TEST REPORT

FCC ID: 2AAPKMA-3826-A Product: Folded wireless charger Model No.: MA-3826-A Additional Model No.: N/A Trade Mark: N/A Report No.: TCT191125E008 Issued Date: Dec. 02, 2019

Issued for:

Shenzhen Kingsun Enterprises Co., Ltd. 25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, 518034, China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

	Test Certification	
2.	Test Result Summary	4
3.	EUT Description	5
4.	General Information	6
	4.1. Test environment and mode	6
	4.2. Description of Support Units	6
5.	Facilities and Accreditations	7
	5.1. Facilities	7
	5.2. Location	
	5.3. Measurement Uncertainty	7
6.	Test Results and Measurement Data	8
	6.1. Conducted Emission	8
	6.2. Radiated Spurious Emission Measurement	12
Α	ppendix A: Photographs of Test Setup	
Α	ppendix B: Photographs of EUT	

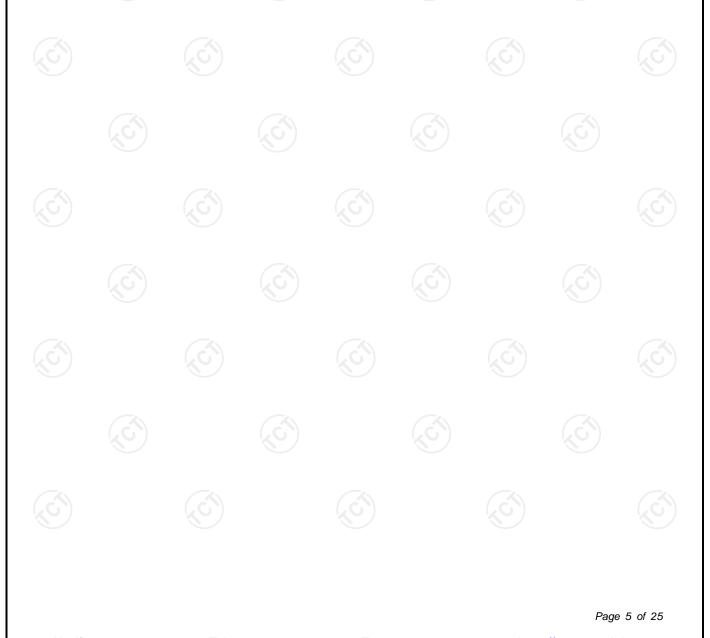
「CT通测检测 TESTING CENTRE TECHNOLOGY 1. Test Certification

Product:	Folded wireless cha	arger				
Model No.:	MA-3826-A					
Additional Model No.:	N/A			B		C
Trade Mark:	N/A					
Applicant:	Shenzhen Kingsun	Enterprises	Co., Ltd.		S	
Address:	25/F, CEC Informat 518034, China	tion Building,	Xinwen Ro	I., Shenzhe	n, Guangd	ong
Manufacturer:	Shenzhen Kingsun	Enterprises	Co., Ltd.			
Address:	25/F, CEC Informat 518034, China	tion Building,	Xinwen Rd	l., Shenzhe	n, Guango	ong
Date of Test:	Nov. 26, 2019 – No	ov. 29, 2019				
Applicable Standards:	FCC CFR Title 47 F	Part 18				

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

	Tested By	: Kein Huang	Date:	Nov. 29, 2019	
		Kevin Huang	<u>c</u>)		
	Reviewed By	Bughter	Date:	Dec. 02, 2019	
		Bery Zhaoz		Ó	
	Approved By	Tomesto	Date:	Dec. 02, 2019	
		Tomsin	<u>c</u>		
<u>Hotline</u>	<u>: 400-6611-140</u>	Tel: 86-755-27673339	Fax: 86-755-276733		3 of 25 <u>b.com</u>

Report No.: TCT191125E008


2. Test Result Summary

Requirement	0	CFR 47 Se	ction		Result	
AC Power Line Conducted Emission		§18.30	KO -	PASS		
Spurious Emission		§18.30		PASS		
ote: 1. PASS: Test item meets the requi 2. Fail: Test item does not meet the 3. N/A: Test case does not apply to	e requirement. the test object					
4. The test result judgment is decide	ed by the limit of	of test standar				
					00	e 4 of 2

3. EUT Description

Product:	Folded wireless charger
Model No.:	MA-3826-A
Additional Model No.:	N/A
Trade Mark:	N/A
Declaration Frequency:	110-205kHz
Operation Frequency:	116.67 - 172.76kHz
Modulation Technology:	Load modulation
Antenna Type:	Inductive loop coil Antenna
Power Supply:	DC 5V

4. General Information

4.1. Test environment and mode

25.0 °C
56 % RH
1010 mbar
5

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Mobile Phone	SM-G9350	R28HA2ER3GT	/	SAMSUNG
Adapter	EP-TA20CBC	R37HAEY0DT1RT3	1	SAMSUNG
5.3)				

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 - Shenzhen Tongce Testing Lab

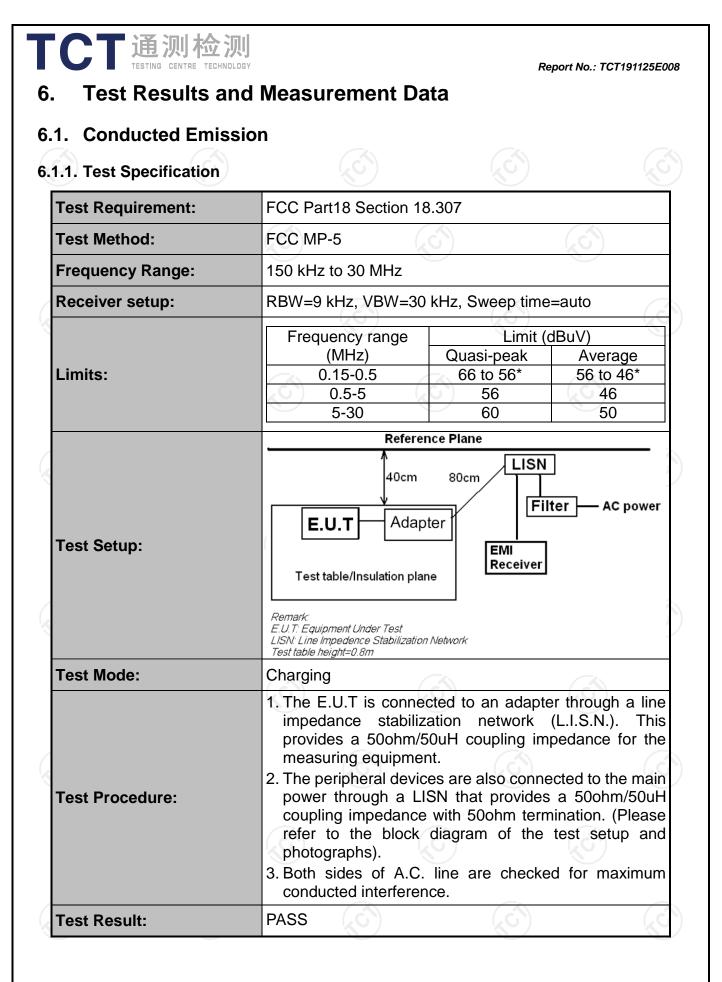
The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab


Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

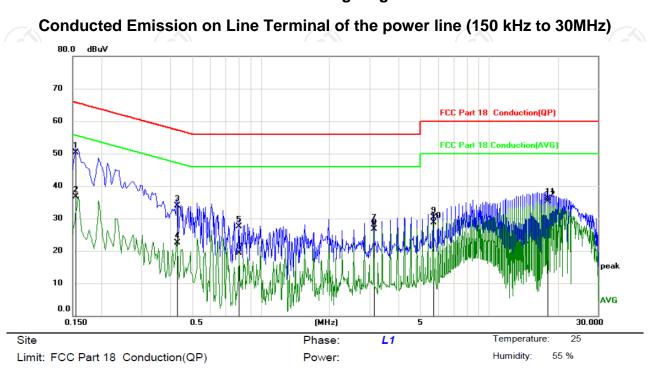
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

Page 8 of 25

6.1.2. Test Instruments

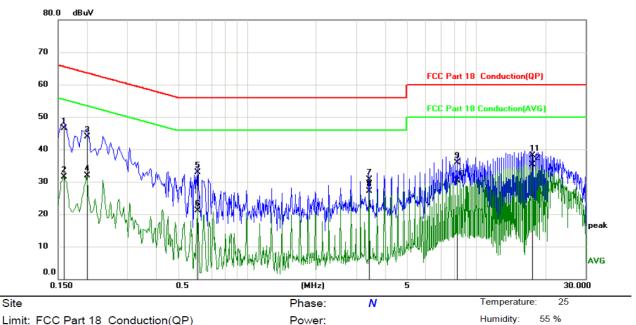
TCT通测检测 TESTING CENTRE TECHNOLOGY


Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Test Receiver	R&S	ESPI	101402	Jul. 29, 2020				
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2020				
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.1.3. Test data

通测检测 TESTING CENTRE TECHNOLOGY


Please refer to following diagram for individual

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	40.28	10.12	50.40	65.75	-15.35	QP	
2	0.1545	26.62	10.12	36.74	55.75	-19.01	AVG	
3	0.4290	23.79	10.13	33.92	57.27	-23.35	QP	
4	0.4290	12.29	10.13	22.42	47.27	-24.85	AVG	
5	0.8025	17.35	10.12	27.47	56.00	-28.53	QP	
6	0.8025	9.15	10.12	19.27	46.00	-26.73	AVG	
7	3.1290	18.02	10.13	28.15	56.00	-27.85	QP	
8	3.1290	16.50	10.13	26.63	46.00	-19.37	AVG	
9	5.6895	20.16	10.13	30.29	60.00	-29.71	QP	
10	5.6895	18.49	10.13	28.62	50.00	-21.38	AVG	
11	18.0645	25.93	10.19	36.12	60.00	-23.88	QP	
12 *	18.0645	25.16	10.19	35.35	50.00	-14.65	AVG	

Note:

Not	e:		
	Freq. = Emission frequency in MHz		
	Reading level (dBµV) = Receiver reading		
	Corr. Factor (dB) = LISN factor + Cable loss		
	Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency range 150 k	Hz to 30MHz.	
		Page 10 of 25	

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 18 Conduction(QP)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	36.43	10.12	46.55	65.52	-18.97	QP	
2		0.1590	21.48	10.12	31.60	55.52	-23.92	AVG	
3		0.1997	33.73	10.12	43.85	63.62	-19.77	QP	
4		0.1997	21.77	10.12	31.89	53.62	-21.73	AVG	
5		0.6090	22.82	10.13	32.95	56.00	-23.05	QP	
6		0.6090	11.07	10.13	21.20	46.00	-24.80	AVG	
7		3.4170	20.56	10.13	30.69	56.00	-25.31	QP	
8		3.4170	16.93	10.13	27.06	46.00	-18.94	AVG	
9		8.2545	25.71	10.14	35.85	60.00	-24.15	QP	
10		8.2545	20.25	10.14	30.39	50.00	-19.61	AVG	
11		17.5065	27.92	10.19	38.11	60.00	-21.89	QP	
12	*	17.5065	25.18	10.19	35.37	50.00	-14.63	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ *Limit* $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 25

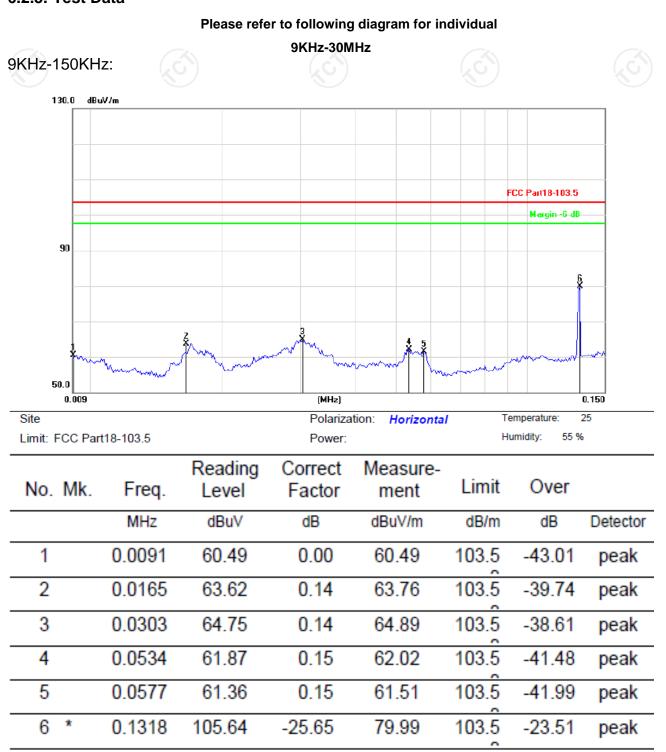
6.2. Radiated Spurious Emission Measurement

6.2.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

ISONHZ: Quasi-peak 9kHz 30kHz 0 30MHz-1GHz Quasi-peak 9kHz 30kHz 0 30MHz-1GHz Quasi-peak 100KHz 300KHz 0 Above 1GHz Peak 11MHz 30MHz 10 Above 1GHz Peak 11MHz 10Hz Peak 10MHz 10 Any on-15M Below 500 15 × 50 Industrial heaters and RF stabilized Or or below Any 10 Ary con-15M Below 500 15 × 50 Industrial heaters and RF stabilized Or or below Any 10 Ary con-15M Below 500 10 50 or more 15 × 50 Industrial heaters and RF stabilized Or or below Any Any 15 Medical diathermy Any Any 10 Ary colspan="2">Any Any 10 Utrasonic Below 490 kHz Below 500 50 or more 2.400F Utrasonic Below 90 kHz	FCC Part18 Section 18.305								
Measurement Distance: 3 m Antenna Polarization: Horizontal & Vertical Operation mode: Refer to item 4.1 Receiver Setup:	FCC MP-5								
Antenna Polarization: Horizontal & Vertical Operation mode: Refer to item 4.1 Receiver Setup: Image: Comparison of the set of the s	9 kHz to 25 GHz								
Operation mode: Refer to item 4.1 Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 0 9kHz-150kHz Quasi-peak 9kHz 30kHz 0 30MHz Quasi-peak 9kHz 30kHz 0 30MHz Quasi-peak 9kHz 30kHz 0 30MHz Quasi-peak 100kHz 300kHz 0 30MHz Quasi-peak 100kHz 300kHz 0 4bove 1GHz Peak 1MHz 10Hz 10Hz 15x States otherwise specified hy field states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with the states and the stabilized of nor below 300 field states with states and the states and the stabilized of	3 m								
Image: state of the state									
Receiver Setup: 9kHz-150kHz Quasi-peak 200Hz 1kHz 0 30MHz Quasi-peak 9kHz 300KHz 0 30MHz-1GHz Quasi-peak 100KHz 300KHz 0 Above 1GHz Peak 100KHz 300KHz 0 Above 1GHz Peak 100KHz 300KHz 0 Above 1GHz Peak 100KHz 300KHz 0 Any non-SM Below 500 25 Any non-SM Below 500 15 × 50 Any non-SM Below 500 15 × 50 Any non-SM Below 500 2,4007 Any non-SM Prever Any 10 Industrial heaters and RF stabilized On or below Any 10 Any non-SM Below 500 2,4007 Any non-SM Prevency Any 15 5 5 Medical dathermy Any SM Any 15 5 5 5 5 5									
Receiver Setup: 150kHz- 30MHz Quasi-peak 9kHz 30kHz C 30MHz-1GHz Quasi-peak 100KHz 300KHz C Above 1GHz Peak 1MHz 30MHz C Above 1GHz Peak 1MHz 300KHz C Meters otherwise specific Peak 1MHz 10Hz Any nort5M Below 500 15 × 52 Any nort5M Below 500 15 × 52 Industrial heaters and RF stabilized On or below Any 10 Ary nort5M Below 500 15 × 52 Medical diathermy Any SM Any 10 Ary nort5M Below 500 2.4007 Medical diathermy Any SM 15 × 52 Medical diathermy Any SM Any 15 × 52 Any 15 × 52 Medical diathermy Any SM Any 15 × 52 Any 15 × 52 Medical diathermy Any SM Any 15 × 52 Any 15 × 52<	Remark								
South z 30MHz 30MHz 30MHz 30MHz Above 1GHz Peak 1MHz Above 1GHz Peak Medical distribution	Quasi-peak Value								
Limit: $\frac{30MHz-1GHz}{Above 1GHz} = \frac{Quasi-peak}{Peak} = \frac{100KHz}{1MHz} = \frac{300KHz}{3MHz} = \frac{1}{Above 1GHz} = \frac{100KHz}{Peak} = \frac{100KHz}{1MHz} = \frac{100KHz}{10Hz} = 100K$	Quasi-peak Value								
Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz 10Hz Any type unless otherwise specified Any ISM Fedurant (watts) Feld of the fedure of the	Quasi-peak Value								
Limit: Peak 1MHz 10Hz Peak 1MHz 10Hz	Peak Value								
Limit: Fequency equipment (watts) (u/Vm) Any type unless otherwise specified (miscellaneous) Any non-ISM Below 500 or more 15 × 50 Industrial heaters and RF stabilized arc welders Medical diathermy Medical diathermy Any ISM Any ISM Any ISM Any Any Any Any Any Any Any ISM Any ISM IS IS IS Any ISM Any ISM Any ISM Any ISM IS IS IS IS IS IS IS IS IS IS	Average Value								
Limit: Fequency equipment (watts) (u/Vm) Any type unless otherwise specified (miscellaneous) Any non-ISM elow 500 or more 15 stop frequency Any non-ISM elow 500 or more 15 stop (ndustrial heaters and RF stabilized on or below arc welders Medical diathermy Any ISM Any ISM Any Any Any Any Any ISM Any Any Any ISM Any ISM IS IS IS IS IS IS Any ISM Any ISM Any ISM Any ISM Any ISM IS IS IS IS IS IS IS IS IS IS	6								
Limit: Herry type unless otherwise specified Ary ISM frequency 500 or more 25 × 50 frequency 500 or more 15 × 50 Industrial heaters and RF stabilized arc welders Ary ISM Ary (2) Medical diathermy Ary ISM Ary 25 MHz Ary Ary 10 Ary ISM Ary 25 MHz Ary 15 Medical diathermy Ary ISM Ary 25 S00 or more 2,400/F S00 or m	trength limit Distance								
Limit: Any non-ISM requency Any Any Any Any Any Any Any An	30								
Limit: Prequency S00 or more 15 × 50 Industrial heaters and RF stabilized arc welders Any Any Any (2) Medical diathermy Any Any 15 Medical diathermy Any Any 15 Medical diathermy Any Any 15 Medical diathermy Any Any 15 Intrasonic Below 490 kHz Below 500 2,400/r 500 or more 300 or 1,600 kHz Any 15 Induction cooking ranges Below 90 kHz Any 15,500 On or above 90 Any 300 KHz Distance = 3m	2RT(power/500) 1 ₃₀ 30								
Limit: Ary edders S,725 MHz Any Ary Ary S MHz Any Ary S MHz Any Ary S MHz Medical diathermy Ary S MHz Any Ary S O O S O S O S O S O S O S O S O S O	QRT(power/500) 1 ₃₀								
Limit: Medical diathermy Any ISM frequency Any Any Any Any Any Any Any An	1,60 (²								
Ultrasonic Below 490 kHz Below 500 2,400/F 500 or more SQRT(p 490 to 1,600 kHz Any 24,000/ Above 1,600 kHz Any 15 Induction cooking ranges Below 90 kHz Any 1,500 On or above 90 kHz Any 300 For radiated emissions below 30MHz Distance = 3m	30 30								
Above 1,600 kHz Any 15 Induction cooking ranges Below 90 kHz Any 1,500 On or above 90 kHz Any 300	F(kHz) 30 F(kHz) × 3 ₃₀ power/500)								
For radiated emissions below 30MHz Distance = 3m	/F(kHz) 3 3								
For radiated emissions below 30MHz Distance = 3m	4 ₃								
Distance = 3m	43								
	Computer								
Test setup:	Pre -Amplifier								
Test setup:									
	EUT								
	Turn table								
	Receiver								
Ground Plane	Ground Plane								

CT 追测检测		 1. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=200Hz for 9K< f <150 KHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; 					
		(2) S F T (3) S	emission be Set RBW=2 RBW; Swee Frace = max Set RBW =	00Hz for 9 p = auto; [< hold; 9 KHz, VB	ired; K< f <150 Detector fu W= 30KHz	inction = pe	eak;
Test mode	:	(2) S F (3) S 3	emission be Set RBW=2 RBW; Swee Frace = max	00Hz for 9 p = auto; [k hold; 9 KHz, VB peak meas	ired; K< f <150 Detector fu W= 30KHz surement.	inction = pe	eak;
Test mode Test resul		(2) S F (3) S 3	emission be Set RBW=2 RBW; Swee Frace = max Set RBW = 30 MHz for p	00Hz for 9 p = auto; [k hold; 9 KHz, VB peak meas	ired; K< f <150 Detector fu W= 30KHz surement.	inction = pe	eak;
		(2) 5 F (3) 5 Refer to	emission be Set RBW=2 RBW; Swee Frace = max Set RBW = 30 MHz for p	00Hz for 9 p = auto; [k hold; 9 KHz, VB peak meas	ired; K< f <150 Detector fu W= 30KHz surement.	inction = pe	eak;
		(2) 5 F (3) 5 Refer to	emission be Set RBW=2 RBW; Swee Frace = max Set RBW = 30 MHz for p	00Hz for 9 p = auto; [k hold; 9 KHz, VB peak meas	ired; K< f <150 Detector fu W= 30KHz surement.	inction = pe	eak;
		(2) 5 F (3) 5 Refer to	emission be Set RBW=2 RBW; Swee Frace = max Set RBW = 30 MHz for p	00Hz for 9 p = auto; [k hold; 9 KHz, VB peak meas	ired; K< f <150 Detector fu W= 30KHz surement.	inction = pe	eak;


6.2.2. Test Instruments

Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020				
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020				
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020				
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020				
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 11, 2020				
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020				
Antenna Mast	Keleto	RE-AM	N/A	N/A				
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020				
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 08, 2020				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

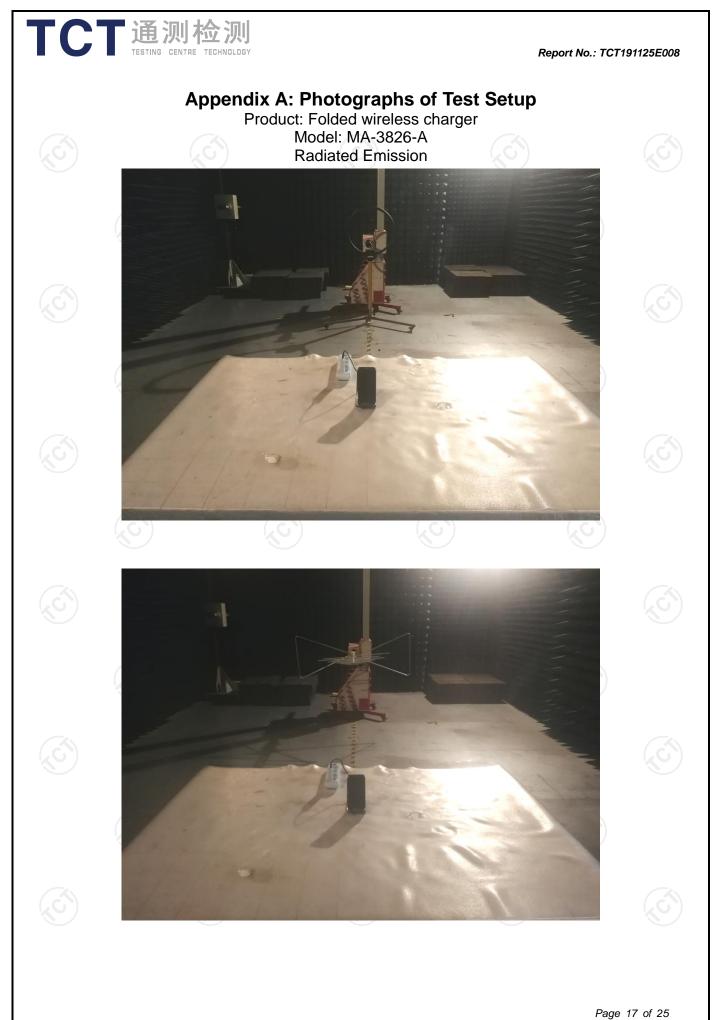
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 14 of 25

6.2.3. Test Data

NOTE: 1.If measurements are made at only one closer fixed distance, then the permissible field strength limits shall be adjusted using 1/d as an attenuation factor. So the limit at 3 m is 15 μ /m(\approx 103.5 dBuV/m)

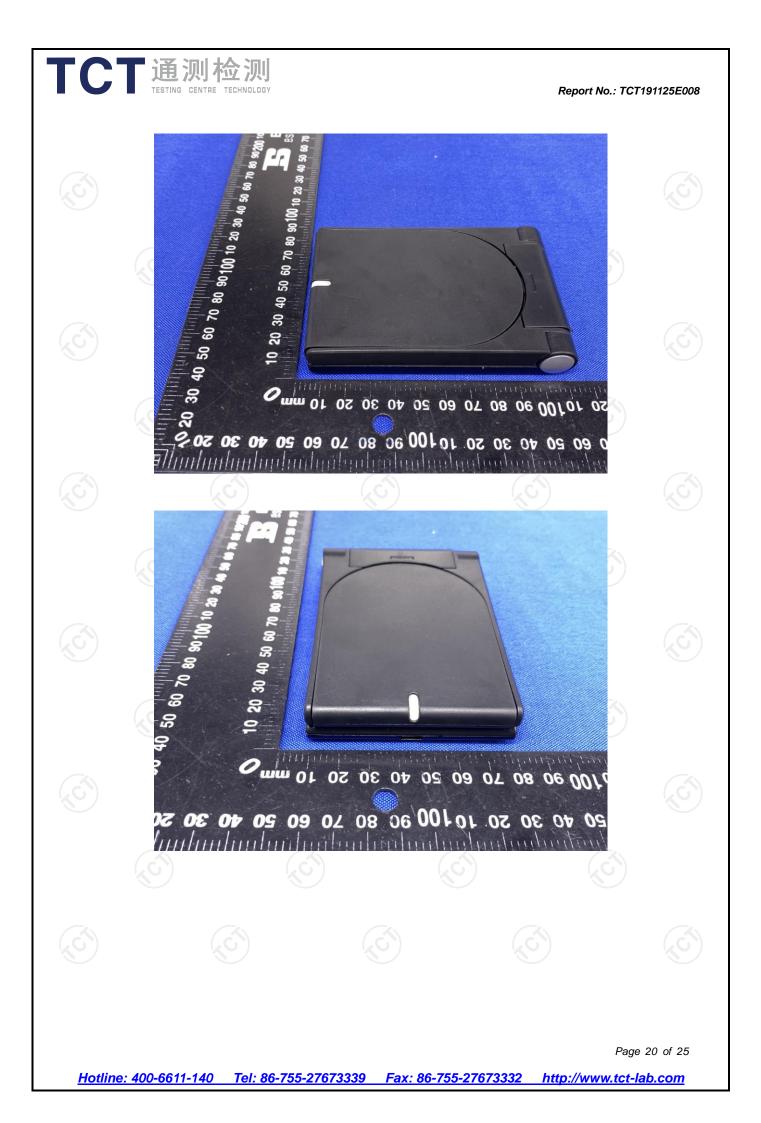
2. The field strength limit conversion formula refer to ANSI C63.10 Section 6.4.4.6.

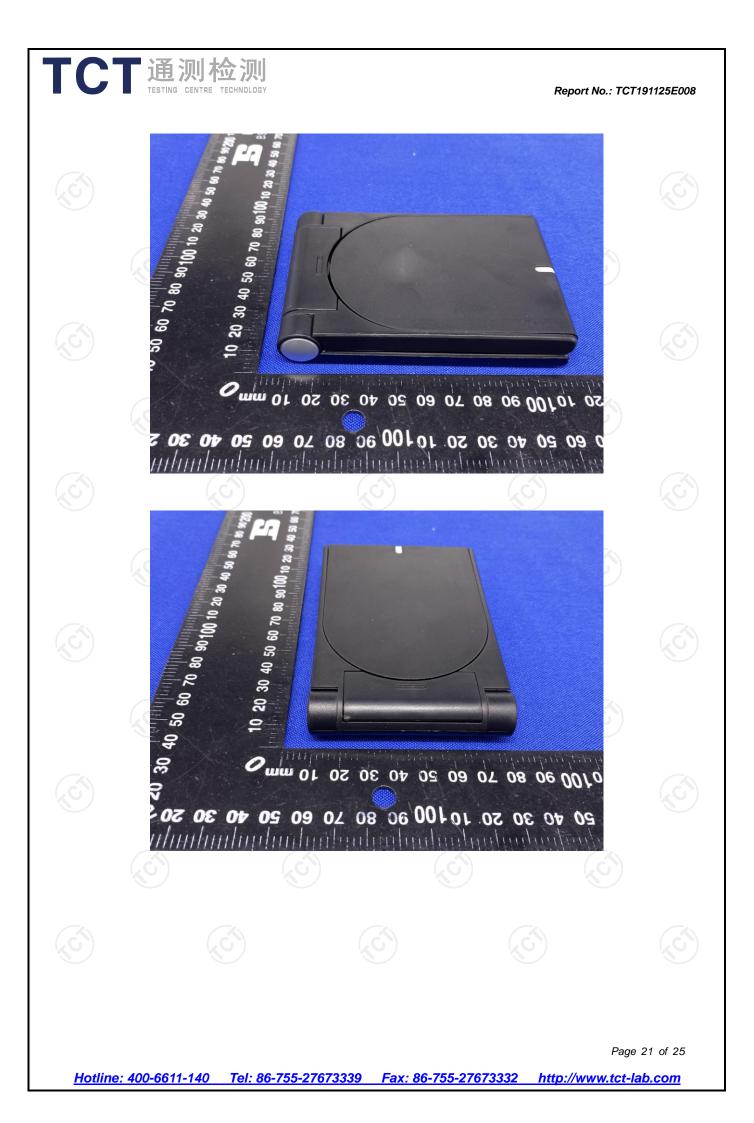

Report No.: TCT191125E008

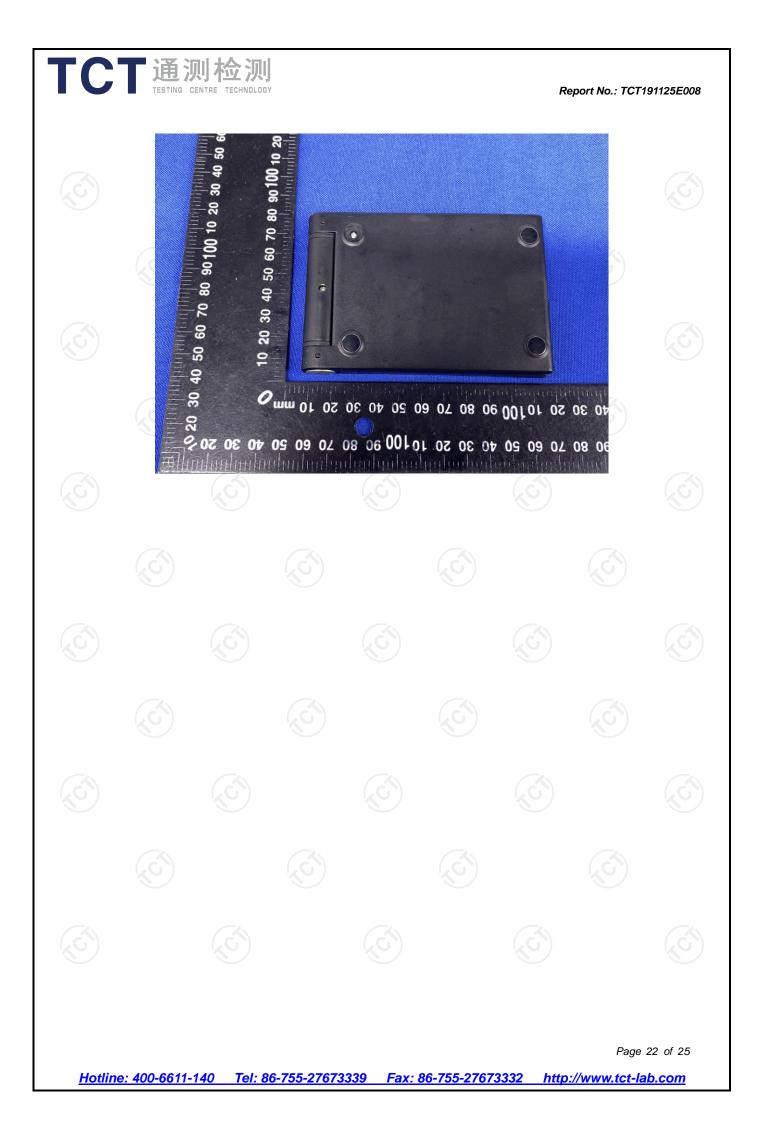
Report No.: TCT191125E008 150KHz-30MHz: 130.0 dBuV/m FCC Part18-103.5 Margin -6 dB 90 5 6 50.0 0.5 5 0.150 (MHz) 30,000 Site Polarization: Horizontal Temperature: 25 Limit: FCC Part18-103.5 Power: Humidity: 55 % Reading Correct Measure-Limit No. Mk. Over Freq. Level Factor ment MHz dBuV dB dBuV/m dB/m dB Detector 101.08 -25.6575.43 1 0.1500 103.5 -28.07 peak 100.55 2 0.1597 -25.6674.89 103.5 -28.61 peak 3 0.1778 100.83 -25.6675.17 103.5 -28.33peak 74.52 -28.98 4 0.1935 100.19 -25.67 103.5 peak 5 0.8024 -25.60 64.31 103.5 -39.1989.91 peak 2.2728 -25.51 63.27 103.5 -40.236 88.78 peak

NOTE:1. If measurements are made at only one closer fixed distance, then the permissible field strength limits shall be adjusted using 1/d as an attenuation factor. So the limit at 3 m is 15 uv/m(\approx 103.5 dBuv/m)

2. The field strength limit conversion formula refer to ANSI C63.10 Section 6.4.4.6.


Page 16 of 25




-

