

ISP091201 Bluetooth Low Energy Module with Integrated Antenna

Key Features

- Single Mode Bluetooth Low Energy v4.0 Slave
- Based on Nordic Semiconductor family of uBlue products
- Includes transceiver, baseband and software stack
- Ultra Low Power Consumption
- Single 1.9 to 3.6 V supply
- Temperature -40 to 85 ℃
- Fully integrated RF matching and Antenna
- Integrated 16 MHz Crystal Clock
- FCC Limited Modular Certification 15.212 FCC #2AAQS-ISP091201
- CE # xxxxxxx
- IC # 11306A-ISP091201
- TELEC # xxxxxxx
- Blue Tooth SIG certified # xxxxxx

* See Product Marking section for up to date module marking

Applications

- Space constrained Bluetooth Low Energy Slave Devices
- Sport and fitness sensors
- Health care sensors
- Out of Range (OOR) sensors
- Personal User Interface Devices (PUID)
- Remote controls

Description

This module is based on Nordic Semiconductor nRF8001 uBlue Bluetooth Low Energy Platform. The nRF8001 is a single chip transceiver with an embedded baseband protocol engine, suitable for ultra low power wireless applications conforming to the Bluetooth Low Energy Specification contained within v4.0 of the overall Bluetooth specification. The nRF8001D, used in the current revision of ISP091201, is a production product using a RoM for the baseband protocol engine.

Printed: 1 August 2013 1/18 Data Sheet Ref: DS091201R12 Insight SiP – Green Side – 400 avenue Roumanille – BP 309 – 06906 Sophia-Antipolis Cedex – France The information contained in this document is the property of Insight SiP and should not be disclosed to any third party without written permission

The uBlue transceiver is specifically designed for both PC peripherals and ultra low power applications such as sports and wellness sensors. For sensor applications, the ultra low power consumption and advanced power management enables battery lifetimes up to several years on a coin cell battery.

The ISP091201 module size measures 8 \times 12 \times 1.5 mm. The module integrates all the decoupling capacitors, the 16 MHz crystal and load capacitors plus the RF matching circuit and antenna in addition to the transceiver. As the module has several end applications, the antenna was designed to be compatible with several ground plane sizes including that of a USB dongle and a cell phone. The module can operate as a standalone Bluetooth sensor node with the addition of a transducer, a small external microprocessor to run application software, a 32 kHz crystal and a DC power source.

Functional Block Diagram

The module high level block diagram is shown in Figure 1 below.

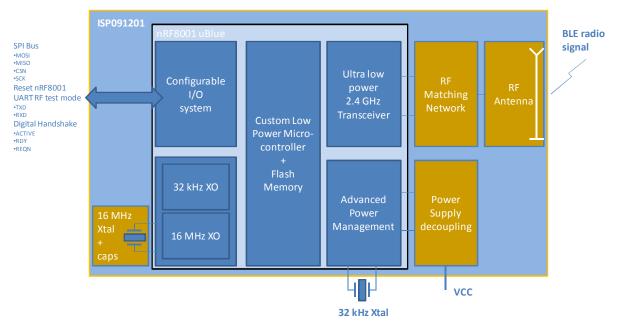


Figure 1: Functional block of the ISP091201

Pin Assignment

Pin	Name	Pin function	Description			
1 – 5	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
6	OUT_ANT	Antenna In/Out	This pin is connected to the internal antenna. It should be			
	_		connected to Pin 7 OUT_MOD for normal operation.			
			During certification the pin may be connected to an RF			
			connector for antenna measurement			
7	OUT_MOD	Module In/Out	This pin is the RF I/O pin of the BLE module. It should be			
			connected to Pin 6 OUT_ANT for normal operation.			
			During certification the pin may be connected via to an			
			RF connector for module measurement using a Bluetooth			
	ONE		test setup.			
8	GND	Ground	Should be connected to ground plane on application PCB			
9	NC	Not Connected	Isolated pad on application PCB for mechanical stability			
10	MOSI	Digital input	ACI Master Out Slave In			
11	DCC	PWM driver	PWM driver for the external LC filter if the DC/DC converter is enabled. If the DC/DC converter is disabled this pin shall be			
			not connected			
12	AVDD	Power	Analog power supply (1.9 – 3.6V DC)			
13	VCC nRF	Power	Power supply (1.9 – 3.6V) Supplies the DC/DC converter			
	_		and GPIOs. VDD in nRF8001 doc.			
14	GND	Ground	Should be connected to ground plane on application PC			
15	XL2	Analog output	Connect to external 32.768kHz crystal oscillator (if			
			internal RC oscillator is enabled then leave not			
			connected)			
16	XL1	Analog output	Connect to external 32.768kHz crystal oscillator (if			
			internal RC oscillator is enabled then leave not			
47	A OTIVE	D: :: 1	connected)			
17	ACTIVE	Digital output	Device RF front end activity indicator			
18	TXD	Digital output	UART (transmit) for Bluetooth low energy Direct Test Mode			
10	SCK	Digital input				
19 20	RXD	Digital input Digital output	ACI clock input UART (receive) for Bluetooth low energy Direct Test			
20	NAD	Digital output	Mode			
21	REQN	Digital input	ACI request pin (handshaking, active low)			
22	MISO	Digital output	ACI Master In Slave Out			
23	GND	Ground	Should be connected to ground plane on application PCB			
24	RDYN	Digital output	ACI device ready indication (handshaking)			
25	RESET	Digital Input	Reset (Active Low)			
26-36	NC	Not Connected	Isolated pad on PCB for mechanical stability			

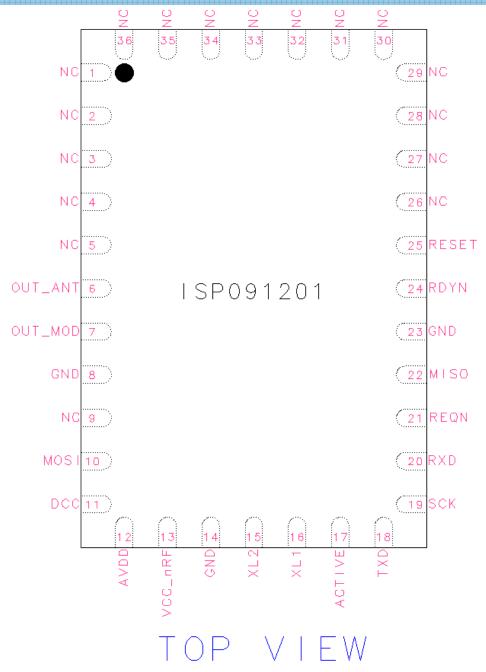


Figure 2: ISP091201 pin assignment (top view) for the LGA QFN package

Mechanical Dimensions

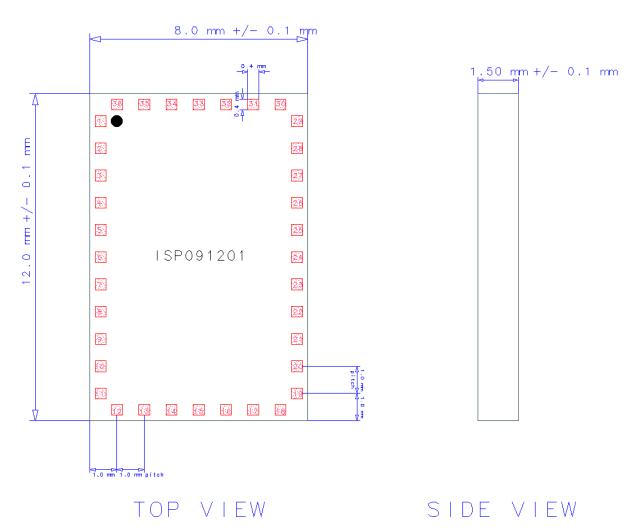


Figure 3: Dimensional drawing for 8 x 12 x 1.5 mm, 36-Pad LGA Package

SMT Assembly Guidelines

PCB land pattern

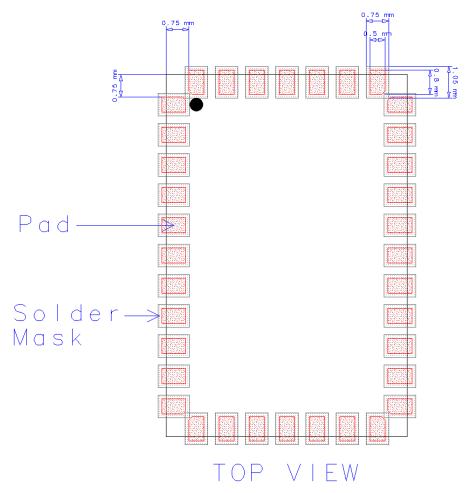


Figure 4: Recommended PCB Land Pattern and Solder Mask layout

Antenna Keep-Out Zone

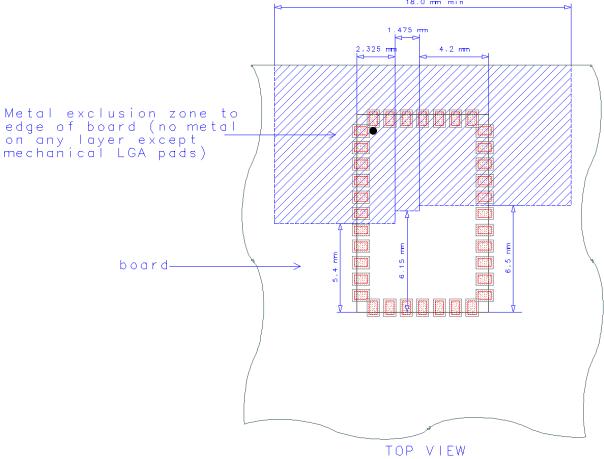


Figure 5: Recommended metal keep out areas for optimal antenna performance

FCC grant conditions

ISP091201 is certified under FCC part 15.212 with "Limited Modular Approval".

This approval is limited to hosts that use the additional metal shield ISP091205 that is delivered with ISP091201, since certification has been carried out in this way. This ensures that the radio portion of the circuit is fully shielded on all sides with the exception of the antenna access. The module itself contains the lower ground plane so it is not necessary to have a continuous plane under the module in the host.

The ISP091201 is labeled with its own FCC identification number: FCC ID: xxx-ISP091201, when installed into host the outside of the host must display a label with the wording:

"Contains FCC ID xxx-ISP091201" as specified by the CFR47 part15.212 (a – VI)

In order to respect FCC regulation, additional metal shield ISP091205 must be implemented following the recommendation below:

A picture of shield installation is furnished in Figure 6

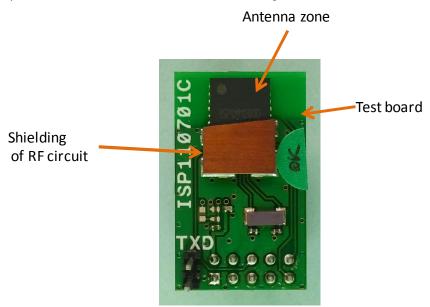
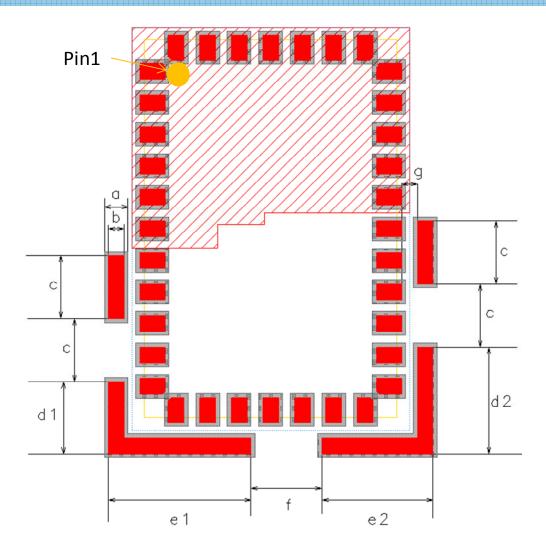
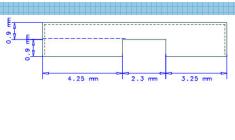
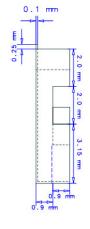
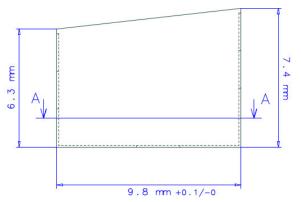


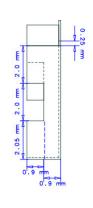
Figure 6 : Shield installation as used for FCC part 15.212 certification tests

The PCB land pattern and shield drawing are shown in Figure 7 and Figure 8 respectively.


Figure 7: Shield installation land pattern


Parameter	description	Value in μm
а	Shield SM aperture	750
b	Shield metal trace width	500
	SM registration (a-b)/2	125
g	Module pad edge to shield trace edge	500
С		2000
d1		2300
d2		3400
e1		4525
e2		3525
f		2250



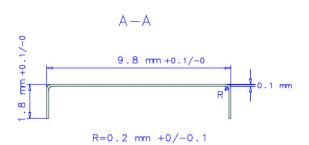


Figure 8: Mechanical drawing of the shield ISP091205

Electrical Specifications

Temperature range -40 to +85 ℃

Parameter	Value	Unit			
Supply voltage					
Min. Supply Voltage	1.9	V			
	Current consumption				
Static levels					
Peak current, receiver active	14.6	mA			
Peak current, transmitter active	12.7	mA			
Current drain, connection-less state	0.5	μΑ			
Current drain between connection events	2	μΑ			

RF performances

Parameter	Value	BT V4 standard limit	Unit	Condition
Output Power	-0.9	-20 to 10	dBm	Channels 0 to 39
RF Frequency tolerance	Better than +/-20	+/- 50	Hz	Channel 0 to 39
Rx sensitivity	-85	-70	dBm	Level for BER <0,1%
Max range	> 20		m	Open field at 1m height
EIRP	0.3		dBm	
Antenna Gain	1.2		dBi	
Rx sensitivity	58.8		dBμV/m	

Electrical Schematic

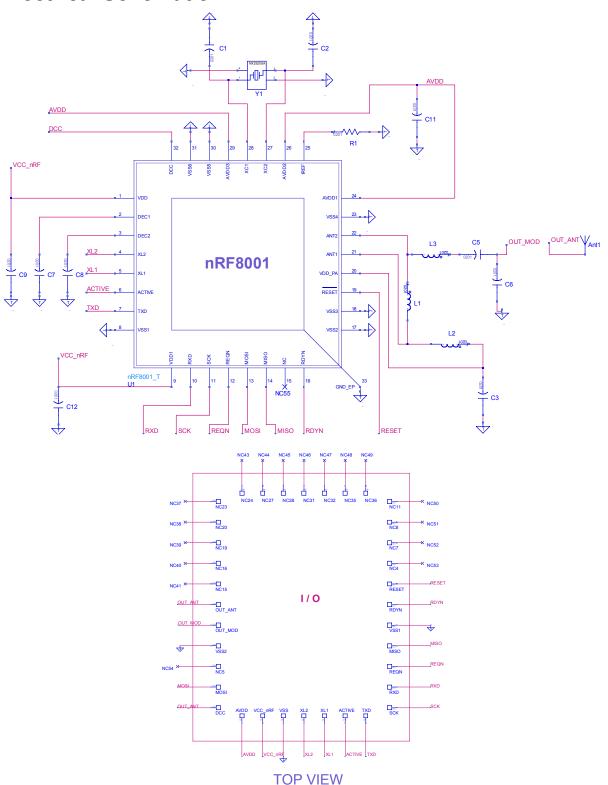


Figure 9: Electrical schematic showing module connections to nRF8001 device

Typical Antenna Pattern & Return Loss

Return loss



Figure 10: Antenna return loss measurement

Radiation Pattern

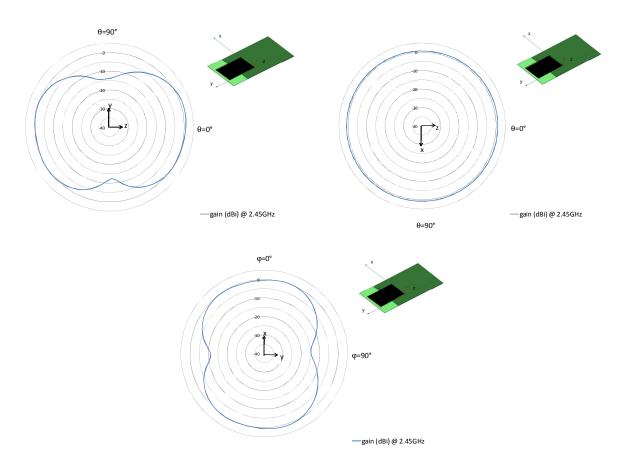


Figure 11: Radiation pattern in 3 planes

Ground Plane Effect

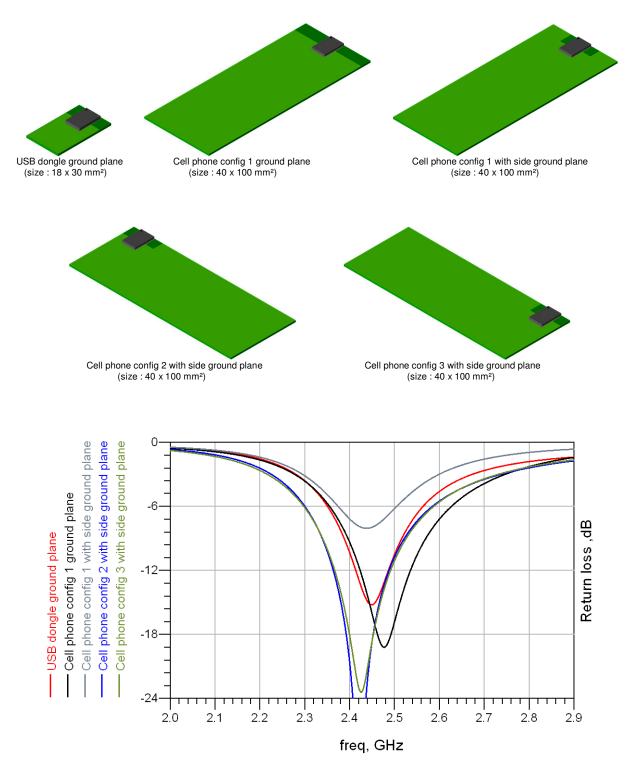


Figure 12: Ground plane effect simulation

USA - User information

This intends to inform how to specify the FCC ID of our module "ISP091201" on the product. Based on the Public Notice from FCC, the host device should have a label which indicates that it contains our module. The label should use wording such as: "Contains FCC ID: 2AAQS-ISP091201".

Any similar wording that expresses the same meaning may be used.

The label of the host device should also include the below FCC Statement. When it is not possible, this information should be included in the User Manual of the host device:

"This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions.

- (1) This device may not cause harmful interference
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Caution: Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment."

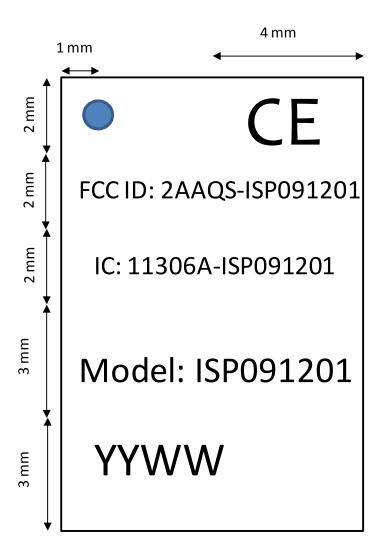
CANADA - User information

This intends to inform how to specify the IC ID of our module "ISP091201" on the product. According to Canadian standards "RSS-210" and "RSS-Gen", the host device should have a label which indicates that it contains our module.

The label should use wording such as: "Contains IC: 11306A-ISP091201".

Any similar wording that expresses the same meaning may be used.

The label of the host device should also include the below IC Statement. When it is not possible, this information should be included in the User Manual of the host device :


This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement

Label location

The labels are permanently laser marked following the figure bellow:

Ordering Information

Package marking

Ī		S	Р	0	9	1	2	0	1	D
ſ	Υ	Υ	W	W						

Abbreviation

ISP091201	Product number
D	Hardware version
YY	Two digit year number
WW	Two digit week number

Moisture Sensitivity

Since the device package is sensitive to moisture absorption, it is necessary to do baking before assembly. The standard baking condition is $125\,^{\circ}$ C/24 hours.