

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 +86-755-26648637 Fax:

Website: www.cqa-cert.com Report Template Version: V04 Report Template Revision Date: 2018-07-06

Test Report

CQASZ20200700685E-01 Report No.:

Applicant: E-SENSE Technology Co., Ltd

8F., No. 10, Lane 366, Sec. 2 Chung Shan Rd., Zhonghe Dist., New Taipei City **Address of Applicant:**

235, Taiwan

Equipment Under Test (EUT):

EUT Name: Wireless presenter

Model No.: 12-HDR550DL, R250DL, R250DL-L, R290DL, R290DL-L

Test Model No.: 12-HDR550DL

N/A **Brand Name:**

FCC ID: 2AAQO-R250DL

Standards: 47 CFR Part 15, Subpart C

Date of Receipt: 2020-07-10

Date of Test: 2020-07-10 to 2020-08-04

2020-08-04 Date of Issue: PASS* **Test Result:**

*In the configuration tested, the EUT complied with the standards specified above

Martin Lee) Tested By:

Reviewed By:

(Sheek Luo)

Approved By:

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20200700685E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20200700685E-01	Rev.01	Initial report	2020-08-04

Report No.: CQASZ20200700685E-01

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2013)	PASS
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2013)	PASS

3 Contents

			Page
1	V	/ERSION	2
2	Ti	EST SUMMARY	3
3	C	CONTENTS	4
4	G	SENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3	TEST ENVIRONMENT AND MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	7
	4.5	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.6	TEST LOCATION	9
	4.7	TEST FACILITY	
	4.8	DEVIATION FROM STANDARDS	
	4.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.10		
	4.11	EQUIPMENT LIST	10
5	TI	EST RESULTS AND MEASUREMENT DATA	11
	5.1	Antenna Requirement	11
	5.2	CONDUCTED EMISSIONS	
	5.3	RADIATED EMISSION	15
	5.4	20dB Bandwidth	23
6	P	PHOTOGRAPHS	26
	6.1	RADIATED EMISSION TEST SETUP	
	6.2	CONDUCTED EMISSION TEST SETUP	27
	6.3	EUT CONSTRUCTIONAL DETAILS	28

Report No.: CQASZ20200700685E-01

4 General Information

4.1 Client Information

Applicant:	E-SENSE Technology Co., Ltd
Address of Applicant:	8F., No. 10, Lane 366, Sec. 2 Chung Shan Rd., Zhonghe Dist., New Taipei City 235, Taiwan
Manufacturer:	SHENZHEN HAWK TECHNOLOGY CO., LTD.
Address of Manufacturer:	2F., D Building, San Wei Community Industrial Park, Xixiang Street, Baoan District, Shenzhen
Factory:	SHENZHEN HAWK TECHNOLOGY CO., LTD.
Address of Factory:	2F., D Building, San Wei Community Industrial Park, Xixiang Street, Baoan District, Shenzhen

4.2 General Description of EUT

Product Name:	Wireless presenter
Model No.:	12-HDR550DL, R250DL, R250DL-L, R290DL, R290DL-L
Test Model No.:	12-HDR550DL
Trade Mark:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Frequency Range:	2413MHz ~ 2460MHz
Modulation Type:	GFSK
Number of Channels:	3 (declared by the client)
Sample Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test Software of EUT:	RF test (manufacturer declare)
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Power Supply:	lithium battery:DC3.7V, 300mAh, Charge by DC5.0V

Note:

Model No.: 12-HDR550DL, R250DL, R250DL-L, R290DL, R290DL-L

Only the model 12-HDR550DL was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Report No.: CQASZ20200700685E-01

Operation Frequency each of channel						
Channel Frequency Channel Frequency Channel Frequency						
1	2413MHz	2	2437MHz	3	2460MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2413MHz
The Middle channel(CH2)	2437MHz
The Highest channel(CH3)	2460MHz

Report No.: CQASZ20200700685E-01

4.3 Test Environment and Mode

Operating Environment	Operating Environment:		
Radiated Emissions:	Radiated Emissions:		
Temperature:	25.6 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1009mbar		
Temperature:	25.5 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1009mbar		
Radio conducted item t	est (RF Conducted test room):		
Temperature:	25.3 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1009mbar		
Test mode:			
Transmitting mode:	Use test software (RF test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No. Certification		Supplied by
Adapter	HUAWEI	LPL-C010050200Z DOC		CQA
2) Cable				
Cable No	Description	Manufacturer	Cable Type/Length	Supplied by

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
1	/	/	/	/
•	, , , , , , , , , , , , , , , , , , ,	,	, <u>, , , , , , , , , , , , , , , , , , </u>	·

Report No.: CQASZ20200700685E-01

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for **CQA** laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	5.12dB	(1)
Radiated Emission	Above 1GHz	4.60dB	(1)
Conducted Disturbance	0.15~30MHz	3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CQASZ20200700685E-01

4.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.7 Test Facility

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

Report No.: CQASZ20200700685E-01

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2019/10/25	2020/10/24
Spectrum analyzer	R&S	FSU26	CQA-038	2019/10/25	2020/10/24
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2019/10/25	2020/10/24
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2019/10/21	2020/10/20
Bilog Antenna	R&S	HL562	CQA-011	2019/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2019/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2019/9/25	2020/9/24
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2019/9/26	2020/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2019/9/26	2020/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2019/9/26	2020/9/25
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2019/9/26	2020/9/25
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2019/9/26	2020/9/25
EMI Test Receiver	R&S	ESR7	CQA-005	2019/10/25	2020/10/24
LISN	R&S	ENV216	CQA-003	2019/10/23	2020/10/22
Coaxial cable	CQA	N/A	CQA-C009	2019/9/26	2020/9/25
DC power	KEYSIGHT	E3631A	CQA-028	2019/9/26	2020/9/25

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.: CQASZ20200700685E-01

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

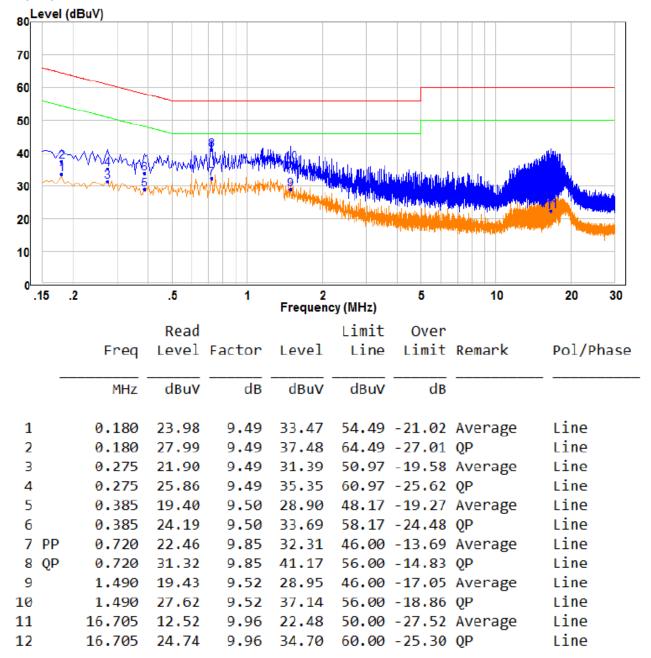
EUT Antenna:

The antenna is PCB antenna. The best case gain of the antenna is 0dBi.

Report No.: CQASZ20200700685E-01

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Francisco (MILL)	Limit (d	BuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test Procedure:	The mains terminal disturb room.		conducted in a shield	bet			
	 The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the ra The tabletop EUT was pla ground reference plane. A placed on the horizontal gr 	etwork) which provides cables of all other of SN 2, which was bondens the LISN 1 for the was used to connect nating of the LISN was nated upon a non-metal and for floor-standing ar	is a $50\Omega/50\mu H + 5\Omega$ line units of the EUT we do to the ground referent unit being measured. In a subject to the context of exceeded.	ear ere nce . A to a			
	 4) The test was performed with a vertical ground reference plane. The r the EUT shall be 0.4 m from the vertical ground reference plane vertical ground reference plane was bonded to the horizontal g reference plane. The LISN 1 was placed 0.8 m from the boundary unit under test and bonded to a ground reference plane for I mounted on top of the ground reference plane. This distance was better the closest points of the LISN 1 and the EUT. All other units of the and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment. 						
	and all of the interface cables must be changed according to						
-	ANSI C63.10: 2013 on conducted measurement.						
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC Main Ground Reference Plane	Test Receiver				

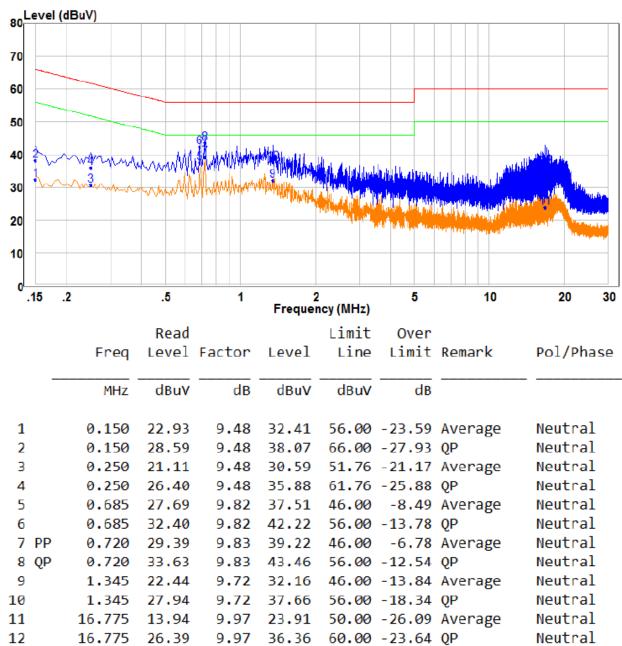


Report No.: CQASZ20200700685E-01

Test Mode:	Transmitting with GFSK modulation. Charge +Transmitting mode.
Final Test Mode:	below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

Live line:



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: CQASZ20200700685E-01

5.3 Radiated Emission

				_				
Test Requirement:	47 CFR Part 15C Section 15.249 and 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30KHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30KHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300KHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above IGHZ	Peak	1MHz	10Hz	Average			
	Note: For fundamental to value, RMS detection			5MHz, Peak o	letector is for	PK		
Limit: (Spurious Emissions	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurem distance (
and band edge)	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 1) 15.35(b), Unless otherwise specified, the limit on peak radio free emissions is 20dB above the maximum permitted average emission applicable to the equipment under test. This peak limit applies to the tote emission level radiated by the device.							
	2) Emissions radiated outside of the specified frequency bands, except for							
	harmonics, shall be attenuated by at least 50 dB below the level of the							
	fundamental or to the general radiated emission limits in Section 15.209,							
	whichever is the I	esser attenuation.						
Limit:	Frequency	Limit (dBu\	//m @3m)	Rem	nark			
(Field strength of the	2400MH= 2402 EMH-	94.	.0	Average Value				
fundamental signal)	2400MHz-2483.5MHz 114.0 Peak Value							

Report No.: CQASZ20200700685E-01

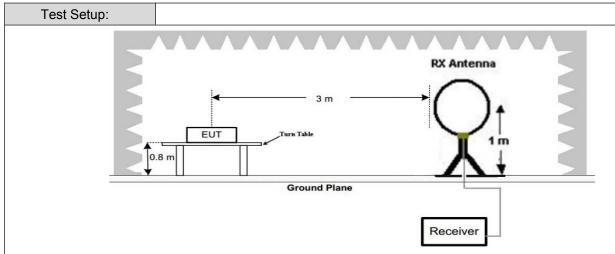


Figure 1. Below 30MHz

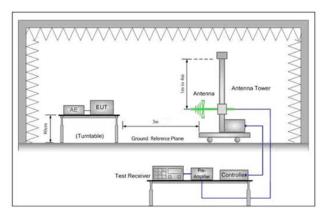


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

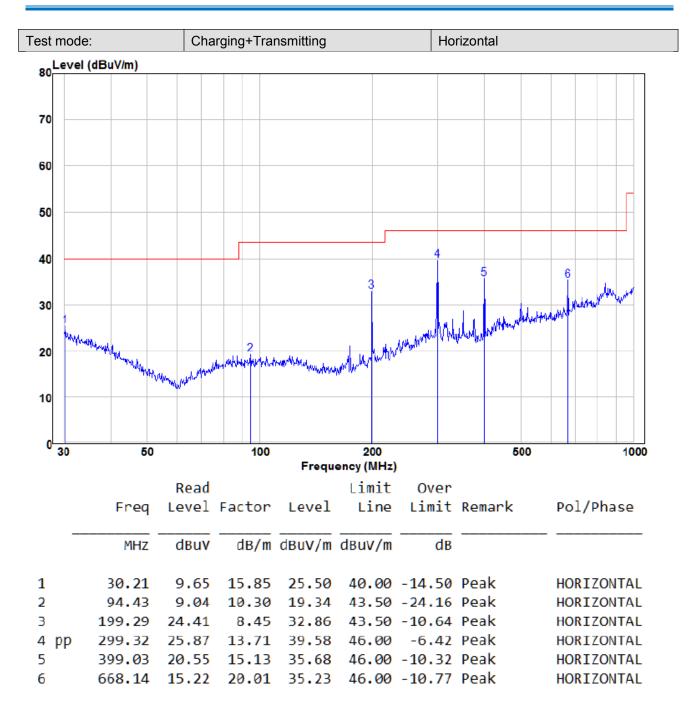
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of


	 below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel,the middle channel,the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case.
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

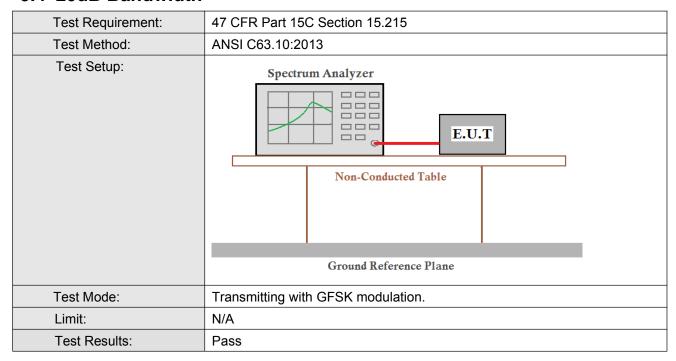
30M	30MHz~1GHz									
Test	mode	e:		Cha	rging+Tran	smitting		Verti	cal	
80 ^L	.evel	(dBuV/m)								
70										
70										
60										
50										
40									5	
									4	6
30							3		L. Junia	Kell Constitution of the State of State
	Whatha	Laterie.							and and amount of high factor and a second	
20	ייןיוי	halfred Holash dorlother		١.	Marana dan	Dub.	d mhaid	hotelphateup live live and	1 111	G G G G G G G G G G G G G G G G G G G
			MANA MALAN	hilydd y yr yr y	u a. damak kasiba	ALALOWY (NAVA) CIL	AM. A MANNER			
10			ויייו							
o ^L	30	5	0		100		200		500	1000
			-			Freque	ncy (MHz)			
			R	lead			Limit	Over		
		Fred	q Le	vel	Factor	Level	Line	Limit	Remark	Pol/Phase
	_						<u></u>			
		MHZ	z a	lBuV	aB/m	dBuV/m	aBuv/m	dB		
1		30.21	1 9	.49	15.85	25.34	40.00	-14.66	Peak	VERTICAL
2		80.64		.40	9.80	19.20		-20.80		VERTICAL
3		199.29		.37	8.45	27.82		-15.68		VERTICAL
4		399.03	3 17	.52	15.13	32.65	46.00	-13.35	Peak	VERTICAL
	pp	497.68		.17	18.21	35.38		-10.62		VERTICAL
6		836.24	4 8	.88	24.12	33.00	46.00	-13.00	Peak	VERTICAL

Above 1GHz							
Test mode:		Transmitti	ng	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2390	60.64	-9.2	51.44	74	-22.56	Peak	Н
2390	44.24	-9.2	35.04	54	-18.96	AVG	Н
2400	62.43	-9.39	53.04	74	-20.96	Peak	Н
2400	45.31	-9.39	35.92	54	-18.08	AVG	Н
2413	98.12	-9.35	88.77	114	-25.23	peak	Н
2413	94.29	-9.35	84.94	94	-9.06	AVG	Н
4826	61.80	-4.27	57.53	74	-16.47	peak	Н
4826	45.98	-4.27	41.71	54	-12.29	AVG	Н
7239	59.68	1.12	60.80	74	-13.20	peak	Н
7239	45.12	1.12	46.24	54	-7.765	AVG	Н
2390	62.50	-9.2	53.30	74	-20.70	peak	V
2390	45.28	-9.2	36.08	54	-17.92	AVG	V
2400	59.87	-9.39	50.48	74	-23.52	peak	V
2400	45.51	-9.39	36.12	54	-17.88	AVG	V
2413	96.58	-9.35	87.23	114	-26.77	peak	V
2413	93.70	-9.35	84.35	94	-9.65	AVG	V
4826	60.44	-4.27	56.17	74	-17.83	peak	V
4826	45.34	-4.27	41.07	54	-12.93	AVG	V
7239	60.37	1.12	61.49	74	-12.51	peak	V
7239	46.61	1.12	47.73	54	-6.27	AVG	V

Test mode:		Transmitti	ng	Test chann	nel:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2437	97.44	-9.46	87.98	114	-26.02	peak	Н
2437	94.25	-9.46	84.79	94	-9.21	AVG	Н
4874	61.12	-4.12	57.00	74	-17.00	peak	Н
4874	43.68	-4.12	39.56	54	-14.44	AVG	Н
7311	61.69	1.46	63.15	74	-10.85	peak	Н
7311	43.73	1.46	45.19	54	-8.81	AVG	Н
2437	96.39	-9.46	86.93	114	-27.07	peak	V
2437	95.03	-9.46	85.57	94	-8.43	AVG	V
4874	60.63	-4.12	56.51	74	-17.49	peak	V
4874	46.51	-4.12	42.39	54	-11.61	AVG	V
7311	61.73	1.46	63.19	74	-10.81	peak	V
7311	45.26	1.46	46.72	54	-7.28	AVG	V

Report No.: CQASZ20200700685E-01

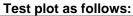
Test mode:		Transmitti	ng	Test chann	nel:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2460	98.84	-9.23	89.61	114	-24.39	peak	Н
2460	96.09	-9.23	86.86	94	-7.14	AVG	Н
2483.5	61.19	-9.29	51.90	74	-22.10	Peak	Н
2483.5	45.13	-9.29	35.84	54	-18.16	AVG	Н
4920	59.90	-4.04	55.86	74	-18.14	peak	Н
4920	44.93	-4.04	40.89	54	-13.11	AVG	Н
7380	62.50	1.65	64.15	74	-9.85	peak	Н
7380	45.98	1.65	47.63	54	-6.37	AVG	н
2460	97.55	-9.23	88.32	114	-25.68	peak	V
2460	93.83	-9.23	84.60	94	-9.40	AVG	V
2483.5	62.39	-9.29	53.10	74	-20.90	peak	V
2483.5	45.25	-9.29	35.96	54	-18.04	AVG	V
4920	60.02	-4.04	55.98	74	-18.02	peak	V
4920	45.71	-4.04	41.67	54	-12.33	AVG	V
7380	60.37	1.65	62.02	74	-11.98	peak	V
7380	44.43	1.65	46.08	54	-7.92	AVG	V

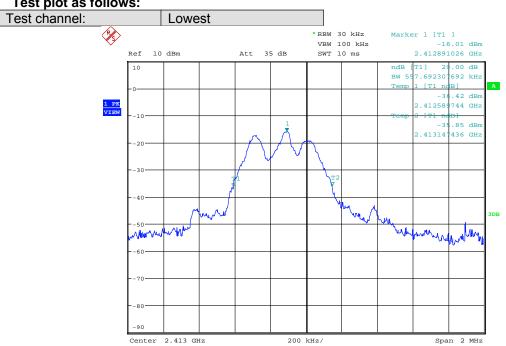

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

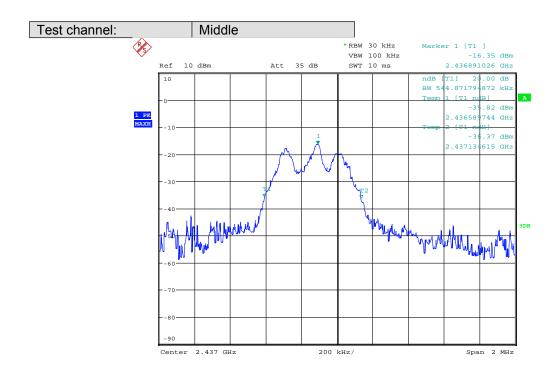
Report No.: CQASZ20200700685E-01

5.4 20dB Bandwidth

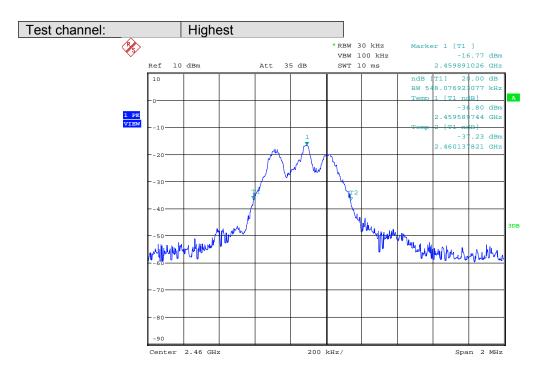



Measurement Data

Test channel	20dB bandwidth (MHz)	Results
Lowest	0.558	Pass
Middle	0.545	Pass
Highest	0.548	Pass

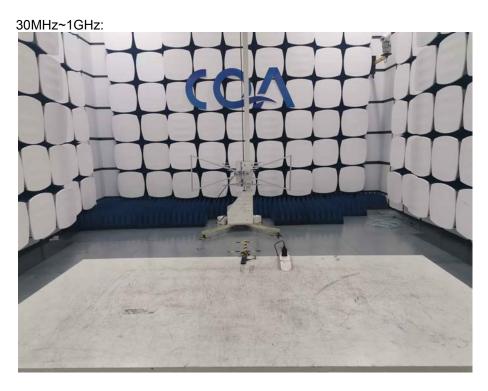


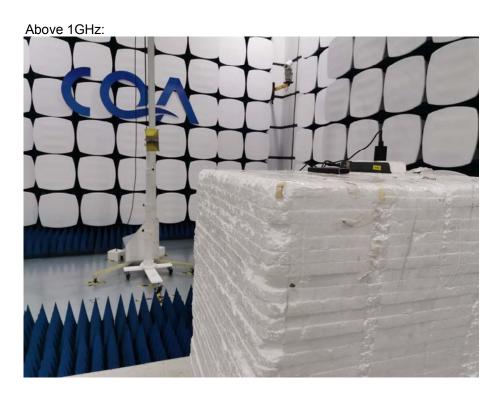
Report No.: CQASZ20200700685E-01


Date: 4.AUG.2020 17:28:29

Date: 4.AUG.2020 17:30:59

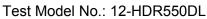
Report No.: CQASZ20200700685E-01

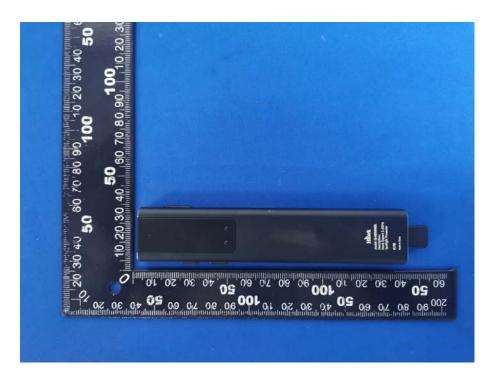

Date: 4.AUG.2020 17:32:08



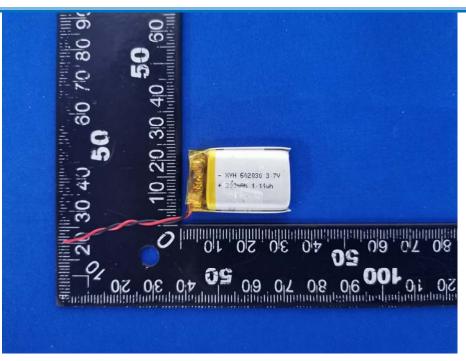
6 Photographs

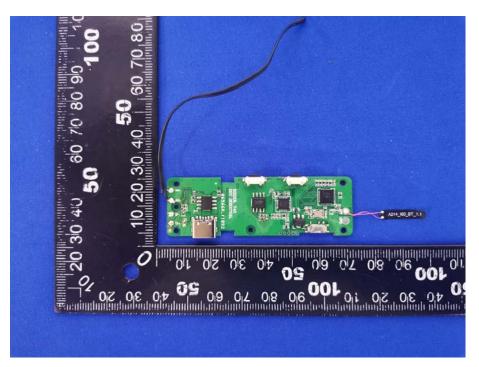
6.1 Radiated Emission Test Setup

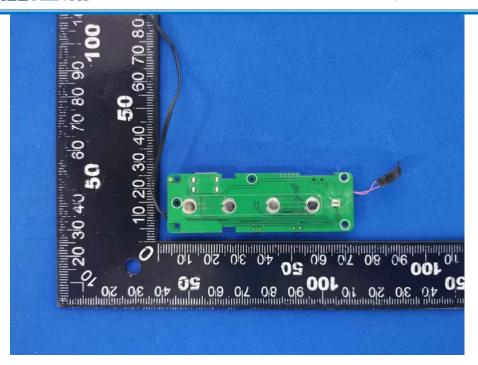


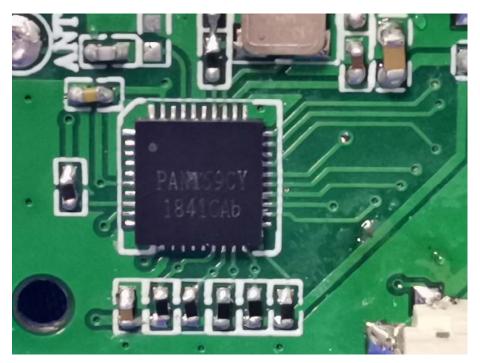

6.2 Conducted Emission Test Setup

6.3 EUT Constructional Details









The End