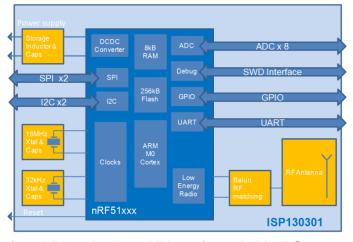


ISP130301 Bluetooth Low Energy Module with Integrated Antenna



Key Features

- Single Mode BLE v4.0 Slave or Master
- Proprietary 2.4 GHz protocols
- Based on Nordic Semiconductor nRF51 family
- ♣ 2.4GHz low energy RF Transceiver
- 4 32bit ARM Cortex M0 CPU with 256kB Flash
- Analog and Digital peripherals
- ♣ Ultra Low Power Consumption
- ♣ Single 2.1 to 3.6 V supply
- ♣ Very small size 8.0 x 11.0 x 1.2 mm
- ♣ Temperature -25 to 75 °C
- Fully integrated RF matching and Antenna
- ♣ Integrated 16 MHz and 32.768 kHz Clocks

Certifications

- FCC certification pending
- CE certification pending
- IC certification pending
- Bluetooth SIG certified
- RoHS compliant

Applications

- Space constrained BLE Slave Devices
- Sport and fitness sensors
- Health care sensors
- Out of Range (OOR) sensors
- Personal User Interface Devices (PUID)
- Remote controls

General Description

This module is based on nRF51822 Nordic Semiconductor 2.4GHz wireless System on Chip (SoC) integrating a 2.4 GHz transceiver, a 32 bit ARM Cortex™-M0 CPU, a flash memory, and analog and digital peripherals. It can support BLE and a range of proprietary 2.4 GHz protocols, such as Gazell from Nordic Semiconductor.

Fully qualified BLE stacks for nRF51822 are implemented in the S100 series of SoftDevices which can be freely downloaded. ISP130301 can then be used in Master and Slave modes for BLE and for both ends of other proprietary protocols. The ANT protocol can be handled on request.

The module is specifically designed for both PC peripherals and ultra low power applications such as sports and wellness sensors. Ultra low power consumption and advanced power management enables battery lifetimes up to several years on a coin cell battery. Even though its very small size 8x11x1.2mm, the module integrates decoupling capacitors, 16 MHz and 32 kHz crystals, load capacitors, DC-DC converter, RF matching circuit and antenna in addition to the wireless SoC.

The module forms a standalone BLE node source is necessary for proximity or Out of Range

for which only the addition of a suitable DC power source is necessary for proximity or Out of Range applications. Sensor applications require only the further addition of the appropriate sensors. As the module has several end applications, the antenna was designed to be compatible with several ground plane sizes such as USB dongle or cell phone.

Contents

1. Electrical Specifications	Page 1-2
2. RF Performances	Page 1-6
3. Product Development Tools	
4. Mechanical Outlines	
5. Quality & User Information	Page 1-13
6. Packaging & Storage	Page 1-14

1. Electrical Specifications

Electrical Performance

The specifications of the module follow those of the nRF51822. The following high level parameters are given for the module.

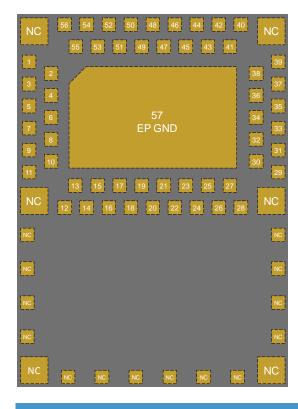
The operating temperature range is -25 to +75 °C with the following performances.

Parameter	Value	Unit			
Supply voltage					
Supply Voltage	2.1 to 3.6	V			
Current consump	Current consumption				
Static levels					
Peak current, receiver active (supply at 2.1V) 12.6 mA					
Peak current, transmitter active +4 dBm Output Power	16	mA			
Peak current, transmitter active 0 dBm Output Power 10.5 m		mA			
Current drain, connection-less state 0.5 µA					
Current drain between connection events 2.3 µA					

The EUT is intended to be supplied by a current limited power source.

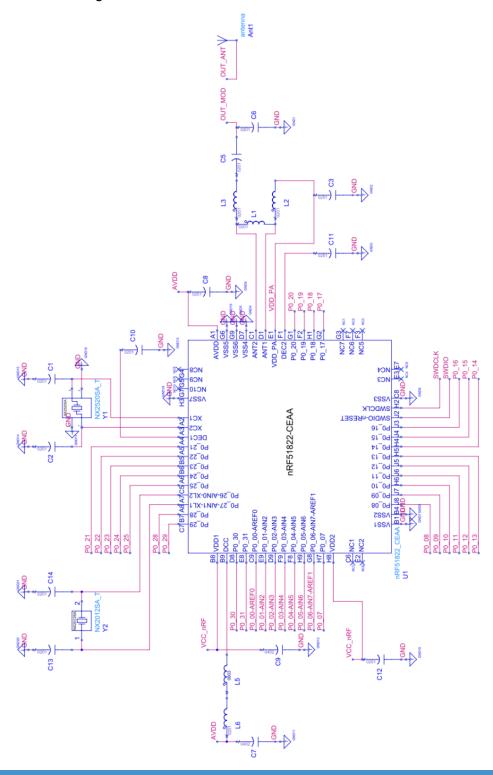
Pin Assignment

The module uses an LGA format with a double row of pads on a 0.65 mm pitch. The pad layout follows the QFN Jedec standard for 2 row LGA parts.


Pads 1 thru 56 are signal pins 0.4 x 0.4 mm, Pad 57 is an exposed metal pad that is connected to ground. The NC pads are 0.8 x 0.8 or 0.4 x 0.4 mm and are to be connected to isolated metal pads on the application PCB for mechanical stability and reliability (drop test).

Pin	Name	Pin function	Description			
1	P0_07	Digital I/O	General purpose I/O pin			
2	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
3	P0_09	Digital I/O	General purpose I/O pin			
4	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
5	P0 13	Digital I/O	General purpose I/O pin			
6	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
7	P0 19	Digital I/O	General purpose I/O pin			
8	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
9	P0_17	Digital I/O	General purpose I/O pin			
10	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
11	P0_20	Digital I/O	General purpose I/O pin			
12	VSS	Ground	Should be connected to ground plane on application PCB			
13	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
14	VSS	Ground	Should be connected to ground plane on application PCB			
15	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
16	VSS	Ground				
17	NC	Not Connected	Should be connected to ground plane on application PCB			
			Isolated pad on application PCB for mechanical stability			
18	VSS	Ground	Should be connected to ground plane on application PCB			
19	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
20	VSS	Ground	Should be connected to ground plane on application PCB			
21	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
22	VSS	Ground	Should be connected to ground plane on application PCB			
23	VSS	Ground	Should be connected to ground plane on application PCB			
24	OUT_MOD	Module I/O	This pin is the RF I/O pin of the BLE module. It should be connected to Pin 26 OUT_ANT for normal operation. During certification the pin may be connected via to an RF connector for module measurement using a Bluetooth test setup.			
25	VDD PA	PA supply	PA supply indicates Transmit mode (Active High)			
26	OUT ANT	Antenna I/O	This pin is connected to the internal antenna. It should be			
			connected to Pin 24 OUT_MOD for normal operation. During certification the pin may be connected to an RF connector for antenna measurement			
27	VSS	Ground	Should be connected to ground plane on application PCB			
28	VSS	Ground	Should be connected to ground plane on application PCB			
29	VCC_nRF	Power	Power supply (2.1 – 3.6V). VDD in nRF51822 doc.			
30	VSS	Ground	Should be connected to ground plane on application PCB			
31	SWDCLK	Digital Output	HW debug and flash programming I/O			
32	P0_18	Digital I/O	General purpose I/O pin			
33	SWDIO-	Digital I/O	System reset (active low). Also HW debug and flash			
	nRESET	g.tai i, c	programming I/O			
34	P0_16	Digital I/O	General purpose I/O pin			
35	P0_15	Digital I/O	General purpose I/O pin			
36	P0_14	Digital I/O	General purpose I/O pin			
37	P0_12	Digital I/O	General purpose I/O pin			
38	P0_10	Digital I/O	General purpose I/O pin			
39	P0 11	Digital I/O	General purpose I/O pin			
40	P0_05-AIN6	Digital I/O	General purpose I/O pin			
.	. 5_55 / 10	Analog input	ADC input 6			

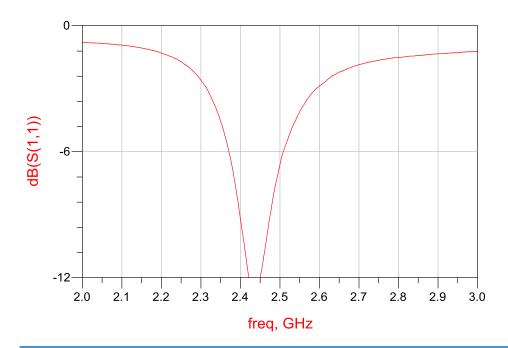
Pin	Name	Pin function	Description			
41	P0_06-AIN7-	Digital I/O	General purpose I/O pin			
	AREF1	Analog input	ADC input 7			
		Analog input	ADC Reference voltage			
42	P0_03-AIN4	Digital I/O	General purpose I/O pin			
		Analog input	ADC input 4			
43	P0_04-AIN5	Digital I/O	General purpose I/O pin			
		Analog input	ADC input 5			
44	P0_01-AIN2	Digital I/O	General purpose I/O pin			
		Analog input	ADC input 2			
45	P0_31	Digital I/O	General purpose I/O pin			
46	P0_02-AIN3	Digital I/O	General purpose I/O pin			
		Analog input	ADC input 3			
47	P0_30	Digital I/O	General purpose I/O pin			
48	P0_00-	Digital I/O	General purpose I/O pin			
	AREF0	Analog input	ADC Reference voltage			
49	P0_29	Digital I/O	General purpose I/O pin			
50	P0_28	Digital I/O	General purpose I/O pin			
51	P0_24	Digital I/O	General purpose I/O pin			
52	P0_23	Digital I/O	General purpose I/O pin			
53	P0_21	Digital I/O	General purpose I/O pin			
54	P0_22	Digital I/O	General purpose I/O pin			
55	P0_25	Digital I/O	General purpose I/O pin			
56	P0_08	Digital I/O	General purpose I/O pin			
57	GND_EP	Ground	Exposed metal pad. Should be connected to ground plane on application PCB			


ISP130301pad placement and pin assignment for the LGA QFN package

TOP VIEW

Electrical Schematic

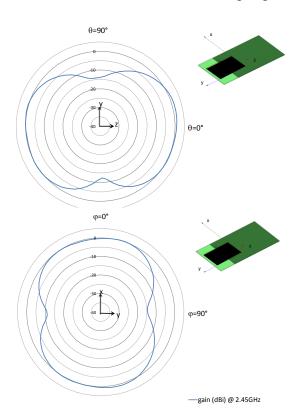
Electrical schematic showing ISP130301 module connections

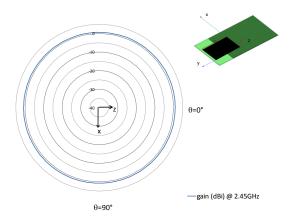

2. RF Performances

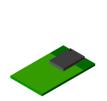
RF Specifications according to standards

Parameter	Value	BT V4 Std limit	Unit	Condition	
Output Power	ut Power -20 to +4 -20 to 10		dBm	Channels 0 to 39	
RF Frequency tolerance	Better than +/-20	+/- 50	Hz	Channels 0 to 39	
Rx sensitivity	-93	-70	dBm	Level for BER <0,1% ideal Tx	
Max range	> 200		m	Open field @1m height	
EIRP	4.6		dBm		
Antenna Gain	0.6		dBi		
Rx sensitivity	51.4		dBµV/m		

Typical Antenna Return Loss


Module mounted on a USB dongle ground plane

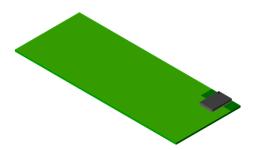



Radiation Pattern in 3 planes

Module mounted on a USB dongle ground plane

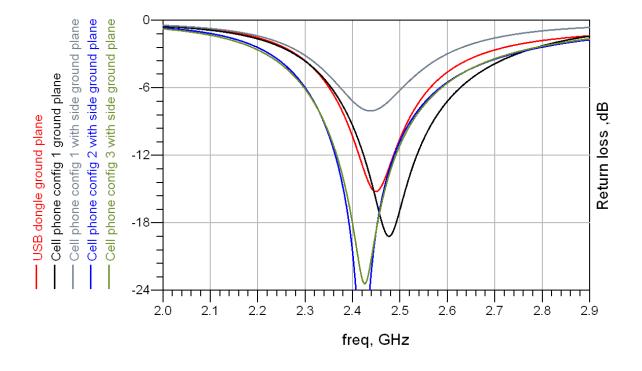
Ground Plane Effect Simulation

USB dongle ground plane (size : $18 \times 30 \text{ mm}^2$)



Cell phone config 1 ground plane (size : $40 \times 100 \text{ mm}^2$)


Cell phone config 1 with side ground plane (size : $40 \times 100 \text{ mm}^2$)


E MODULE SP130301

Cell phone config 2 with side ground plane (size : $40 \times 100 \text{ mm}^2$)

Cell phone config 3 with side ground plane (size : $40 \times 100 \text{ mm}^2$)

3. Product Development Tools

Interface

ISP130301 integrates a full microprocessor interface with up to 32 General Purpose I/O pins (GPIO) and several functions (2 x SPI, 2 x I2C, UART, 8 x ADC, SWDIO interface).

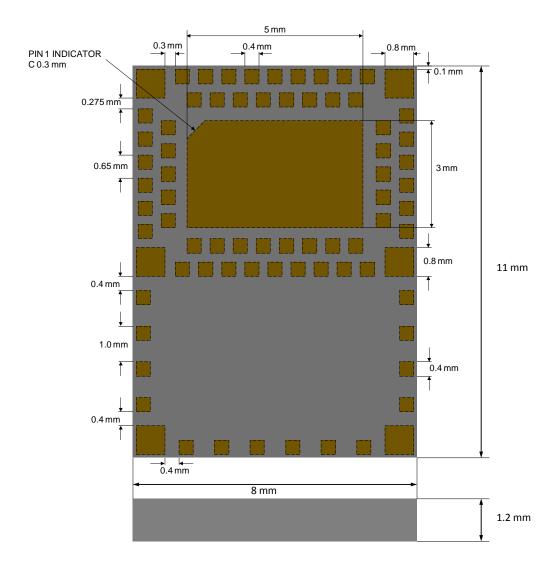
Hardware

The following development kit is recommended for using and testing ISP130301 module:

♣ Insight SiP Development Kit (ISP130301-DK1), need to be purchased separately

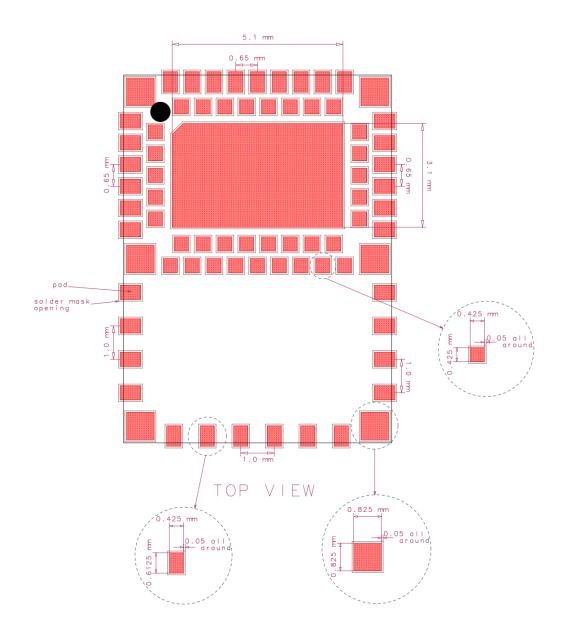
Development Tools and Software

The following development tools and software are recommended for using and testing ISP130301 module:

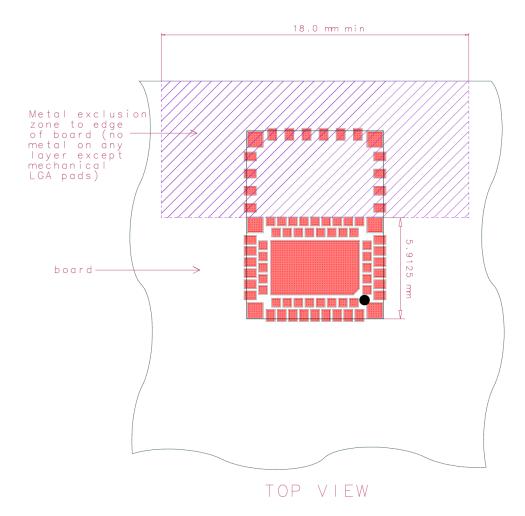

- ♣ Nordic Semiconductor nRFgo Studio (downloadable from www.nordicsemi.com after purchasing ISP130301-DK1)
- Nordic Semiconductor Master Control Panel (downloadable from www.nordicsemi.com after purchasing ISP130301-DK1)
- ♣ Segger J-Link Lite (downloadable for free from http://www.segger.com/jlink-software.html)
- ♣ S100 nRF51822 SoftDevice: fully qualified Bluetooth low energy stacks for nRF51822 integrated in ISP130301 module. The S100 series of SoftDevices (object code, no source) can be downloaded from www.nordicsemi.com after purchasing ISP130301-DK1
- ♣ nRF51 Software Development Kit (SDK): nRF51 SDK can be downloaded from www.nordicsemi.com after purchasing ISP130301-DK1. It contains example of source codes applications (C language):
 - Precompiled HEX files
 - Source code
 - Keil ARM project files

4. Mechanical Outlines

Mechanical Dimensions


Dimensional drawing for 8 x 11 x 1.2 mm, 57-Pad LGA Package

SMT Assembly Guidelines


Recommended PCB Land Pattern and Solder Mask layout

Antenna Keep-Out Zone

Recommended metal keep out areas for optimal antenna performance: no metal, no traces and no components on any layer except mechanical LGA pads.

5. Quality & User information

USA – User information

This intends to inform how to specify the FCC ID of our module "ISP130301" on the product. Based on the Public Notice from FCC, the host device should have a label which indicates that it contains our module. The label should use wording such as: "Contains FCC ID: XXXXX-ISP130301".

Any similar wording that expresses the same meaning may be used.

The label of the host device should also include the below FCC Statement. When it is not possible, this information should be included in the User Manual of the host device:

"This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions.

- (1) This device may not cause harmful interference
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Caution: Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment."

CANADA – User information

This intends to inform how to specify the IC ID of our module "ISP130301" on the product. According to Canadian standards "RSS-210" and "RSS-Gen", the host device should have a label which indicates that it contains our module.

The label should use wording such as: "Contains IC: XXXXXX-ISP130301".

Any similar wording that expresses the same meaning may be used.

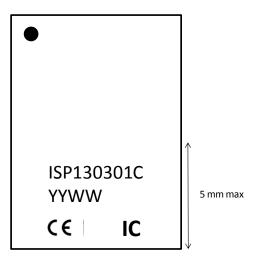
The label of the host device should also include the below IC Statement. When it is not possible, this information should be included in the User Manual of the host device:

"This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Cette notice nous informe comment spécifier le IC ID de notre module ISP130301. Selon les normes Canadiennes "RSS-210" et "RSS-Gen", le dispositif doit avoir une étiquette mentionnant qu'il contient notre module. L'étiquette doit être sous la forme : "IC :XXXXXX-ISP130301".

Tout libellé similaire exprimant le même sens peut être utilisé.

L'étiquette du dispositif devra également inclure la déclaration ci-dessous. Si cela n'est pas possible, cette information devra être précisée dans le manuel de l'utilisateur :


Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

6. Packaging & Storage

Package marking

I	ഗ	Р	1	3	0	3	0	1	O
			Υ	Υ	W	W			

ISP130301	Product number
С	Hardware version
YY	Two digit year number
WW	Two digit week number

Moisture Sensitivity

All plastic packages absorb moisture. During typical solder reflow operations when SMDs are mounted onto a PCB, the entire PCB and device population are exposed to a rapid change in ambient temperature. Any absorbed moisture is quickly turned into superheated steam. This sudden change in vapor pressure can cause the package to swell. If the pressure exerted exceeds the flexural strength of the plastic mold compound, then it is possible to crack the package. Even if the package does not crack, interfacial delamination can occur.

Since the device package is sensitive to moisture absorption, it is recommended to bake the product before assembly. The baking process for dry packing is 24 hours at 125°C.