
Time:

Engineer Signature: WADE

Distance: 3m

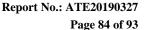


Report No.: ATE20190327 Page 83 of 93



12.AC POWER LINE CONDUCTED EMISSION TEST

12.1.Block Diagram of Test Setup



12.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

12.3.Test Limits

Frequency	Limit d	Β(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

12.4.Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.5.2. Turn on the power of all equipment.
- 12.5.3.Let the EUT work in test mode and measure it.

12.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 85 of 93

12.7.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	$(dB\mu V)$	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

$$\label{eq:frequency} \begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \end{split}$$

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

12.8.Test Result

Pass.

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

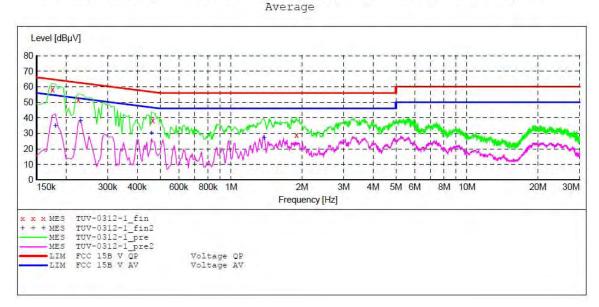
The spectral diagrams are attached as below.

Page 86 of 93

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

Industrial Speaker M/N:EE4456 Manufacturer: UP Global Sourcing UK Limited,

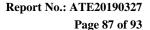

Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: WADE

Test Specification: N 120V/60Hz Comment: Mains port Start of Test: 3/12/2019 /

SCAN TABLE: "V 9K-30MHz fin" Short Description: _SU

_SUB_STD_VTERM2 1.70 Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw. 150.0 kHz 100.0 Hz 9.0 kHz 200 Hz NSLK8126 2008 QuasiPeak 1.0 s Average 5.0 kHz 150.0 kHz 30.0 MHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008



MEASUREMENT RESULT: "TUV-0312-1 fin"

3/12/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.175000	58.30	10.5	65	6.4	QP	N	GND
0.225000	51.60	10.6	63	11.0	QP	N	GND
0.465000	38.20	10.7	57	18.4	QP	N	GND
1.895000	29.10	11.0	56	26.9	QP	N	GND

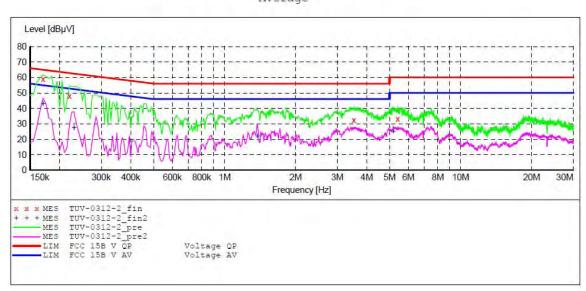
MEASUREMENT RESULT: "TUV-0312-1 fin2"

3/12/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.180000	34.60	10.5	55	19.9	AV	N	GND
0.230000	38.00	10.6	52	14.4	AV	N	GND
0.460000	30.20	10.7	47	16.5	AV	N	GND
1 380000	26.90	10.9	46	19.1	774	N	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Industrial Speaker M/N:EE4456
Manufacturer: UP Global Sourcing UK Limited,


Operating Condition: BT Communication Test Site: 1#Shielding Room

Operator: WADE

Test Specification: L 120V/60Hz Comment: Mains port Start of Test: 3/12/2019 /

SCAN TABLE: "V 9K-30MHz fin"

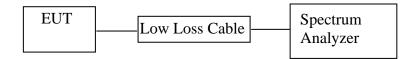
_SUB_STD_VTERM2 1.70 Short Description: Stop Step Detector Meas. IF Start Transducer Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Bandw. Time QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

MEASUREMENT RESULT: "TUV-0312-2 fin"

100	2/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.170000	59.00	10.5	65	6.0	QP	L1	GND
	0.220000	48.00	10.6	63	14.8	QP	L1	GND
	3.530000	32.50	11.1	56	23.5	QP	L1	GND
	5.410000	33.30	11.2	60	26.7	QP	L1	GND

MEASUREMENT RESULT: "TUV-0312-2 fin2"

3/12/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	43.10	10.5	55	11.9	AV	LI	GND
0.230000	27.40	10.6	52	25.0	AV	L1	GND
1.375000	22.00	10.9	46	24.0	AV	L1	GND
5.180000	25.20	11.2	50	24.8	AV	1.1	GND

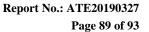


Page 88 of 93

13. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

13.1.Block Diagram of Test Setup

13.2. The Requirement For Section 15.247(d)


Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

13.3.EUT Configuration on Measurement

The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

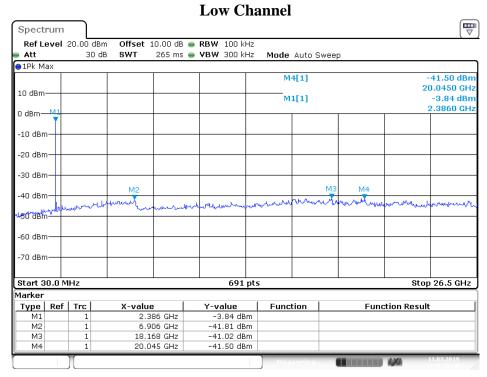
13.4. Operating Condition of EUT

- 13.4.1. Setup the EUT and simulator as shown as Section 13.1.
- 13.4.2. Turn on the power of all equipment.
- 13.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480 MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

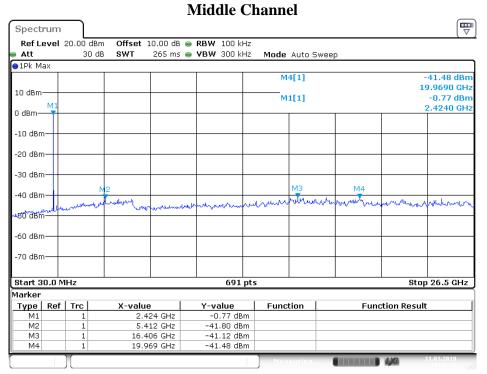
13.5.Test Procedure

- 13.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 13.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
- 13.5.3. The Conducted Spurious Emission was measured and recorded.

13.6.Test Result

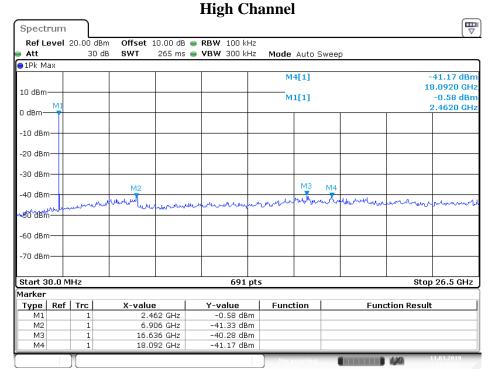

Pass.

The spectrum analyzer plots are attached as below.

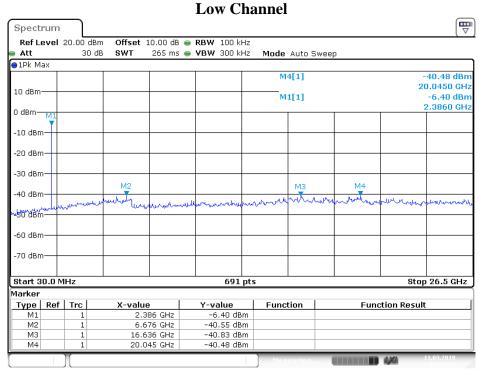


GFSK mode

Date: 11.MAR.2019 11:38:46

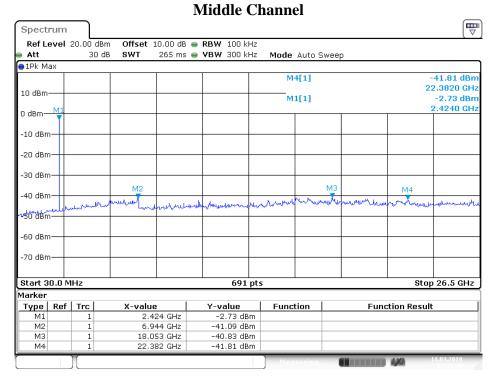


Date: 11.MAR.2019 11:37:46

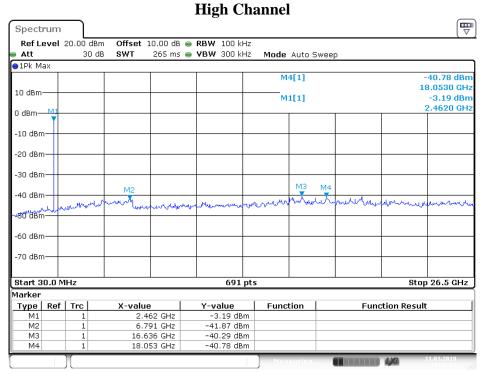


Date: 11.MAR.2019 11:36:54

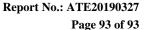
π /4 DQPSK mode



Date: 11.MAR.2019 11:34:20



Page 92 of 93



Date: 11.MAR.2019 11:35:27

Date: 11.MAR.2019 11:36:07

14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****