|                                                                                                          | TEST REPOR                                                                                                              | T                          |            |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|--|--|
| FCC ID                                                                                                   | 2AAPK-XYP002                                                                                                            |                            |            |  |  |
| Test Report No:                                                                                          | TCT230411E044                                                                                                           |                            |            |  |  |
| Date of issue:                                                                                           | Apr. 19, 2023                                                                                                           |                            |            |  |  |
| Testing laboratory:                                                                                      | SHENZHEN TONGCE TESTIN                                                                                                  | G LAB                      |            |  |  |
| Testing location/ address:                                                                               | 2101 & 2201, Zhenchang Facto<br>Subdistrict, Bao'an District, She<br>People's Republic of China                         |                            |            |  |  |
| Applicant's name: :                                                                                      | Shenzhen Kingsun Enterprises                                                                                            | Co., Ltd.                  |            |  |  |
| Address:                                                                                                 | 25/F, CEC Information Building<br>Guangdong 518034 China                                                                | , Xinwen Rd., Shenzl       | nen,       |  |  |
| Manufacturer's name :                                                                                    | Shenzhen Kingsun Enterprises                                                                                            | Co., Ltd.                  |            |  |  |
| Address:                                                                                                 | 25/F, CEC Information Building<br>Guangdong 518034 China                                                                | , Xinwen Rd., Shenzl       | nen,       |  |  |
| Standard(s):                                                                                             | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2013 |                            |            |  |  |
| Product Name::                                                                                           | Bluetooth light up speaker                                                                                              | Bluetooth light up speaker |            |  |  |
|                                                                                                          | N/A (C) (C)                                                                                                             |                            |            |  |  |
| Trade Mark :                                                                                             | N/A                                                                                                                     |                            |            |  |  |
|                                                                                                          | N/A OD-XYP002, PSP1721                                                                                                  |                            |            |  |  |
|                                                                                                          |                                                                                                                         | C 3.7V                     |            |  |  |
| Trade Mark :<br>Model/Type reference :<br>Rating(s) :<br>Date of receipt of test item                    | OD-XYP002, PSP1721<br>Rechargeable Li-ion Battery DC                                                                    | 2 3.7V                     |            |  |  |
| Model/Type reference :<br>Rating(s) :<br>Date of receipt of test item<br>:<br>Date (s) of performance of | OD-XYP002, PSP1721<br>Rechargeable Li-ion Battery DC<br>Apr. 11, 2023                                                   | 3.7V                       |            |  |  |
| Model/Type reference :<br>Rating(s) :<br>Date of receipt of test item<br>                                | OD-XYP002, PSP1721<br>Rechargeable Li-ion Battery DC<br>Apr. 11, 2023                                                   | Yannie Zhonging            |            |  |  |
| Model/Type reference :<br>Rating(s)                                                                      | OD-XYP002, PSP1721<br>Rechargeable Li-ion Battery DC<br>Apr. 11, 2023<br>Apr. 11, 2023 - Apr. 19, 2023                  |                            | CE TESTING |  |  |

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

# **Table of Contents**

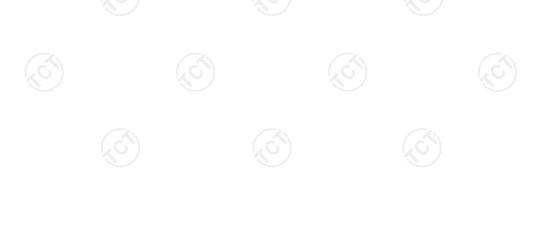
TCT 通测检测 TESTING CENTRE TECHNOLOGY

| 1. General Product Information               |    |
|----------------------------------------------|----|
| 1.1. EUT description                         |    |
| 1.2. Model(s) list                           |    |
| 1.3. Operation Frequency                     | 4  |
| 2. Test Result Summary                       | 5  |
| 3. General Information                       |    |
| 3.1. Test environment and mode               | 6  |
| 3.2. Description of Support Units            | 6  |
| 4. Facilities and Accreditations             |    |
| 4.1. Facilities                              | 7  |
| 4.2. Location                                | 7  |
| 4.3. Measurement Uncertainty                 |    |
| 5. Test Results and Measurement Data         |    |
| 5.1. Antenna requirement                     | 8  |
| 5.2. Conducted Emission                      |    |
| 5.3. Conducted Output Power                  | 13 |
| 5.4. 20dB Occupy Bandwidth                   |    |
| 5.5. Carrier Frequencies Separation          |    |
| 5.6. Hopping Channel Number                  |    |
| 5.7. Dwell Time                              | 17 |
| 5.8. Pseudorandom Frequency Hopping Sequence |    |
| 5.9. Conducted Band Edge Measurement         |    |
| 5.10.Conducted Spurious Emission Measurement |    |
| 5.11.Radiated Spurious Emission Measurement  |    |
| Appendix A: Test Result of Conducted Test    |    |
| Appendix B: Photographs of Test Setup        |    |
| Appendix C: Photographs of EUT               |    |
|                                              |    |



# **1. General Product Information**

### 1.1. EUT description


| Product Name           | Bluetooth light up speaker          |    |
|------------------------|-------------------------------------|----|
| Model/Type reference:  | OD-XYP002                           |    |
| Sample Number:         | TCT230411E044-0101                  |    |
| Bluetooth Version      | V5.0 (This report is for BDR+EDR)   | )  |
| Operation Frequency    | 2402MHz~2480MHz                     |    |
| Transfer Rate          | 1/2/3 Mbits/s                       |    |
| Number of Channel      | 79                                  | (  |
| Modulation Type        | GFSK, π/4-DQPSK, 8DPSK              |    |
| Modulation Technology: | FHSS                                |    |
| Antenna Type           | PCB Antenna                         |    |
| Antenna Gain           | -0.68dBi                            | S) |
| Rating(s):             | Rechargeable Li-ion Battery DC 3.7V |    |
|                        |                                     |    |

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

### 1.2. Model(s) list

| No.             | Model No. | Tested with |
|-----------------|-----------|-------------|
| 1               | OD-XYP002 | $\square$   |
| Other<br>models | PSP1721   |             |

Note: OD-XYP002 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of OD-XYP002 can represent the remaining models.



Report No.: TCT230411E044

## 1.3. Operation Frequency

TCT通测检测 TEGTING CENTRE TECHNOLOGY

| Channel     | Frequency    | Channel | Frequency | Channel  | Frequency | Channel  | Frequency |
|-------------|--------------|---------|-----------|----------|-----------|----------|-----------|
| 0           | 2402MHz      | 20      | 2422MHz   | 40       | 2442MHz   | 60       | 2462MHz   |
| <b>G</b> )1 | 2403MHz      | 21      | 2423MHz   | 41       | 2443MHz   | 61       | 2463MHz   |
|             | 0            |         | 0         | <u> </u> |           |          | 0         |
| 10          | 2412MHz      | 30      | 2432MHz   | 50       | 2452MHz   | 70       | 2472MHz   |
| 11          | 2413MHz      | 31      | 2433MHz   | 51       | 2453MHz   | 71       | 2473MHz   |
|             | S            |         | <b>.</b>  |          | <u></u>   |          | S         |
| 18          | 2420MHz      | 38      | 2440MHz   | 58       | 2460MHz   | 78       | 2480MHz   |
| 19          | 2421MHz      | - 39    | 2441MHz   | - 59     | 2461MHz   |          | -         |
|             | Channel 0, 3 |         |           |          |           | QPSK, 8I | -<br>DPSK |

modulation mode.





# 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result |
|-------------------------------------|---------------------|--------|
| Antenna Requirement                 | §15.203/§15.247 (c) | PASS   |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |
| Conducted Peak Output<br>Power      | §15.247 (b)(1)      | PASS   |
| 20dB Occupied Bandwidth             | §15.247 (a)(1)      | PASS   |
| Carrier Frequencies<br>Separation   | §15.247 (a)(1)      | PASS   |
| Hopping Channel Number              | §15.247 (a)(1)      | PASS   |
| Dwell Time                          | §15.247 (a)(1)      | PASS   |
| Radiated Emission                   | §15.205/§15.209     | PASS   |
| Band Edge                           | §15.247(d)          | PASS   |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 97

# 3. General Information

### 3.1. Test environment and mode

| Operating Environment:                                                                                              |                                                                                            |                                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Condition                                                                                                           | Conducted Emission                                                                         | Radiated Emission              |  |  |  |  |
| Temperature:                                                                                                        | 23.5 °C                                                                                    | 26.5 °C                        |  |  |  |  |
| Humidity:                                                                                                           | 52 % RH                                                                                    | 53 % RH                        |  |  |  |  |
| Atmospheric Pressure:                                                                                               | 1010 mbar                                                                                  | 1010 mbar                      |  |  |  |  |
| Test Software:                                                                                                      |                                                                                            |                                |  |  |  |  |
| Software Information:                                                                                               | FCC_assist_1.0.2.2                                                                         |                                |  |  |  |  |
| Power Level:                                                                                                        | 10                                                                                         |                                |  |  |  |  |
| Test Mode:                                                                                                          |                                                                                            |                                |  |  |  |  |
| Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery |                                                                                            |                                |  |  |  |  |
| above the ground plane of 3                                                                                         | 8m & 1.5m for the measure<br>8m chamber. Measurements in<br>During the test, each emission | n both horizontal and vertical |  |  |  |  |

polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case( Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

### 3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No.     | FCC ID | Trade Name |  |
|-----------|-----------|----------------|--------|------------|--|
| Adapter   | EP-TA200  | R37M4PR7QD4SE3 | /      | SAMSUNG    |  |
|           |           |                |        | ĺ          |  |

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

# 4. Facilities and Accreditations

### 4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

### 4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

### 4.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                    | MU        |
|-----|-----------------------------------------|-----------|
| 1   | Conducted Emission                      | ± 3.10 dB |
| 2   | RF power, conducted                     | ± 0.12 dB |
| 3   | Spurious emissions, conducted           | ± 0.11 dB |
| 4   | All emissions, radiated(<1 GHz)         | ± 4.56 dB |
| 5   | All emissions, radiated(1 GHz - 18 GHz) | ± 4.22 dB |
| 6   | All emissions, radiated(18 GHz- 40 GHz) | ± 4.36 dB |



#### Test Results and Measurement Data 5.

### 5.1. Antenna requirement

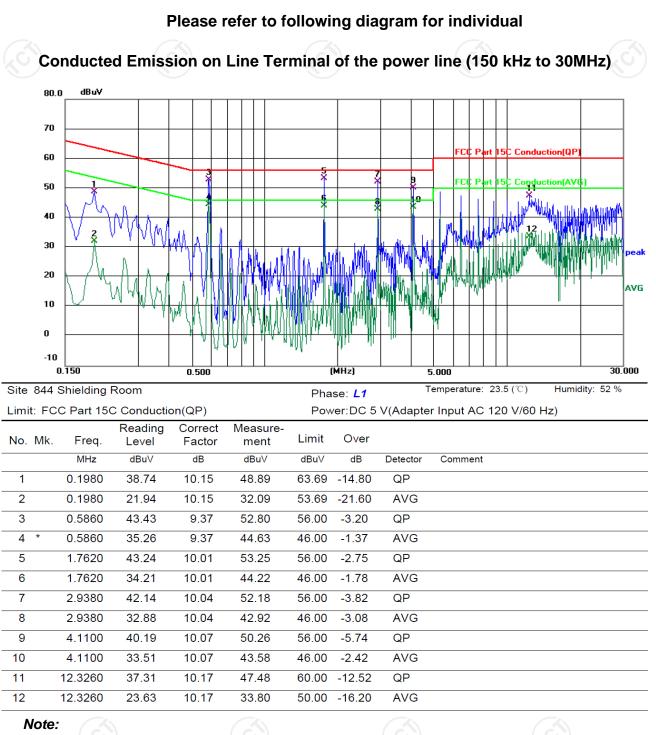
# Standard requirement: FCC Part15 C Section 15.203 /247(c) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. E.U.T Antenna: The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -0.68dBi. Antenna 20 10100 90 80 70 60 50 40 30 20 10 mm

10 60 50 40 30 20 10100 30 80 70 60 50

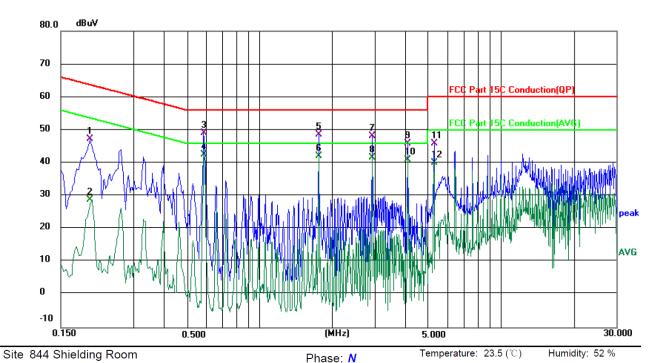
## 5.2. Conducted Emission

#### 5.2.1. Test Specification

|                   |                                                                                                                                                                                            | (6)                                                                                                                                      |                                                                                                                                  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Requirement: | FCC Part15 C Section 15.207                                                                                                                                                                |                                                                                                                                          |                                                                                                                                  |  |  |  |
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                  |  |  |  |
| Frequency Range:  | 150 kHz to 30 MHz                                                                                                                                                                          | 150 kHz to 30 MHz                                                                                                                        |                                                                                                                                  |  |  |  |
| Receiver setup:   | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                                                                                                                                                     |                                                                                                                                          |                                                                                                                                  |  |  |  |
|                   | Frequency range                                                                                                                                                                            | Limit (                                                                                                                                  | Limit (dBuV)                                                                                                                     |  |  |  |
|                   | (MHz)                                                                                                                                                                                      | Quasi-peak                                                                                                                               | Average                                                                                                                          |  |  |  |
| Limits:           | 0.15-0.5                                                                                                                                                                                   | 66 to 56*                                                                                                                                | 56 to 46*                                                                                                                        |  |  |  |
|                   | 0.5-5                                                                                                                                                                                      | 56                                                                                                                                       | 46                                                                                                                               |  |  |  |
|                   | 5-30                                                                                                                                                                                       | 60                                                                                                                                       | 50                                                                                                                               |  |  |  |
|                   | Referenc                                                                                                                                                                                   | e Plane                                                                                                                                  |                                                                                                                                  |  |  |  |
| Test Setup:       | E.U.T     AC power       Filter     AC power       Filter     AC power       E.U.T     EMI<br>Receiver                                                                                     |                                                                                                                                          |                                                                                                                                  |  |  |  |
| Test Mode:        | Charging + Transmittir                                                                                                                                                                     | ng Mode                                                                                                                                  |                                                                                                                                  |  |  |  |
|                   | 1. The E.U.T is conner<br>impedance stabiliz<br>provides a 500hm/s<br>measuring equipme<br>2. The peripheral device                                                                        | zation network<br>50uH coupling im<br>nt.                                                                                                | (L.I.S.N.). This<br>pedance for the                                                                                              |  |  |  |
| Test Procedure:   | <ul> <li>power through a Ll coupling impedance refer to the block photographs).</li> <li>3. Both sides of A.C. conducted interferer emission, the relative the interface cables</li> </ul> | SN that provides<br>with 50ohm terr<br>diagram of the<br>line are checke<br>nce. In order to fi<br>e positions of equ<br>must be changed | s a 50ohm/50uh<br>nination. (Please<br>test setup and<br>ed for maximun<br>nd the maximun<br>ipment and all c<br>l according to  |  |  |  |
| Test Procedure:   | <ul> <li>power through a Ll coupling impedance refer to the block photographs).</li> <li>3. Both sides of A.C. conducted interference mission, the relative</li> </ul>                     | SN that provides<br>with 50ohm terr<br>diagram of the<br>line are checke<br>nce. In order to fi<br>e positions of equ<br>must be changed | s a 50ohm/50uh<br>nination. (Please<br>test setup and<br>ed for maximun<br>nd the maximun<br>lipment and all c<br>l according to |  |  |  |


#### 5.2.2. Test Instruments

| Conducted Emission Shielding Room Test Site (843) |                       |                         |         |                 |  |  |  |  |
|---------------------------------------------------|-----------------------|-------------------------|---------|-----------------|--|--|--|--|
| Equipment                                         | Manufacturer          | rer Model Serial Number |         | Calibration Due |  |  |  |  |
| EMI Test Receiver                                 | R&S                   | ESCI3                   | 100898  | Jul. 03, 2023   |  |  |  |  |
| Line Impedance<br>Stabilisation<br>Newtork(LISN)  | Schwarzbeck           | NSLK 8126               | 8126453 | Feb. 20, 2024   |  |  |  |  |
| Line-5                                            | ТСТ                   | CE-05                   | /       | Jul. 03, 2024   |  |  |  |  |
| EMI Test Software                                 | Shurple<br>Technology | EZ-EMC                  | 1       | 1 68            |  |  |  |  |




#### 5.2.3. Test data

CT通测检测 TESTING CENTRE TECHNOLOGY



Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.



#### Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz) Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment MHz dBuV dBuV dBuV dB dB Detector Comment 1 0.1980 37.12 10.15 47.27 63.69 -16.42 QP 2 0.1980 18.63 10.15 28.78 53.69 -24.91 AVG 3 0.5860 39.60 9.37 48.97 56.00 -7.03 QP 0 5860 33 20 9 37 42 57 46 00 -3 43 AVG 4 4 7000 20 50 40.04 40 54 FO 00 7 40 

| 5  | 1.7620 | 38.50 | 10.01 | 48.51 | 56.00   | -7.49  | 2P  |
|----|--------|-------|-------|-------|---------|--------|-----|
| 6  | 1.7620 | 32.13 | 10.01 | 42.14 | 46.00   | -3.86  | AVG |
| 7  | 2.9340 | 38.14 | 10.04 | 48.18 | 56.00   | -7.82  | QP  |
| 8  | 2.9340 | 31.63 | 10.04 | 41.67 | 46.00   | -4.33  | AVG |
| 9  | 4.1060 | 35.85 | 10.07 | 45.92 | 56.00 - | -10.08 | QP  |
| 10 | 4.1060 | 30.80 | 10.07 | 40.87 | 46.00   | -5.13  | AVG |
| 11 | 5.2780 | 35.76 | 10.10 | 45.86 | 60.00 - | -14.14 | QP  |
| 12 | 5.2780 | 29.93 | 10.10 | 40.03 | 50.00   | -9.97  | AVG |

#### Note1:

Freq. = Emission frequency in MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

Reading level  $(dB\mu V) = Receiver reading$ 

Corr. Factor (dB) = LISN factor + Cable loss

Measurement  $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ 

 $Limit (dB\mu V) = Limit stated in standard$ 

Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)

Q.P. =Quasi-Peak AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

#### Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

Page 12 of 97



## 5.3. Conducted Output Power

### 5.3.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (b)(1)                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Limit:            | Section 15.247 (b) The maximum peak conducted output<br>power of the intentional radiator shall not exceed the<br>following: (1) For frequency hopping systems operating<br>in the 2400-2483.5 MHz band employing at least 75<br>non-overlapping hopping channels, and all frequency<br>hopping systems in the 5725-5850 MHz band: 1 watt.<br>For all other frequency hopping systems in the<br>2400-2483.5 MHz band 0.125 watts. |  |  |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Test Procedure:   | Use the following spectrum analyzer settings:<br>Span = approximately 5 times the 20 dB bandwidth,<br>centered on a hopping channel<br>RBW > the 20 dB bandwidth of the emission being<br>measured VBW ≥ RBW<br>Sweep = auto<br>Detector function = peak<br>Trace = max hold<br>Allow the trace to stabilize.<br>Use the marker-to-peak function to set the marker to the<br>peak of the emission.                                |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |

#### 5.3.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023          |
| Combiner Box         | Ascentest    | AT890-RFB |               |                        |

## 5.4. 20dB Occupy Bandwidth

### 5.4.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Limit:            | N/A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 20dB<br/>Bandwidth measurement.<br/>Span = approximately 2 to 5 times the 20 dB<br/>bandwidth, centered on a hopping channel;<br/>1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW;<br/>Sweep = auto; Detector function = peak; Trace = max<br/>hold.</li> <li>Measure and record the results in the test report.</li> </ol> |  |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

#### 5.4.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023          |
| Combiner Box         | Ascentest    | AT890-RFB | /             | /                      |
|                      |              |           |               |                        |





### 5.5. Carrier Frequencies Separation

#### 5.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Limit:            | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.                                                                                                                                                                                                                                                                                    |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### 5.5.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023          |
| Combiner Box         | Ascentest    | AT890-RFB | 1             | 1                      |

Page 15 of 97

## 5.6. Hopping Channel Number

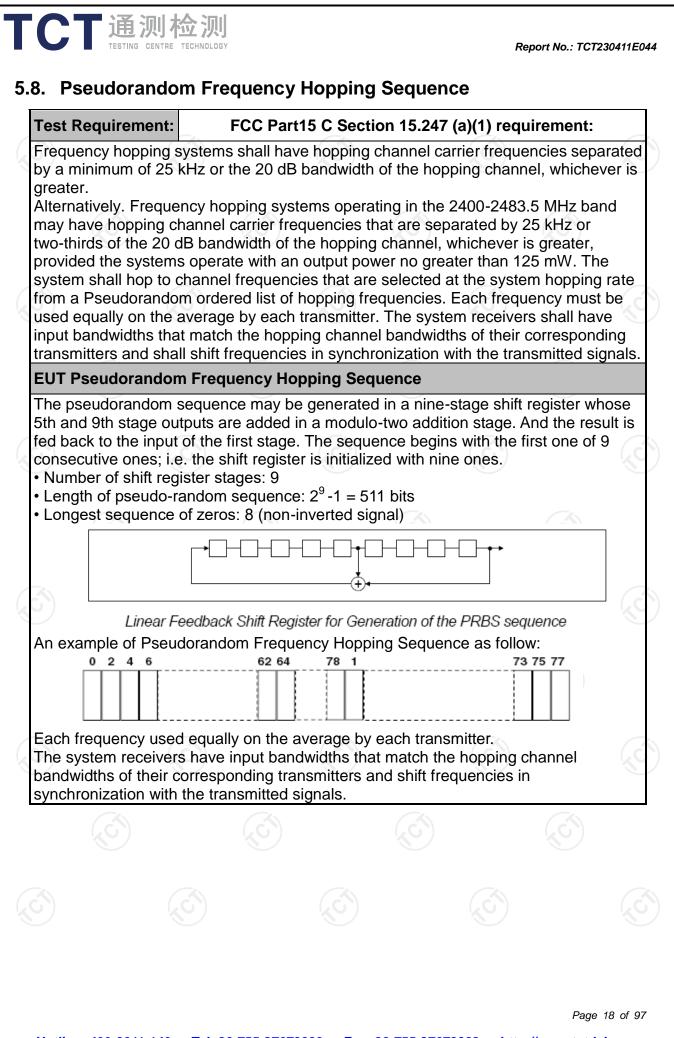
### 5.6.1. Test Specification

| Test Requirement:       | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:            | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Limit:                  | Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Setup:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Mode:              | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Mode.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Procedure:         | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>The number of hopping frequency used is defined as the number of total channel.</li> <li>Record the measurement data in report.</li> </ol> |
| Test Result:            | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.6.2. Tost Instruments |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 5.6.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023          |
| Combiner Box         | Ascentest    | AT890-RFB | 1             | /                      |
| (.c)                 | 66           |           |               | $(\mathbf{G})$         |

## 5.7. Dwell Time


### 5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit:            | The average time of occupancy on any channel shall not<br>be greater than 0.4 seconds within a period of 0.4<br>seconds multiplied by the number of hopping channels<br>employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 5.7.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023          |
| Combiner Box         | Ascentest    | AT890-RFB |               |                        |





## 5.9. Conducted Band Edge Measurement

### 5.9.1. Test Specification

| FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                    |
| Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300<br/>kHz (≥RBW). Band edge emissions must be at least<br/>20 dB down from the highest emission level within<br/>the authorized band as measured with a 100kHz<br/>RBW. The attenuation shall be 30 dB instead of 20<br/>dB when RMS conducted output power procedure is<br/>used.</li> <li>Enable hopping function of the EUT and then repeat<br/>step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol> |
| PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### 5.9.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b>     |
|----------------------|--------------|-----------|---------------|----------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023              |
| Combiner Box         | Ascentest    | AT890-RFB | 1             | 1                          |
| $(\mathcal{A}^{*})$  | ( ) ( )      |           | $\mathcal{S}$ | $(\mathcal{A}\mathcal{G})$ |



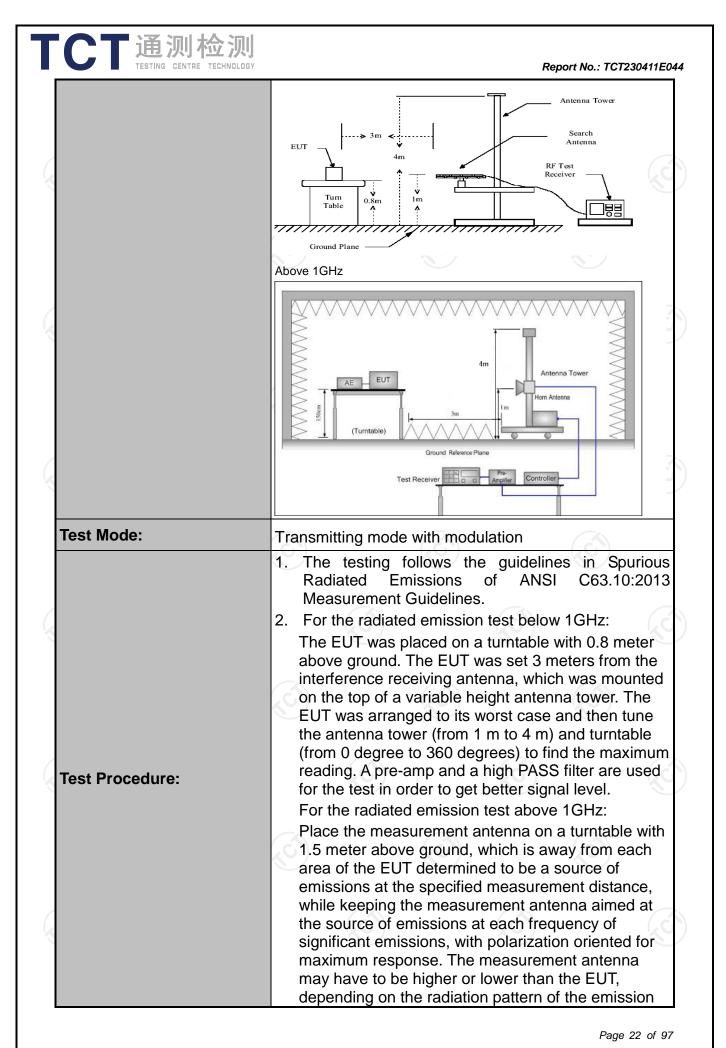
## 5.10. Conducted Spurious Emission Measurement

### 5.10.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Limit:            | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the<br/>spectrum analyzer by RF cable and attenuator. The<br/>path loss was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up<br/>through 10th harmonic. All harmonics / spurs must be<br/>at least 20 dB down from the highest emission level<br/>within the authorized band as measured with a 100<br/>kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded<br/>against the limit line in the operating frequency band.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### 5.10.2. Test Instruments

| Name                 | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|----------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619    | Jul. 04, 2023          |
| Combiner Box         | Ascentest    | AT890-RFB |               |                        |




#### 5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement:     | FCC Part15              | C Section                                           | 15.209                   |                 |                    | 8                         |
|-----------------------|-------------------------|-----------------------------------------------------|--------------------------|-----------------|--------------------|---------------------------|
| Test Method:          | ANSI C63.10             | ):2013                                              |                          |                 |                    |                           |
| Frequency Range:      | 9 kHz to 25 (           | GHz                                                 | - Al                     |                 | C                  | 6                         |
| Measurement Distance: | 3 m                     | X                                                   | 9                        |                 | K.                 | 9                         |
| Antenna Polarization: | Horizontal &            | Vertical                                            |                          |                 |                    |                           |
|                       | Frequency               | Detector                                            | RBW                      | VBW             |                    | Remark                    |
|                       | 9kHz- 150kHz            | Quasi-peak                                          | 4 200Hz                  | 1kHz            |                    | si-peak Value             |
| Receiver Setup:       | 150kHz-<br>30MHz        | Quasi-peak                                          | k 9kHz                   | 30kHz           | Quas               | si-peak Value             |
|                       | 30MHz-1GHz              | Quasi-peak                                          | 120KHz                   | 300KHz          | Quas               | si-peak Value             |
|                       | Above 1GHz              | Peak                                                | 1MHz                     | 3MHz            |                    | eak Value                 |
|                       |                         | Peak                                                | 1MHz                     | 10Hz            | Ave                | erage Value               |
|                       | Frequen                 | су                                                  | Field Str<br>(microvolts | -               |                    | asurement<br>nce (meters) |
|                       | 0.009-0.4               | 190                                                 | 2400/F(                  |                 |                    | 300                       |
|                       | 0.490-1.7               | 1                                                   | 24000/F                  |                 |                    | 30                        |
|                       | 1.705-3                 |                                                     | 30                       |                 |                    | 30                        |
|                       | 30-88                   | 1                                                   | 100                      |                 |                    | 3                         |
| Limit:                | 88-216                  |                                                     | 150                      |                 | - (kČ              | 3                         |
| Emilt.                | 216-96<br>Above 9       |                                                     | 200<br>500               |                 |                    | 3                         |
|                       | Frequency<br>Above 1GH: | (micro                                              | 500<br>5000              | (mete<br>3<br>3 | rs)                | Average<br>Peak           |
| Test setup:           | For radiated emis       | ssions below<br>stance = 3m<br>Turn table<br>Ground | 30MHz                    | Pre -           | Compu<br>Amplifier |                           |
|                       |                         |                                                     |                          |                 |                    |                           |
|                       |                         |                                                     |                          |                 |                    | Page 21 of                |

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



|               | receiving the maxim<br>measurement anter<br>maximizes the emis<br>antenna elevation for<br>restricted to a range<br>above the ground o<br>3. Set to the maximu<br>EUT transmit contin<br>4. Use the following s<br>(1) Span shall wide<br>emission being<br>(2) Set RBW=120<br>for f>1GHz ; VI<br>Sweep = auto<br>= max hold for<br>(3) For average m | pectrum analyzer settings:<br>e enough to fully capture the<br>g measured;<br>kHz for f < 1 GHz, RBW=1Mł<br>BW≥RBW;<br>y; Detector function = peak; Tr     | hich<br>be<br>m<br>the<br>Hz |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|               | On time =N1*L<br>Where N1 is r<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read                                                                                                                                                                                                                                                  | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Lr<br>s                    |
| Test results: | On time =N1*L<br>Where N1 is r<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read                                                                                                                                                                                                                                                  | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)                                 | n*Lr<br>s                    |
| Test results: | On time =N1*L<br>Where N1 is r<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read<br>Loss + Read Lo                                                                                                                                                                                                                                | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Lr<br>s                    |
| Test results: | On time =N1*L<br>Where N1 is r<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read<br>Loss + Read Lo                                                                                                                                                                                                                                | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Li<br>s                    |
| Test results: | On time =N1*L<br>Where N1 is r<br>length of type<br>Average Emis<br>Level + 20*log<br>Corrected Read<br>Loss + Read Lo                                                                                                                                                                                                                                | 1+N2*L2++Nn-1*LNn-1+Nr<br>number of type 1 pulses, L1 is<br>1 pulses, etc.<br>ssion Level = Peak Emission<br>g(Duty cycle)<br>ding: Antenna Factor + Cable | n*Li<br>s                    |



### 5.11.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

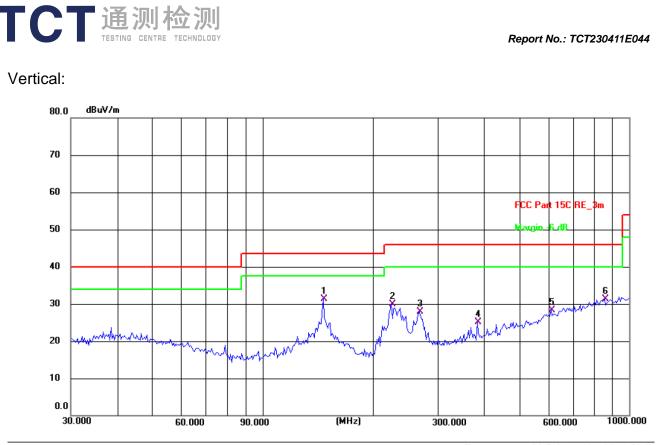
|                      | Radiated En           | nission Test Site | e (966)            |                 |
|----------------------|-----------------------|-------------------|--------------------|-----------------|
| Name of<br>Equipment | Manufacturer          | Model             | Serial<br>Number   | Calibration Due |
| EMI Test Receiver    | R&S                   | ESIB7             | 100197             | Jul. 03, 2023   |
| Spectrum Analyzer    | R&S                   | FSQ40             | 200061             | Jul. 03, 2023   |
| Pre-amplifier        | SKET                  | LNPA_0118G-<br>45 | SK2021012<br>102   | Feb. 20, 2024   |
| Pre-amplifier        | SKET                  | LNPA_1840G-<br>50 | SK2021092<br>03500 | Feb. 20, 2024   |
| Pre-amplifier        | HP                    | 8447D             | 2727A05017         | Jul. 03, 2023   |
| Loop antenna         | Schwarzbeck           | FMZB1519B         | 00191              | Jun. 11, 2023   |
| Broadband Antenna    | Schwarzbeck           | VULB9163          | 340                | Jul. 05, 2023   |
| Horn Antenna         | Schwarzbeck           | BBHA 9120D        | 631                | Jul. 05, 2023   |
| Horn Antenna         | Schwarzbeck           | BBHA 9170         | 00956              | Feb. 24, 2024   |
| Antenna Mast         | Keleto                | RE-AM             | 1                  |                 |
| Coaxial cable        | SKET                  | RC-18G-N-M        | 1                  | Feb. 24, 2024   |
| Coaxial cable        | SKET                  | RC_40G-K-M        | 1                  | Feb. 24, 2024   |
| EMI Test Software    | Shurple<br>Technology | EZ-EMC            | RO                 | 1               |

Page 24 of 97

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



#### 5.11.3. Test Data


#### Please refer to following diagram for individual



Site: #1 3m Anechoic Chamber Polarization: Horizontal

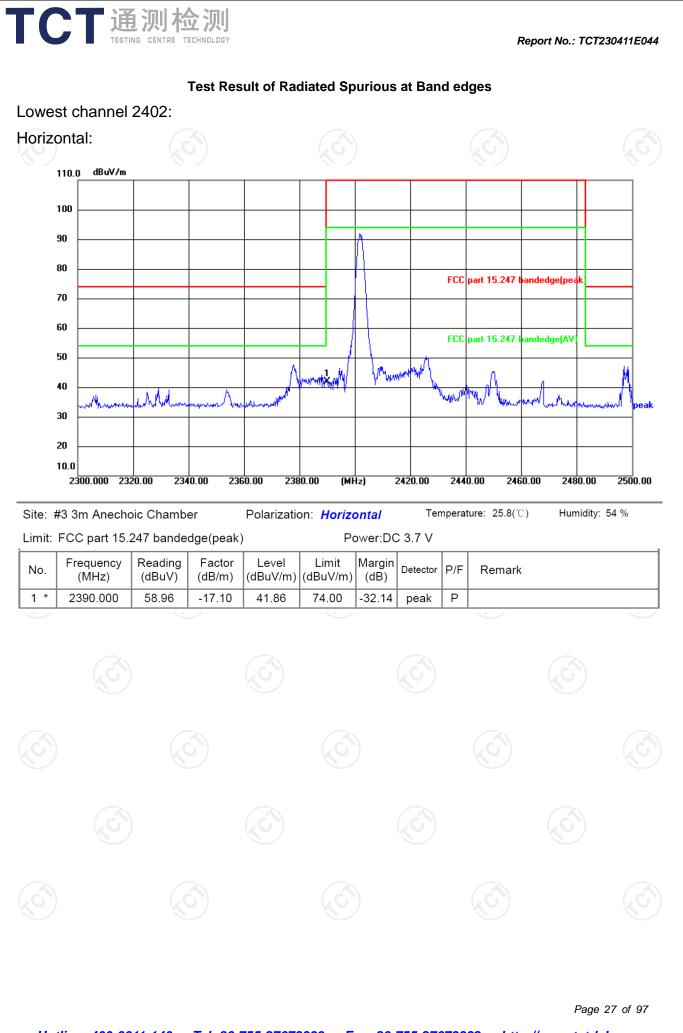
| Limit: | FCC Part 15C F     |                   |                  | Power: DC 3.7 V   |                   |                |          |     |        |
|--------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| No.    | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
| 1      | 145.3505           | 17.72             | 14.19            | 31.91             | 43.50             | -11.59         | QP       | Ρ   |        |
| 2 *    | 242.5252           | 23.78             | 12.27            | 36.05             | 46.00             | -9.95          | QP       | Ρ   |        |
| 3      | 265.6757           | 22.15             | 12.90            | 35.05             | 46.00             | -10.95         | QP       | Ρ   |        |
| 4      | 364.2595           | 12.28             | 15.49            | 27.77             | 46.00             | -18.23         | QP       | Ρ   |        |
| 5      | 455.9058           | 11.30             | 17.76            | 29.06             | 46.00             | -16.94         | QP       | Ρ   |        |
| 6      | 804.6027           | 8.75              | 23.33            | 32.08             | 46.00             | -13.92         | QP       | Ρ   |        |

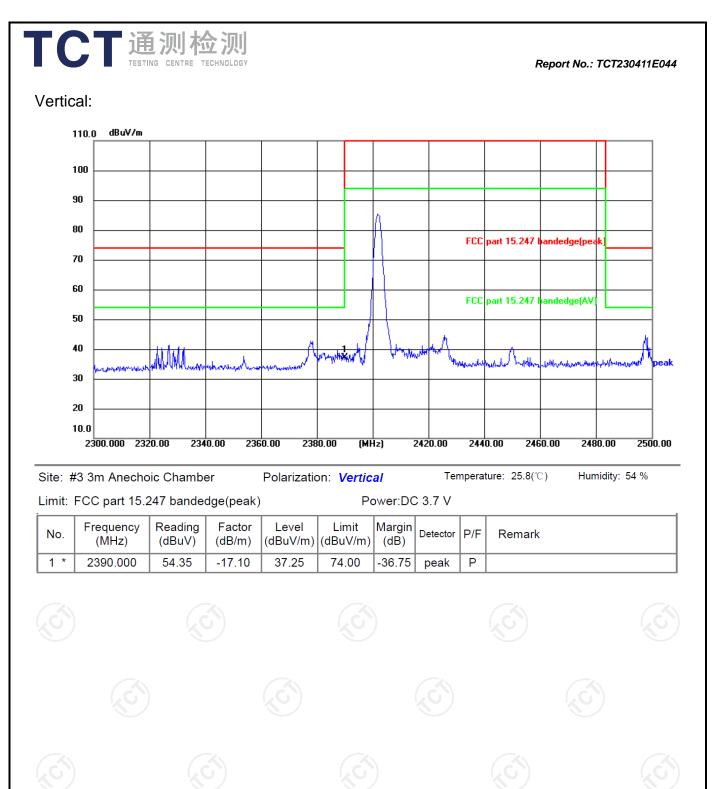
Page 25 of 97

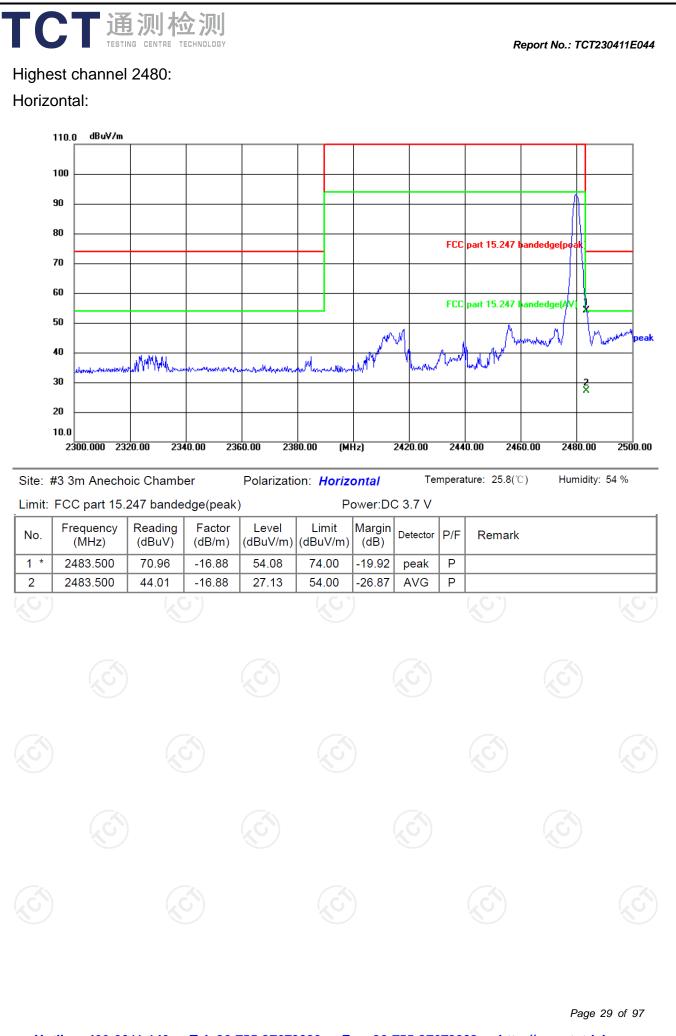


| Site:  | #1 3m Anecho       | ic Chambe         | er               | Polar             | ization: V        | 'ertical       |          |     | Temperature: 26.5(C) | Humidity: 53 % |
|--------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|----------------------|----------------|
| Limit: | FCC Part 15C I     |                   |                  |                   | Power: DC 3.7 V   |                |          |     |                      |                |
| No.    | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark               |                |
| 1 *    | 146.3735           | 17.04             | 14.30            | 31.34             | 43.50             | -12.16         | QP       | Р   |                      |                |
| 2      | 224.5193           | 18.30             | 11.66            | 29.96             | 46.00             | -16.04         | QP       | Ρ   |                      |                |
| 3      | 267.5455           | 14.99             | 13.01            | 28.00             | 46.00             | -18.00         | QP       | Ρ   |                      |                |
| 4      | 385.2805           | 9.24              | 15.94            | 25.18             | 46.00             | -20.82         | QP       | Ρ   |                      |                |
| 5      | 612.0642           | 7.56              | 20.76            | 28.32             | 46.00             | -17.68         | QP       | Р   |                      |                |
| 6      | 857.0247           | 7.62              | 23.76            | 31.38             | 46.00             | -14.62         | QP       | Р   |                      |                |

**Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK,


*Pi/4* DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only. 3. Freq. = Emission frequency in MHz


- Measurement ( $dB\mu V/m$ ) = Reading level ( $dB\mu V$ ) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
- Limit ( $dB\mu V/m$ ) = Limit stated in standard

Over (dB) = Measurement (dB $\mu$ V/m) – Limits (dB $\mu$ V/m)

\* is meaning the worst frequency has been tested in the test frequency range.







|                         | al:                                                    |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
|-------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|----------------------------|--------------------------|------------------|----------|-----------------|----------------|------------|----------|
| 1                       | 10.0 dBuV/m                                            |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| 1                       | 00                                                     |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| 9                       | o                                                      |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| 8                       | o                                                      |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| 7                       | o                                                      |                                           |                                           |                            |                            |                          |                  | FCC      | part 15.247     | bandedge       | e(peak)    |          |
| 6                       | o                                                      |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| 5                       |                                                        |                                           |                                           |                            |                            |                          |                  | FCC      | part 15.247     | bandedge       |            |          |
|                         |                                                        |                                           |                                           |                            |                            | n                        |                  |          | Δ               | meneralismethy | $\sqrt{1}$ | Mumme    |
| 4                       | moundership                                            | MMM                                       | m. Marine Marine                          | Manuhanandysee             | mound                      | multer                   | howene           | Min      | an put hour way |                |            |          |
| 3                       |                                                        |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| 2                       | 0                                                      |                                           |                                           |                            |                            |                          |                  |          |                 |                |            |          |
| '                       |                                                        | 20.00 234                                 | 40.00 23                                  | 60.00 23                   | 80.00 (M                   | lHz)                     | 2420.00          | 244      | <br> 0.00 24    | 60.00          | 2480.00    | D 2500.  |
| nit: F                  | CC part 15.                                            | 247 bande                                 | dge(peak                                  | :)                         | P                          | ower:D                   | C 3.7 V          |          |                 |                |            |          |
|                         | Frequency                                              | Reading                                   | Factor                                    | Level                      | Limit                      | Margin                   | 1                | P/F      | Remark          | <              |            |          |
| <b>D</b> .              |                                                        |                                           |                                           | Level                      |                            | Margin                   | Detector         | P/F<br>P | Remark          | <              |            |          |
| р.<br>*<br>е:л          | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| р.<br>*<br>е:л          | Frequency<br>(MHz)<br>2483.500                         | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br>e: A         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br>e: A         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br>e: A         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br>e: A         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | worst ca   | ase Mode |
| ).<br>*<br><b>):</b> /\ | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br><b>):</b> /\ | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| •.<br>*<br>Ə: Λ         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br>e: A         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br><b>):</b> /\ | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ).<br>*<br>e: A         | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| ο.<br>*<br><b>e:</b> Λ  | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |
| р.<br>*                 | Frequency<br>(MHz)<br>2483.500<br><i>feasurement</i> s | Reading<br>(dBuV)<br>67.56<br>s were cont | Factor<br>(dB/m)<br>-16.88<br>ducted in a | Level<br>(dBuV/m)<br>50.68 | Limit<br>(dBuV/m)<br>74.00 | Margin<br>(dB)<br>-23.32 | Detector<br>peak | P        |                 |                | vorst ca   | ase Mode |

### CT 通测检测 TESTING CENTRE TECHNOLOGY

#### Above 1GHz

| Modulation         | Type: 8D         | PSK                       |                         |                                |       |       |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|-------|------------------------|----------------------|----------------|
| Low channe         | el: 2402 N       | 1Hz                       |                         |                                |       |       |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Peak  | A \ / | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4804               | Н                | 45.54                     |                         | 0.66                           | 46.20 |       | 74                     | 54                   | -7.80          |
| 7206               | Н                | 37.40                     |                         | 9.50                           | 46.90 |       | 74                     | 54                   | -7.10          |
|                    | Н                |                           |                         |                                |       |       |                        |                      |                |
| (                  | (, <b>G</b> )    |                           | Û.)                     |                                | ()    | .G`)  |                        | (.C)                 |                |
| 4804               | V                | 44.67                     |                         | 0.66                           | 45.33 |       | 74                     | 54                   | -8.67          |
| 7206               | V                | 38.31                     |                         | 9.50                           | 47.81 |       | 74                     | 54                   | -6.19          |
|                    | V                |                           |                         |                                |       |       |                        |                      |                |

| Middle cha         | nnel: 2441       | MHz                       |                         |                                | )     |              | ( <u>v</u> )           |    | Z              |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|--------------|------------------------|----|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Peak  |              | Peak limit<br>(dBµV/m) |    | Margin<br>(dB) |
| 4882               | Н                | 46.06                     | 1                       | 0.99                           | 47.05 | <u> </u>     | 74                     | 54 | -6.95          |
| 7323               | KOĤ)             | 35.38                     | - KO                    | 9.87                           | 45.25 | <u>0</u> -)- | 74                     | 54 | -8.75          |
|                    | H                |                           |                         |                                |       |              |                        |    |                |
| 4882               | V                | 46.12                     |                         | 0.99                           | 47.11 |              | 74                     | 54 | -6.89          |
| 7323               | V                | 36.58                     |                         | 9.87                           | 46.45 |              | 74                     | 54 | -7.55          |
| <u> </u>           | V                |                           |                         | %                              | - /   |              |                        |    |                |

| High chanr         | nel: 2480 N      | ЛНz                       |                         |                                |                             |       |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-----------------------------|-------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emissic<br>Peak<br>(dBµV/m) | A \ / | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4960               | Н                | 45.14                     |                         | 1.33                           | 46.47                       | )     | 74                     | 54                   | -7.53          |
| 7440               | Н                | 35.01                     |                         | 10.22                          | 45.23                       |       | 74                     | 54                   | -8.77          |
|                    | Н                | <u> </u>                  |                         |                                |                             |       |                        |                      |                |
| G)                 |                  | (G)                       |                         | (.0                            |                             |       | (.G)                   |                      | (.Č            |
| 4960               | V                | 44.22                     |                         | 1.33 🔪                         | 45.55                       |       | 74                     | 54                   | -8.45          |
| 7440               | V                | 34.69                     |                         | 10.22                          | 44.91                       |       | 74                     | 54                   | -9.09          |
|                    | V                |                           |                         |                                |                             |       |                        |                      |                |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.



# **Appendix A: Test Result of Conducted Test**

### **Maximum Conducted Output Power**

| Condition | Mode  | Frequency<br>(MHz) | Conducted<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|-------|--------------------|-----------------------------|----------------|---------|
| NVNT      | 1-DH1 | 2402               | -3.09                       | 21             | Pass    |
| NVNT      | 1-DH1 | 2441               | -5.72                       | 21             | Pass    |
| NVNT      | 1-DH1 | 2480               | -5.52                       | 21             | Pass    |
| NVNT      | 2-DH1 | 2402               | -2.25                       | 21             | Pass    |
| NVNT      | 2-DH1 | 2441               | -4.85                       | 21             | Pass    |
| NVNT      | 2-DH1 | 2480               | -4.71                       | 21             | Pass    |
| NVNT 🔇    | 3-DH1 | 2402               | -1.49                       | 21             | Pass    |
| NVNT      | 3-DH1 | 2441               | -4.33                       | 21             | Pass    |
| NVNT      | 3-DH1 | 2480               | -4.22                       | 21             | Pass    |
|           |       |                    |                             |                |         |

Page 32 of 97

**Test Graphs** Power NVNT 1-DH1 2402MHz

Avg Type: Log-Pwr Avg|Hold: 300/300

SENSE:PULSE SOURCE OFF

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

TCT通测检测 TESTING CENTRE TECHNOLOGY

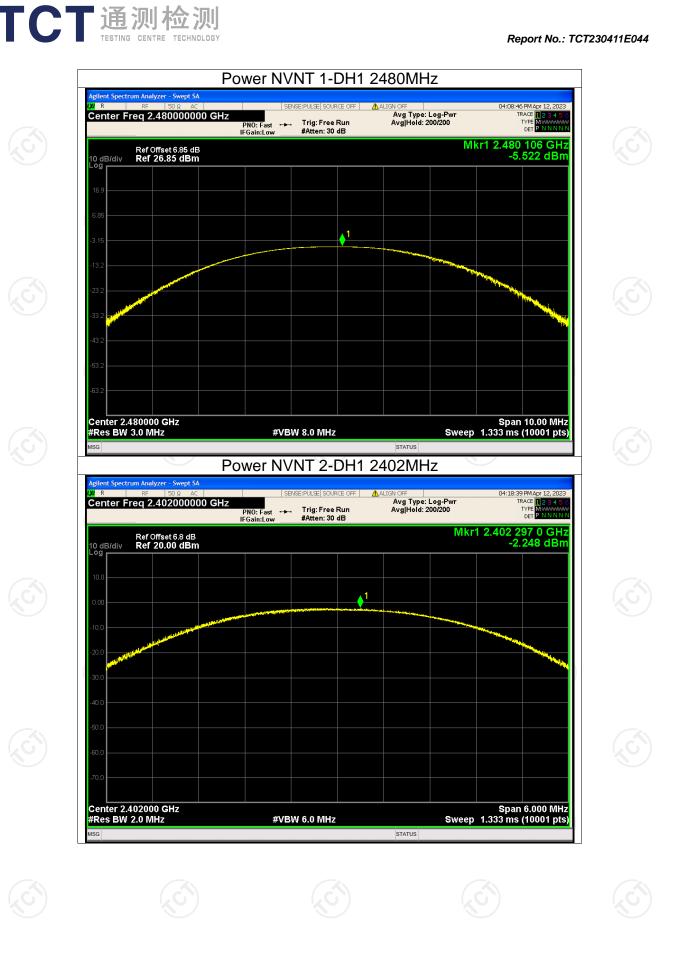
<mark>u</mark> R

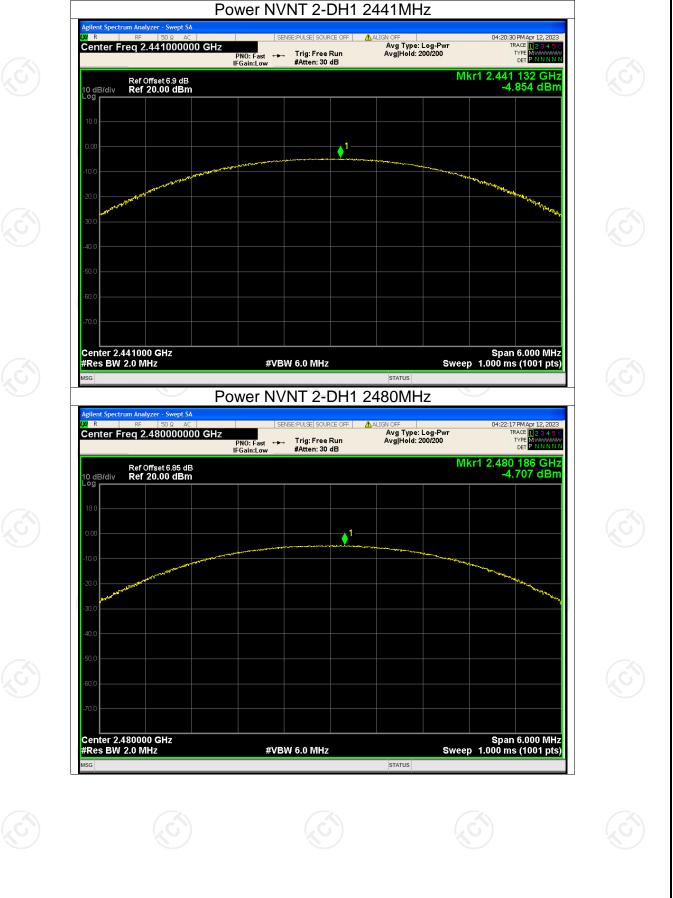
10 dB/div Log

gilent Spectrum Analyzer - Swept SA

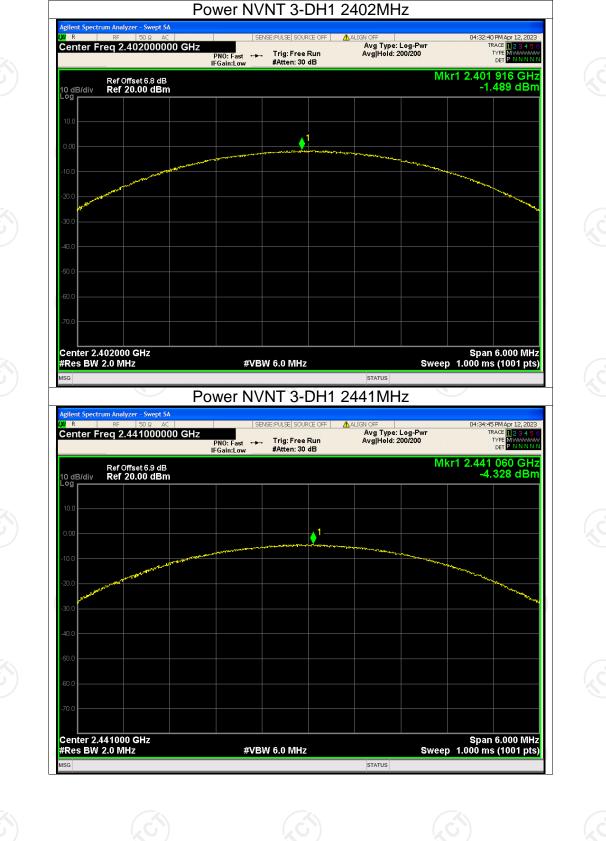
Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 26.80 dBm


Report No.: TCT230411E044

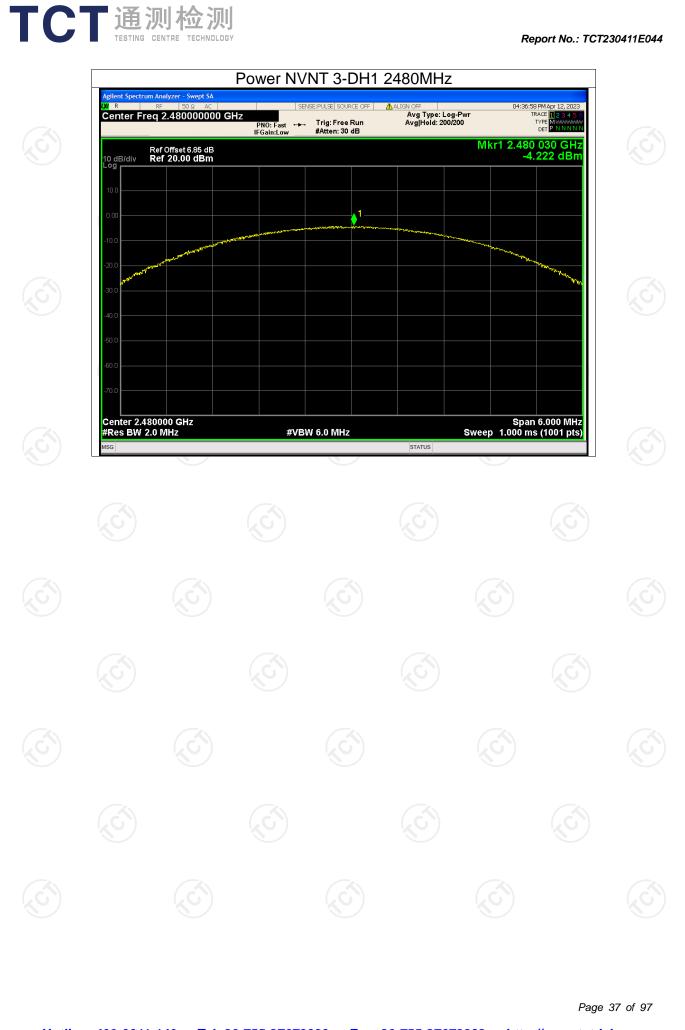

04:04:43 PM Apr 12, 2023

Mkr1 2.401 761 GHz -3.093 dBm


TRACE 123456 TYPE MWWWWW DET PNNNNN

Span 10.00 MHz Sweep 1.333 ms (10001 pts) Center 2.441000 GHz #Res BW 3.0 MHz Span 10.00 MHz Sweep 1.333 ms (10001 pts) #VBW 8.0 MHz STATUS







Report No.: TCT230411E044





A.C.





## -20dB Bandwidth





TCT通测检测 TESTING CENTRE TECHNOLOGY







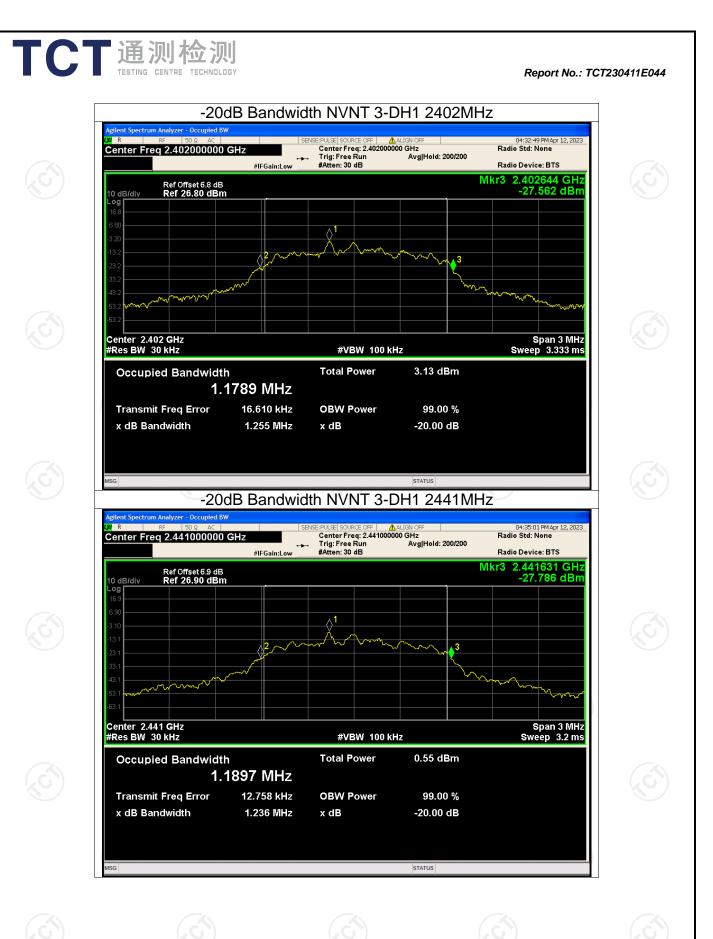


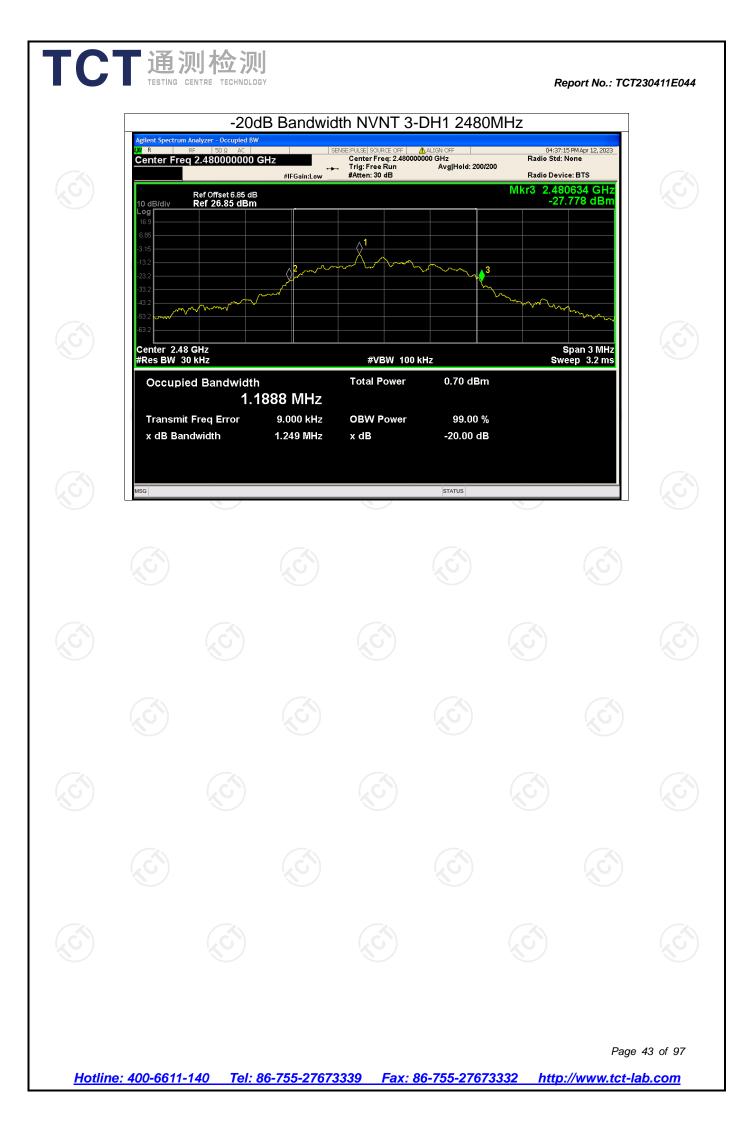
Page 38 of 97



Report No.: TCT230411E044

Page 39 of 97


STATUS

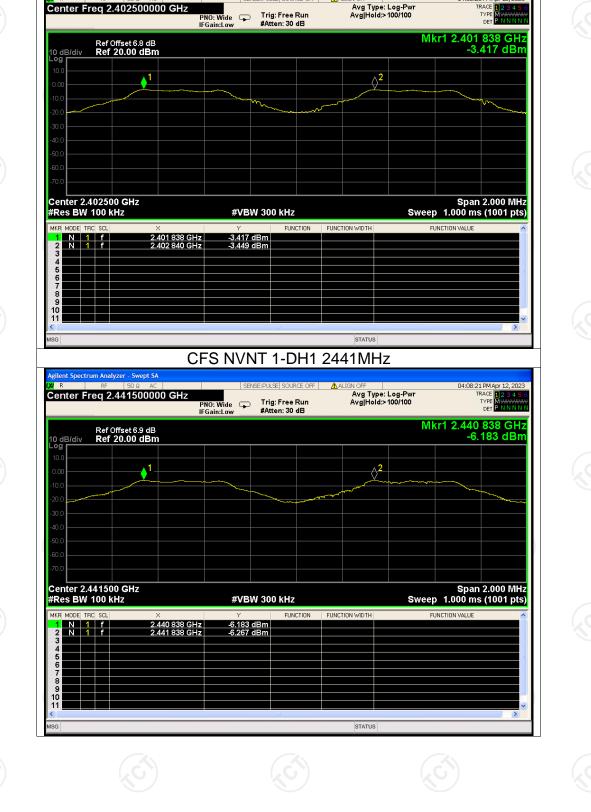



Page 40 of 97



Page 41 of 97






Report No.: TCT230411E044

| Condition | Mode  | Hopping Freq1<br>(MHz) | Hopping Freq2<br>(MHz) | HFS<br>(MHz) | Limit<br>(MHz) | Verdict |  |
|-----------|-------|------------------------|------------------------|--------------|----------------|---------|--|
| NVNT      | 1-DH1 | 2401.838               | 2402.840               | 1.002        | 0.690          | Pass    |  |
| NVNT      | 1-DH1 | 2440.838               | 2441.838               | 1.000        | 0.690          | Pass    |  |
| NVNT      | 1-DH1 | 2479.010               | 2480.010               | 1.000        | 0.690          | Pass    |  |
| NVNT      | 2-DH1 | 2401.836               | 2402.840               | 1.004        | 0.867          | Pass    |  |
| NVNT      | 2-DH1 | 2440.836               | 2441.840               | 1.004        | 0.867          | Pass    |  |
| NVNT 🔇    | 2-DH1 | 2478.842               | 2479.844               | 1.002        | 0.867          | Pass    |  |
| NVNT      | 3-DH1 | 2401.836               | 2402.834               | 0.998        | 0.837          | Pass    |  |
| NVNT      | 3-DH1 | 2440.840               | 2441.840               | 1.000        | 0.837          | Pass    |  |
| NVNT      | 3-DH1 | 2478.838               | 2479.836               | 0.998        | 0.837          | Pass    |  |
|           |       |                        |                        |              | •              |         |  |

## **Carrier Frequencies Separation**

Page 44 of 97

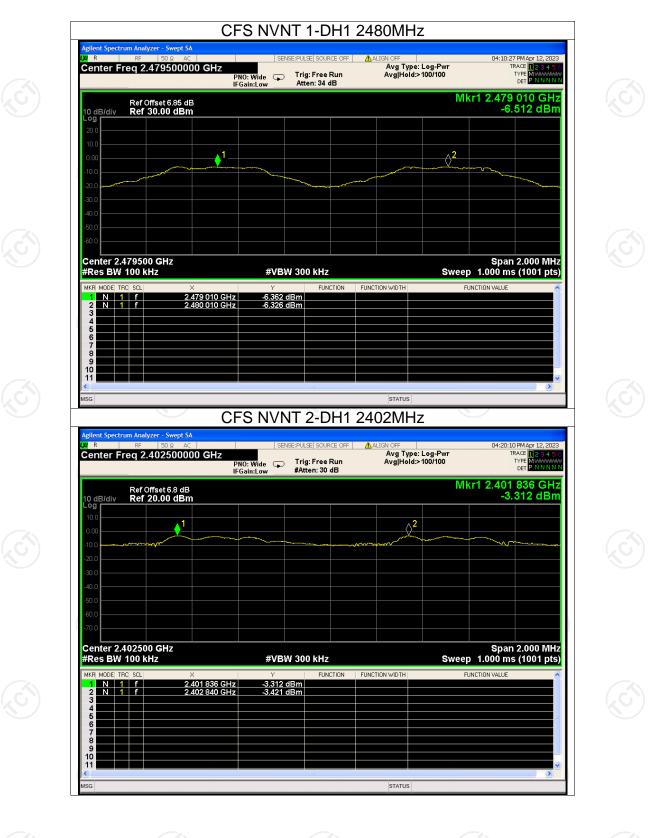


**Test Graphs** CFS NVNT 1-DH1 2402MHz

Avg Type: Log-Pwr Avg|Hold:>100/100

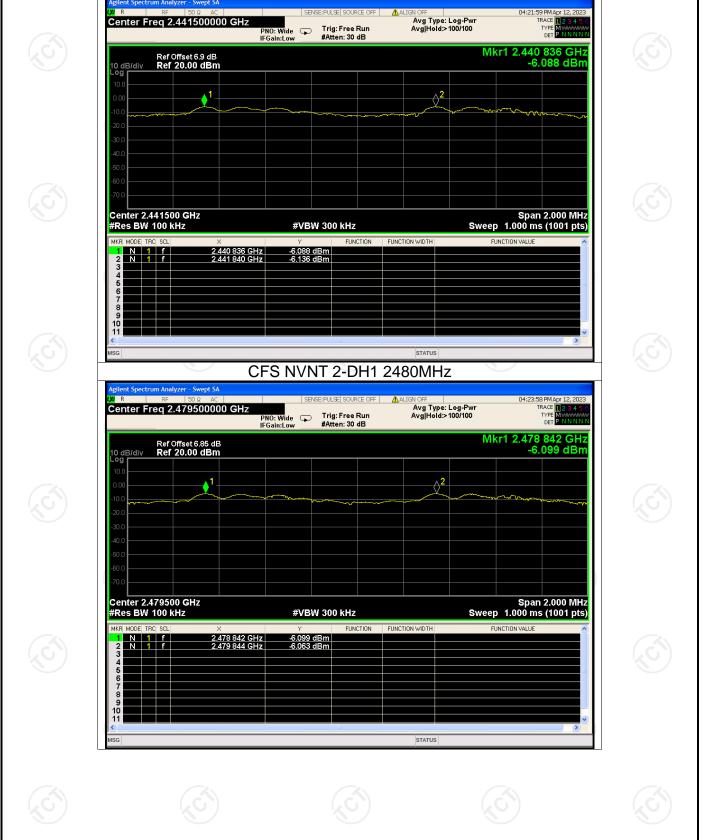
SENSE: PULSE SOURCE OFF

R


gilent Spectrum Analyzer - Swept SA

Center Freq 2.402500000 GHz

04:06:26 PM Apr 12, 2023


Report No.: TCT230411E044

Page 45 of 97

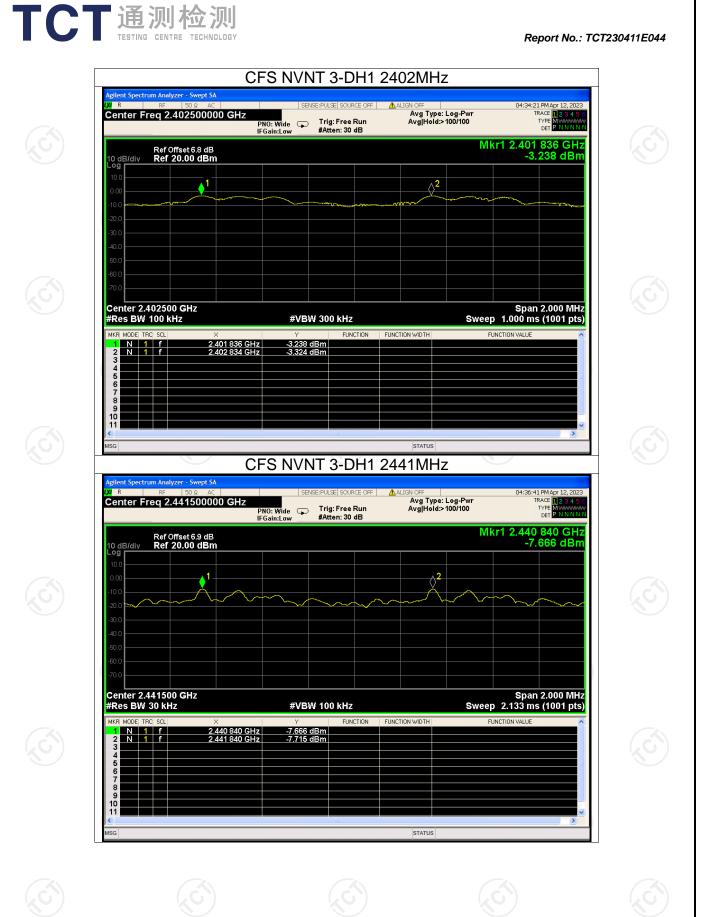


**FCT**通测检测 TESTING CENTRE TECHNOLOGY

#### Report No.: TCT230411E044



CFS NVNT 2-DH1 2441MHz


**FCT**通测检测 TESTING CENTRE TECHNOLOGY

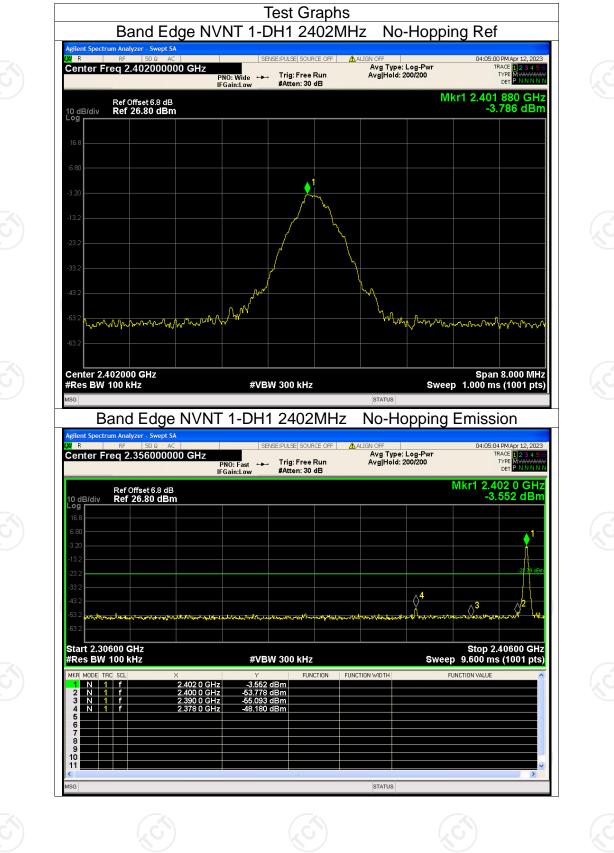
gilent Spectrum Analyzer - Swept SA

Center Freq 2.441500000 GHz

#### Report No.: TCT230411E044

04:21:59 PM Apr 12, 2023 TRACE 1 2 3 4 5

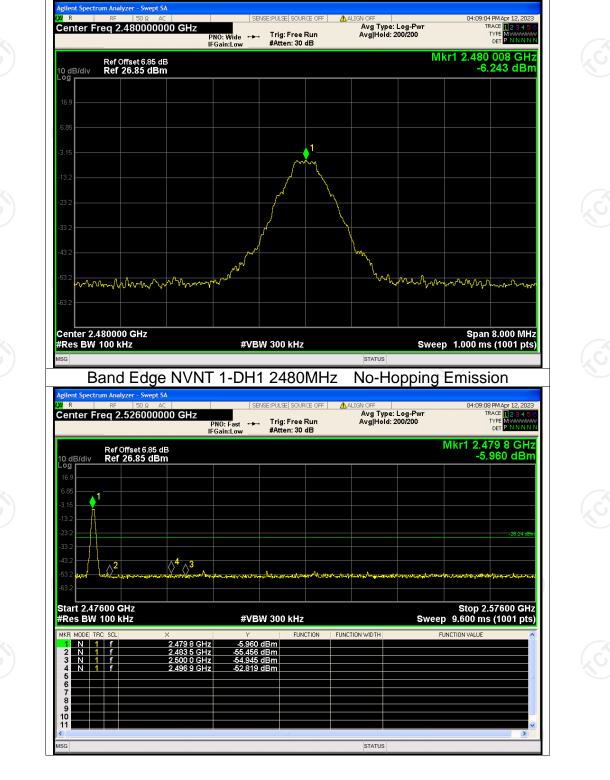



Page 48 of 97

| LXI R                         | Analyzer - Swept SA<br>RF 50 Ω AC<br>q 2.479500000 ( | SE                        | NT 3-DH1 2                        | ALIGN OFF      | - <b>Pwr</b>  | 13 PM Apr 12, 2023     |  |
|-------------------------------|------------------------------------------------------|---------------------------|-----------------------------------|----------------|---------------|------------------------|--|
|                               | Ref Offset 6.85 dB                                   | PNO: Wide G<br>IFGain:Low | ) Trig: Free Run<br>#Atten: 30 dB | Avg Hold>100/  | 100           | 8 838 GHz<br>5.055 dBm |  |
| 10 dB/div<br>10.0             | Ref 20.00 dBm                                        |                           |                                   |                |               | 5.055 aBm              |  |
| -10.0                         |                                                      |                           |                                   | V              |               | m                      |  |
| -40.0                         |                                                      |                           |                                   |                |               |                        |  |
| -60.0<br>-70.0<br>Center 2.47 | 9500 GHz                                             |                           |                                   |                | Sna           | in 2.000 MHz           |  |
| #Res BW 10                    | SCL X                                                | Y                         | FUNCTION GBm                      | FUNCTION WIDTH | Sweep 1.000 n | ns (1001 pts)          |  |
| 2 N 1<br>3 4<br>5 6           | f 2.479                                              | 836 GHz -5.997            | ′dBm                              |                |               |                        |  |
| 7<br>8<br>9<br>10             |                                                      |                           |                                   |                |               |                        |  |
| MSG                           |                                                      |                           |                                   | STATUS         |               | >                      |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |
|                               |                                                      |                           |                                   |                |               |                        |  |

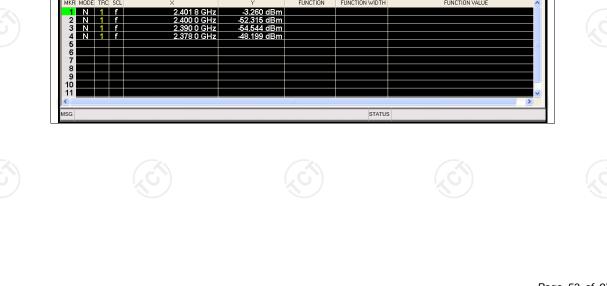
| Report No.: 1 | TCT230411E044 |
|---------------|---------------|
|---------------|---------------|

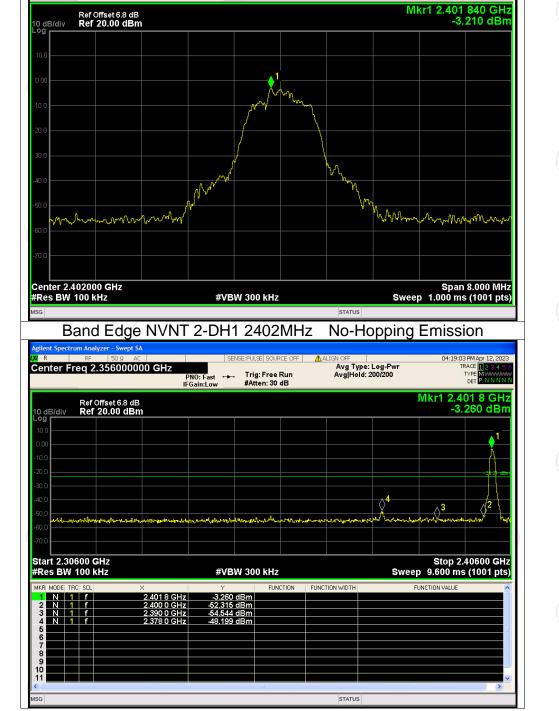

|           | Band Edge |                    |                 |                    |                |         |  |  |  |  |
|-----------|-----------|--------------------|-----------------|--------------------|----------------|---------|--|--|--|--|
| Condition | Mode      | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |  |  |  |  |
| NVNT      | 1-DH1     | 2402               | No-Hopping      | -44.38             | -20            | Pass    |  |  |  |  |
| NVNT      | 1-DH1     | 2480               | No-Hopping      | -46.57             | -20            | Pass    |  |  |  |  |
| NVNT      | 2-DH1     | 2402               | No-Hopping      | -44.98             | -20            | Pass    |  |  |  |  |
| NVNT      | 2-DH1     | 2480               | No-Hopping      | -46.16             | -20            | Pass    |  |  |  |  |
| NVNT      | 3-DH1     | 2402               | No-Hopping      | -44.56             | -20            | Pass    |  |  |  |  |
| NVNT 🖔    | 3-DH1     | 2480               | No-Hopping      | -45.65             | -20            | Pass    |  |  |  |  |


Page 50 of 97



Report No.: TCT230411E044


Page 51 of 97






Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Report No.: TCT230411E044





Band Edge NVNT 2-DH1 2402MHz

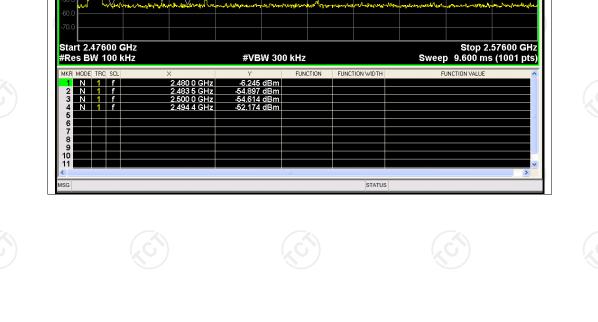
PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freq 2.402000000 GHz

Page 53 of 97

Report No.: TCT230411E044


04:18:58 PM Apr 12, 202 TRACE 1 2 3 4 5

TYPE DET

No-Hopping Ref

SENSE:PULSE SOURCE OFF ▲ALIGN OFF Avg Type: Log-Pwr Tria: Free Run Avg|Hold: 200/200





| -60.0                                 | M. W. M. W.    |      |        |     |        | www.m  | -hom ~M | 1. march                |
|---------------------------------------|----------------------------------------------------|------|--------|-----|--------|--------|---------|-------------------------|
| -50.0                                 |                                                    |      |        |     |        |        |         |                         |
| -70.0                                 |                                                    |      |        |     |        |        |         |                         |
|                                       |                                                    |      |        |     |        |        |         |                         |
| Center 2.480000 GH<br>#Res BW 100 kHz | Center 2.480000 GHz<br>Res BW 100 kHz #VBW 300 kHz |      |        |     |        | Swee   |         | 8.000 MHz<br>(1001 pts) |
| MSG                                   |                                                    |      |        |     | STATUS |        |         |                         |
| Band E                                | dge NVNT                                           | 2-DH | 1 2480 | MHz | No-Ho  | opping | Emissi  | on                      |
|                                       |                                                    |      |        |     |        |        |         |                         |

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

N

SENSE:PULSE SOURCE OFF Avg Type: Log-Pwr Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 200/200

 $\mathcal{V}_{\mathcal{N}}$ 

TCT通测检测 TEGTING CENTRE TECHNOLOGY

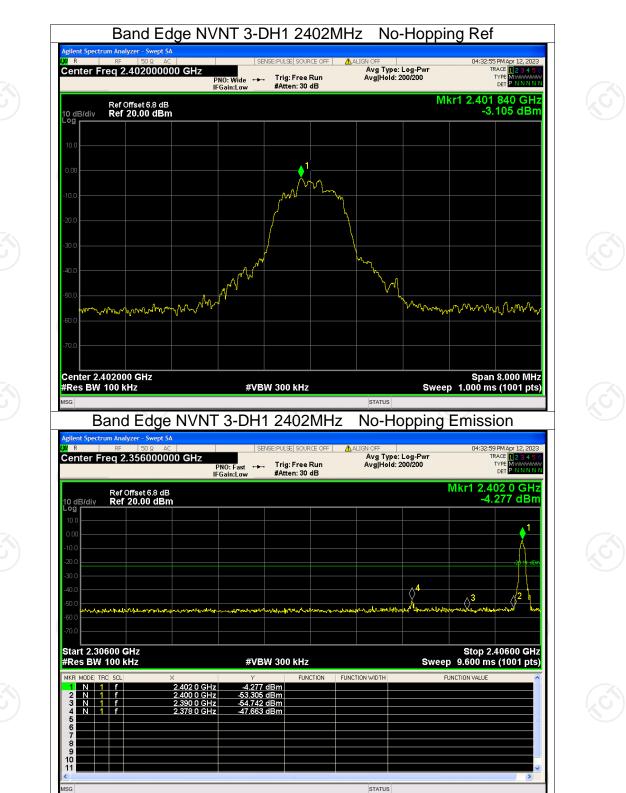
gilent Sr

10 dB/div Log

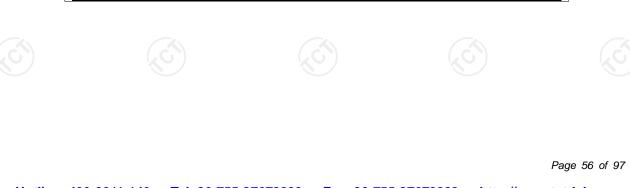
 Content Speed on Analyzer
 Sologic Speed on Analyzer

 N
 R
 RF
 50 Ω
 AC

 Center Freq
 2.4800000000 GHz
 GHz
 GHz
 GHz


Ref Offset 6.85 dB Ref 20.00 dBm

| Band Edge NVNT                                | 2-DH1 2480MHz                                         | No-Hopping                       | Emission                                 |
|-----------------------------------------------|-------------------------------------------------------|----------------------------------|------------------------------------------|
| Agilent Spectrum Analyzer - Swept SA          |                                                       |                                  |                                          |
| LXI R RF 50Ω AC                               | SENSE:PULSE SOURCE OFF                                | ALIGN OFF<br>Avg Type: Log-Pwr   | 04:22:41 PM Apr 12, 2023<br>TRACE 123456 |
|                                               | PNO: Fast ↔→ Trig: Free Run<br>Gain:Low #Atten: 30 dB | Avg Hold: 200/200                | TYPE MWWWWW<br>DET PNNNN                 |
| Ref Offset 6.85 dB<br>10 dB/div Ref 20.00 dBm |                                                       |                                  | Mkr1 2.480 0 GHz<br>-6.245 dBm           |
| 10.0                                          |                                                       |                                  |                                          |
| 0.00 1                                        |                                                       |                                  |                                          |
| -10.0                                         |                                                       |                                  |                                          |
|                                               |                                                       |                                  |                                          |
| -20.0                                         |                                                       |                                  | -26.01 dBm                               |
| -30.0                                         |                                                       |                                  |                                          |
| -40.0                                         |                                                       |                                  |                                          |
| -50.0 wat when my my have my the              |                                                       | went her my Mon replace week you | for an answedge burghes                  |
| -60.0                                         |                                                       |                                  |                                          |
| -70.0                                         |                                                       |                                  |                                          |
| Start 2.47600 GHz                             |                                                       |                                  | Stop 2.57600 GHz                         |
| #Res BW 100 kHz                               | #VBW 300 kHz                                          | Swee                             | p 9.600 ms (1001 pts)                    |
| MKR MODE TRC SCL X                            |                                                       | NCTION WIDTH FI                  | UNCTION VALUE                            |
| 1 N 1 f 2.480 0 GHz                           | -6.245 dBm                                            |                                  |                                          |


Report No.: TCT230411E044

04:22:37 PM Apr 12, 202 TRACE 12345 TYPE MWWWW DET PNNN

Mkr1 2.479 848 GHz -6.010 dBm



Report No.: TCT230411E044



STATUS

## Center 2.480000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts) startus Band Edge NVNT 3-DH1 2480MHz No-Hopping Emission

### l R 5 PM Apr 12, 202 Avg Type: Log-Pwr Avg|Hold: 200/200 Center Freq 2.526000000 GHz TRACE TYPE N DET PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 8 GHz -5.917 dBm Ref Offset 6.85 dB Ref 20.00 dBm 10 dB/di \_og **[ ∂**<sup>2</sup> ()<mark>4</mark>3 Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -5.917 dBm -53.775 dBm -53.052 dBm -51.576 dBm 2.479 8 GHz 2.483 5 GHz 2 500 0 GHz N 1 f N 1 f N 1 f 2 499 5 GH 10 11



www.

ISG

10 dB/div

Ref Offset 6.85 dB Ref 20.00 dBm

mannon

FORT Freq 2.480000000 GHz
 For Freq 2.4800000000 GHz
 For Freq 2.48000000000 GHz
 For Freq 2.4800000000 GHz
 For Freq 2.48000000000 GHz
 For Freq 2.4800000000 GHz
 For Freq 2.4800000000 GHz
 For Freq 2.48000000000 GHz
 For Freq 2.4800000000 GHz
 For Freq 2.48000000000 G

mm

#### Report No.: TCT230411E044

04:37:21 PM Apr 12, 202 TRACE 1 2 3 4 5


Түре Милони Det P NNNN Mkr1 2.479 848 GHz -5.925 dBm

mon

mannon

| Condition | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |  |
|-----------|-------|--------------------|-----------------|--------------------|----------------|---------|--|
| NVNT      | 1-DH1 | 2402               | Hopping         | -36.71             | -20            | Pass    |  |
| NVNT      | 1-DH1 | 2480               | Hopping         | -40.84             | -20            | Pass    |  |
| NVNT      | 2-DH1 | 2402               | Hopping         | -44.20             | -20            | Pass    |  |
| NVNT      | 2-DH1 | 2480               | Hopping         | -42.18             | -20            | Pass    |  |
| NVNT      | 3-DH1 | 2402               | Hopping         | -44.65             | -20            | Pass    |  |
| NVNT 🔇    | 3-DH1 | 2480               | Hopping         | -42.38             | -20            | Pass    |  |

## **Band Edge(Hopping)**



Page 57 of 97

## Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref gilent Spectrum Analyzer - Swept SA 04:11:11 PM Apr 12, 2023 TRACE 123456 TYPE MWWWWWW DET PNNNNN Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 2.405 848 GHz -3.539 dBm Ref Offset 6.8 dB Ref 30.00 dBm mmmmmmmm MAA

Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

| Band Edge(Hopping) NVNT 1-DH1 2402MHz | Hopping Emission |
|---------------------------------------|------------------|
|                                       |                  |

**Test Graphs** 

| R                                             | um Analyzer - Swep<br>RF 50 Ω      |                                           | SENSE                                 | PULSE SOURCE OFF                         | ALIGN OFF                                                                                                        |                                 | 04:12:31 PM Apr 1              | 2 202                 |
|-----------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|-----------------------|
|                                               | req 2.356000                       | 0000 GHz                                  | NO: Fast +++                          | Trig: Free Run<br>#Atten: 40 dB          | Avg Typ                                                                                                          | e: Log-Pwr<br>I: 5000/5000      | TRACE 12<br>TYPE MM<br>DET P N | 34                    |
| dB/div                                        | Ref Offset 6.8<br>Ref 30.00 di     |                                           |                                       |                                          |                                                                                                                  | Ν                               | /lkr1 2.401 8<br>-3.192 c      |                       |
| <b>.</b> 0                                    |                                    |                                           |                                       |                                          |                                                                                                                  |                                 |                                |                       |
| ).0<br>00                                     |                                    |                                           |                                       |                                          |                                                                                                                  |                                 |                                | <b>∮</b> <sup>1</sup> |
|                                               |                                    |                                           |                                       |                                          |                                                                                                                  |                                 |                                | Ŵ                     |
| ).0<br>).0                                    |                                    |                                           |                                       |                                          |                                                                                                                  |                                 |                                | 2.54 dl               |
| ).0<br>].0                                    | Revel.of Photoe Conceptor - on the | home                                      | n manalalanaga                        | an a | orenteen and a second | ture of an and the second stand | mulonoronand                   |                       |
|                                               | 600 GHz                            |                                           |                                       |                                          |                                                                                                                  |                                 | <b>D</b> tom 2 40600           |                       |
|                                               | 100 GHz                            |                                           | #VBW                                  | 300 kHz                                  |                                                                                                                  | Sweep                           | Stop 2.40600<br>9.600 ms (1001 | 1 pt                  |
|                                               |                                    |                                           |                                       |                                          |                                                                                                                  |                                 |                                | _                     |
| R MODE TR                                     | RC SCL                             | ×<br>2.401 8 GHz<br>2 400 0 GHz           | Y<br>-3.192 dE<br>-42 243 dE          | FUNCTION                                 | FUNCTION WIDTH                                                                                                   | FUI                             | NCTION VALUE                   |                       |
| 1 N 1<br>2 N 1<br>3 N 1<br>4 N 1              |                                    |                                           |                                       | Bm<br>Bm<br>Bm                           | FUNCTION WIDTH                                                                                                   | FU                              | NCTION VALUE                   |                       |
| N 1<br>2 N 1<br>3 N 1<br>4 N 1<br>5<br>6<br>7 |                                    | 2.401 8 GHz<br>2.400 0 GHz<br>2.390 0 GHz | -3.192 dE<br>-42.243 dE<br>-43.692 dE | Bm<br>Bm<br>Bm                           | FUNCTION WIDTH                                                                                                   | FUI                             | NCTION VALUE                   |                       |
| N 1<br>2 N 1<br>3 N 1<br>4 N 1<br>6           |                                    | 2.401 8 GHz<br>2.400 0 GHz<br>2.390 0 GHz | -3.192 dE<br>-42.243 dE<br>-43.692 dE | Bm<br>Bm<br>Bm                           | FUNCTION WIDTH                                                                                                   | FUI                             | NCTION VALUE                   |                       |

Report No.: TCT230411E044



U R

10 dB/div Log

www

n An











Page 58 of 97





Page 60 of 97





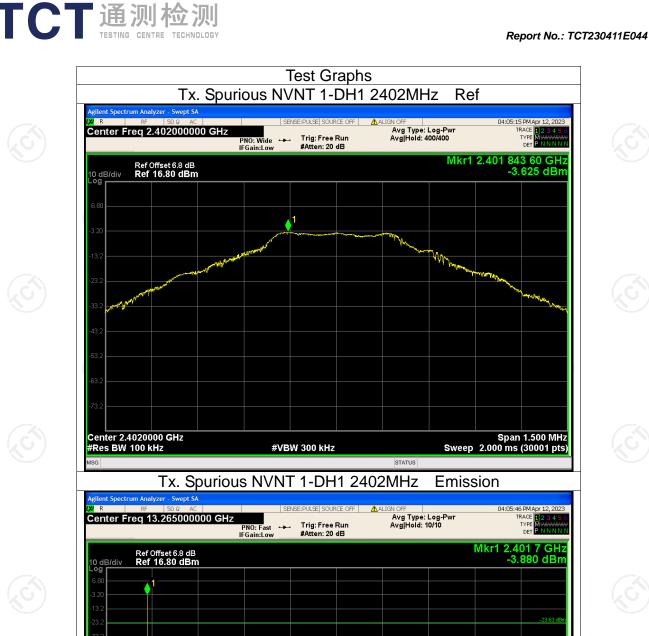

Page 62 of 97

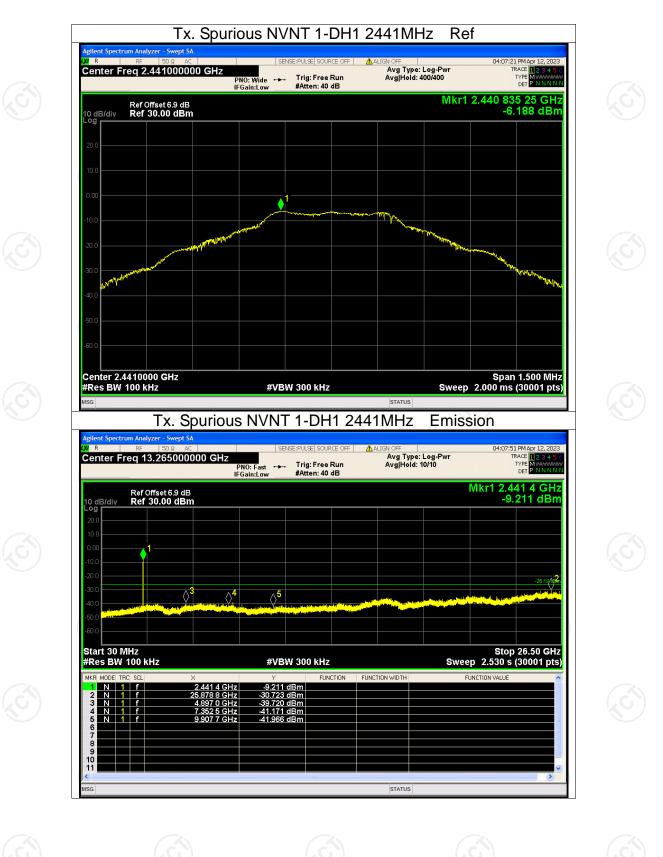


## Conducted RF Spurious Emission

| Condition | Mode  | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |  |  |  |  |
|-----------|-------|-----------------|-----------------|-------------|---------|--|--|--|--|
| NVNT      | 1-DH1 | 2402            | -42.12          | -20         | Pass    |  |  |  |  |
| NVNT      | 1-DH1 | 2441            | -24.53          | -20         | Pass    |  |  |  |  |
| NVNT      | 1-DH1 | 2480            | -24.39          | -20         | Pass    |  |  |  |  |
| NVNT      | 2-DH1 | 2402            | -42.24          | -20         | Pass    |  |  |  |  |
| NVNT      | 2-DH1 | 2441            | -41.06          | -20         | Pass    |  |  |  |  |
| NVNT      | 2-DH1 | 2480            | -37.40          | -20         | Pass    |  |  |  |  |
| NVNT 🚫    | 3-DH1 | 2402            | -44.32          | -20         | Pass    |  |  |  |  |
| NVNT      | 3-DH1 | 2441            | -42.38          | -20         | Pass    |  |  |  |  |
| NVNT      | 3-DH1 | 2480            | -35.49          | -20         | Pass    |  |  |  |  |
|           |       |                 |                 |             |         |  |  |  |  |







TCT 通测检测 TESTING CENTRE TECHNOLOGY






Page 64 of 97






TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT230411E044

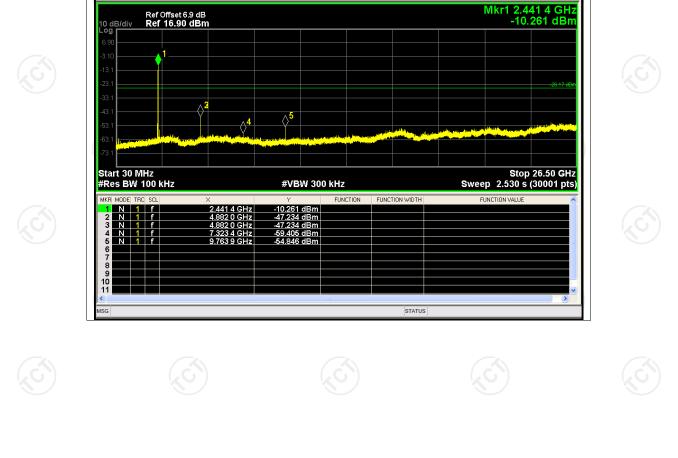


TCT通测检测 TESTING CENTRE TECHNOLOGY

#### Report No.: TCT230411E044



Tx. Spurious NVNT 2-DH1 2402MHz

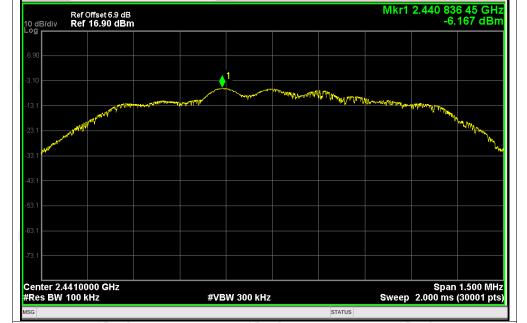

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spect

R

Report No.: TCT230411E044

Ref




Tx. Spurious NVNT 2-DH1 2441MHz Emission

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB

Avg Type: Log-Pwr Avg|Hold: 10/10



Tx. Spurious NVNT 2-DH1 2441MHz

PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spect

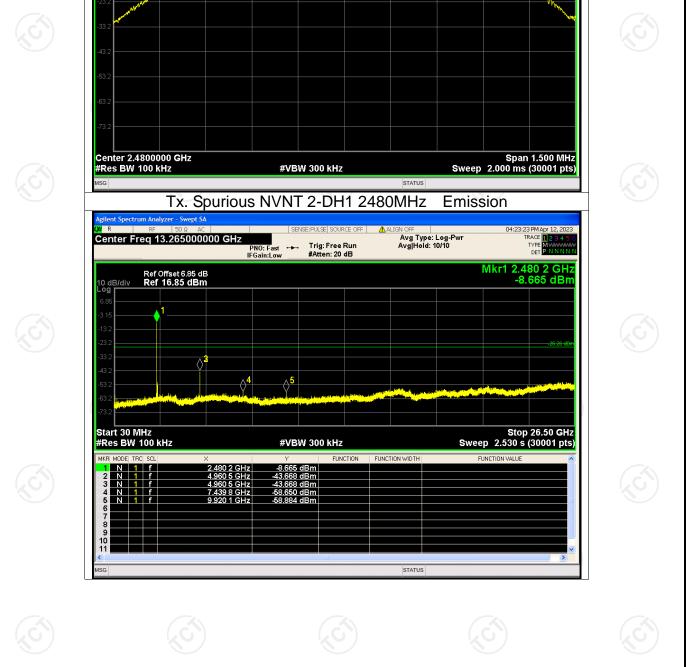
Center Freq 2.441000000 GHz

R

l R

Center Freq 13.265000000 GHz

## SENSE:PULSE SOURCE OFF ALIGN OFF Avg Type: Log-Pwr --- Trig: Free Run Avg|Hold: 400/400 04:20:56 PM Apr 12, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N


04:21:27 PM Apr 12, 202

TRACE TYPE N DET

Page 69 of 97

Ref

Report No.: TCT230411E044



Tx. Spurious NVNT 2-DH1 2480MHz

PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB

SENSE:PULSE SOURCE OFF ALIGN OFF Avg Type: Log-Pwr --- Trig: Free Run Avg|Hold: 400/400

# S)

gilent Spect

10 dB/div

R

Center Freq 2.480000000 GHz

Ref Offset 6.85 dB Ref 16.85 dBm Report No.: TCT230411E044

04:22:53 PM Apr 12, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N N

Mkr1 2.479 838 75 GHz -6.258 dBm

Ref

Page 70 of 97



 3.20
 132

 132
 132

 23.2
 133.2

 33.2
 132

 43.2
 132

 43.2
 132

 43.2
 132

 53.2
 132

 53.2
 132

 53.2
 132

 53.2
 132

 53.2
 132

 53.2
 132

 53.2
 132

 53.2
 133

 53.2
 133

 53.2
 133

 53.2
 133

 53.2
 133

 53.2
 133

 53.2
 134

 53.2
 134

 53.2
 134

 53.2
 134

 53.2
 134

 53.2
 134

 53.2
 135

 53.2
 135

 53.2
 135

 53.2
 135

 53.2
 135

 53.2
 135

 53.2
 135

 53.2
 135

 53.2
 135

Tx. Spurious NVNT 3-DH1 2402MHz

PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB

SENSE:PULSE SOURCE OFF ALIGN OFF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

## Tx. Spurious NVNT 3-DH1 2402MHz Emission

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB

0⁵

Avg Type: Log-Pwr Avg|Hold: 10/10

## Page 71 of 97

## Report No.: TCT230411E044

04:33:20 PM Apr 12, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

04:33:51 PM Apr 12, 2023 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Mkr1 2.401 7 GHz -5.309 dBm

Mkr1 2.401 836 10 GHz -3.371 dBm

Ref

gilent Spect

10 dB/div

Center Freq 2.402000000 GHz

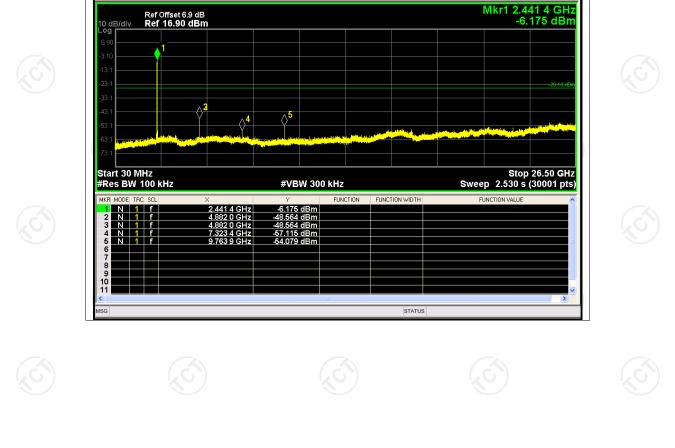
Ref Offset 6.8 dB Ref 16.80 dBm

R





l R


10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 6.8 dB Ref 16.80 dBm

 $\Diamond^{2}$ 

 $\Diamond^4$ 





TCT通测检测 TESTING CENTRE TECHNOLOGY

l R

Center Freq 13.265000000 GHz

Tx. Spurious NVNT 3-DH1 2441MHz Emission

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB

SENSE:PULSE SOURCE OFF

Avg Type: Log-Pwr Avg|Hold: 10/10

Page 72 of 97

Report No.: TCT230411E044

43 PM Apr 12, 202 TRACE 1 2 3 4 5 TYPE MMMM DET P N N N N

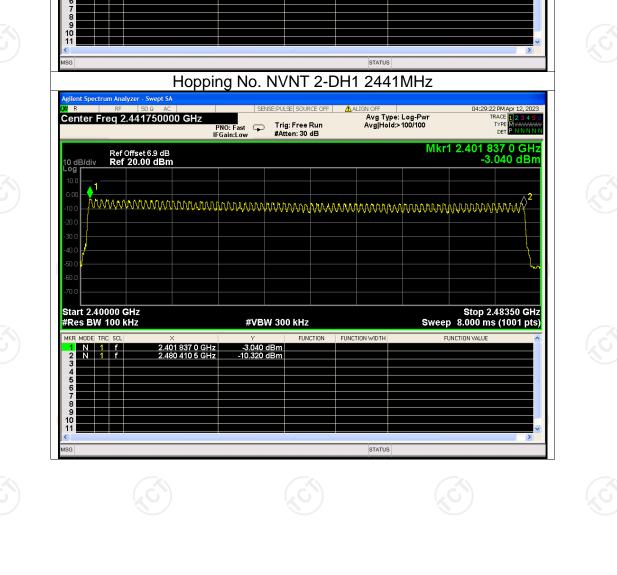




Tx. Spurious NVNT 3-DH1 2480MHz

## Tx. Spurious NVNT 3-DH1 2480MHz Emission

Page 73 of 97


Report No.: TCT230411E044

Ref

## 

gilent Sp

| SS   | Verd<br>Pas<br>Pas | Limit<br>15<br>15 | g Channe<br>umber | Hopping N<br>79<br>79 | • • • • • • • • • • • • • • • • • • • | Mode           1-DH1           2-DH1 | Condition<br>NVNT<br>NVNT |   |
|------|--------------------|-------------------|-------------------|-----------------------|---------------------------------------|--------------------------------------|---------------------------|---|
| ss 🚫 | Pas                | 15                |                   | 79                    |                                       | 3-DH1                                | NVNT                      | 9 |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |
|      |                    |                   |                   |                       |                                       |                                      |                           |   |



| iter Fi    | req 2.4          | 41750000                | Р         | NO: Fast G<br>Gain:Low |       | g: Free<br>tten: 30 |       |       | Avg Type<br>Avg Hold | e: Log-Pwr<br>⊳100/100 |     |           | TRACE<br>TYPE<br>DE1 | 1234<br>Mwww<br>PNNN |
|------------|------------------|-------------------------|-----------|------------------------|-------|---------------------|-------|-------|----------------------|------------------------|-----|-----------|----------------------|----------------------|
| 3/div      |                  | fset 6.9 dB<br>0.00 dBm |           |                        |       |                     |       |       |                      | Μ                      | kr1 | 2.401     | 837<br>-3.09         | 0 GI<br>6 dB         |
| <u> </u>   |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      | ^2                   |
| Ŵ          |                  |                         |           |                        | WW    | WW                  |       |       |                      |                        | NN  |           | MW                   | WŴ                   |
|            |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      | -                    |
| ļ          |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      |                      |
|            |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      |                      |
|            | 000 GH<br>100 kH |                         |           | #VE                    | 3W 30 | 10 kHz              |       |       |                      | Sw                     | eep |           |                      | 350 G<br>001 p       |
|            |                  | ×<br>2 401 9            | 337 0 GHz | Y<br>.3 09             | 5 dBm |                     | CTION | FUNCT | TION WIDTH           |                        | FUN | CTION VAL | .UE                  |                      |
| <u>N</u> 1 |                  | 2.480                   | 160 0 GHz | -6.07                  | dBm   |                     |       |       |                      |                        |     |           |                      |                      |
|            |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      |                      |
|            |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      |                      |
|            |                  |                         |           |                        |       |                     |       |       |                      |                        |     |           |                      |                      |

Test Graphs Hopping No. NVNT 1-DH1 2441MHz

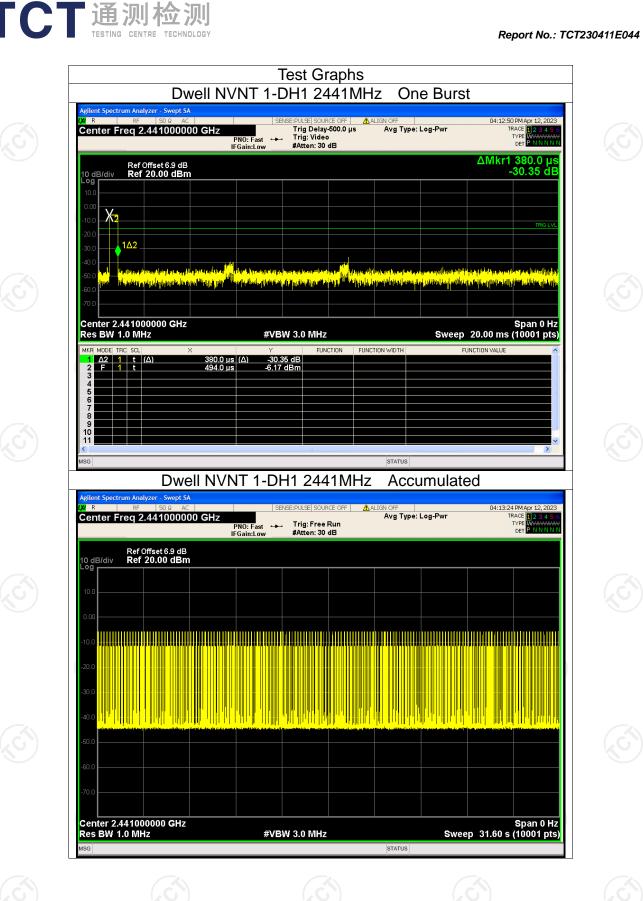
ENSE: PLILSE SOLIBCE OFF

TCT通测检测 TESTING CENTRE TECHNOLOGY

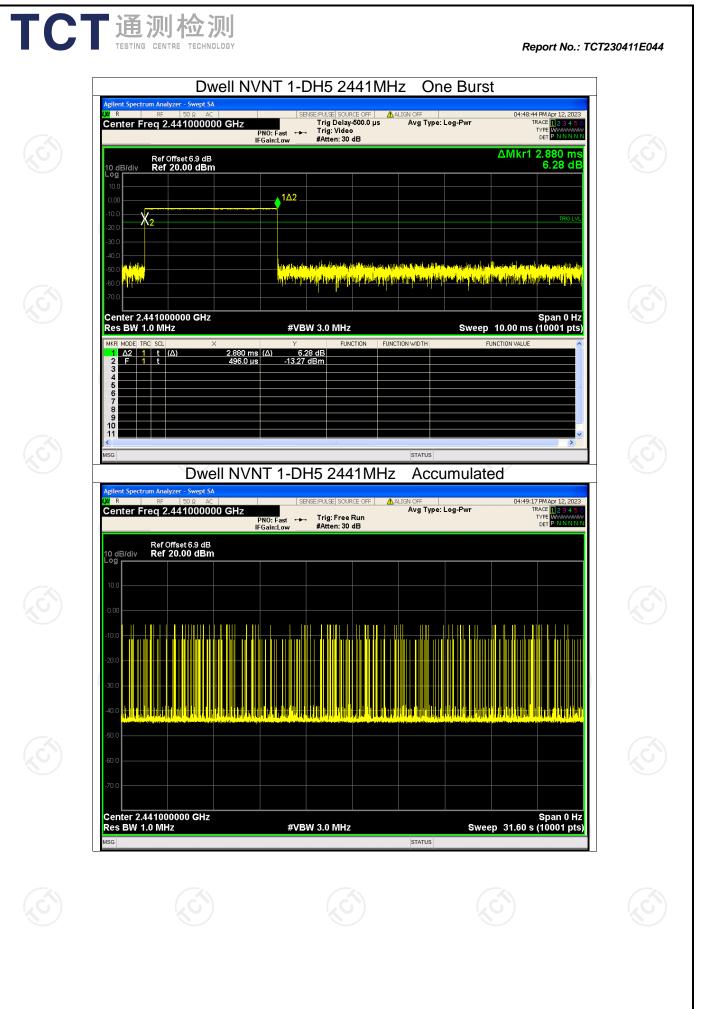
Agilent Spectrum Analyzer - Swept SA

Report No.: TCT230411E044

Page 75 of 97


04:16:14 PM Apr 12, 20

| TC |                                                                                   | <b>检测</b>                                |              |                                 |                                    | Rej                                         | port No.: TCT2                                                       | 30411E044 |
|----|-----------------------------------------------------------------------------------|------------------------------------------|--------------|---------------------------------|------------------------------------|---------------------------------------------|----------------------------------------------------------------------|-----------|
|    | Agilent Spectrum Analyzz                                                          |                                          |              |                                 |                                    | 04:44:34                                    | PMApr 12, 2023                                                       |           |
|    | Center Freq 2.4                                                                   | 41750000 GHz<br>set 6.9 dB<br>0.00 dBm   | PNO: Fast CP | Trig: Free Run<br>#Atten: 30 dB | Avg Type: Log-P<br>Avg Hold>100/10 | Mkr1 2.401 83<br>-2.                        | ACE 11 2 3 4 5 6<br>TYPE MWWWW<br>DET PINNINN<br>37 0 GHz<br>985 dBm |           |
|    | Start 2.40000 GH<br>#Res BW 100 kH<br>MKR MODE TRC SCL<br>1 N 1 f<br>3 4 5<br>6 7 | Z<br>Z<br>2.401 837 0 G<br>2.480 243 5 G | Y            |                                 |                                    | Stop 2.<br>Sweep 8.000 ms<br>FUNCTION VALUE | 48350 GHz<br>(1001 pts)                                              |           |
|    | 8<br>9<br>10<br>11<br>KSG                                                         |                                          |              |                                 | STATUS                             |                                             | ×                                                                    |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             |                                                                      |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             |                                                                      |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             |                                                                      |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             |                                                                      |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             |                                                                      |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             |                                                                      |           |
|    |                                                                                   |                                          |              |                                 |                                    |                                             | Page                                                                 | 76 of 97  |


Report No.: TCT230411E044

|           |       |                    | Dwe                   | ll Time                        |                |                        |               |         |
|-----------|-------|--------------------|-----------------------|--------------------------------|----------------|------------------------|---------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Pulse<br>Time<br>(ms) | Total<br>Dwell<br>Time<br>(ms) | Burst<br>Count | Period<br>Time<br>(ms) | Limit<br>(ms) | Verdict |
| NVNT      | 1-DH1 | 2441               | 0.38                  | 120.84                         | 318            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | 1.63                  | 264.06                         | 162            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | 2.88                  | 293.76                         | 102            | 31600                  | 400           | Pass    |
| NVNT 🔇    | 2-DH1 | 2441               | 0.38                  | 120.08                         | 316            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | 1.64                  | 267.32                         | 163            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | 2.89                  | 300.56                         | 104            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | 0.39                  | 122.46                         | 314            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | 1.64                  | 257.48                         | 157            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | 2.89                  | 349.69                         | 121            | 31600                  | 400           | Pass    |

Page 77 of 97



| ГС | 通测检测<br>TESTING CENTRE TECHNOLOGY Rej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oort No.: TCT230411E044                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|    | Dwell NVNT 1-DH3 2441MHz One Burst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |
|    | Center Freq 2.441000000 GHz<br>PN0: Fast<br>IFGain:Low<br>Trig: Video<br>#Atten: 30 dB<br>Avg Type: Log-Pwr<br>TR<br>Avg Type: | РМарт 12,2023<br>Ассі 12:3:4:5:6<br>УРЕ ИМИНИТИ<br>ВСТР ИЛИПИН<br>I.630 ms |
|    | 10 dB/div Ref 20.00 dBm<br>10 dB/div Ref 20.00 d                                                                                                                                                                                           |                                                                            |
|    | -300<br>-400<br>-500<br>-500<br>-500<br>-500<br>-500<br>-500<br>-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Span 0 Hz                                                                  |
|    | Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep 10.00 ms (           MKR MODELTRC SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           1         Δ2         1         t         (Δ)         1.630 ms (Δ)         0.77 dB         FUNCTION         FUNCTION VALUE           2         F         1         t         497.0 μs         -6.82 dBm         FUNCTION         FUNCTION VALUE           3         4         FUNCTION         FUNCTION         FUNCTION VALUE         FUNCTION VALUE           3         4         FUNCTION         FUNCTION         FUNCTION VALUE         FUNCTION VALUE           3         4         FUNCTION         FUNCTION         FUNCTION VALUE         FUNCTION VALUE           3         5         FUNCTION         FUNCTION         FUNCTION         FUNCTION VALUE           3         6         FUNCTION         FUNCTION         FUNCTION VALUE         FUNCTION VALUE           3         6         FUNCTION         FUNCTION         FUNCTION         FUNCTION VALUE           3         6         FUNCTION         FUNCTION         FUNCTION         FUNCTION           4         FUNCTION         FUNCTION         FUNCTION         FUNCTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10001 pts)                                                                 |
|    | Dwell NVNT 1-DH3 2441MHz Accumulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |
|    | Agilent Spectrum Analyzer - Swept SA         Sense: PULSE SOURCE OFF         Availan OFF         D4:48:18           Mail         R         R         S0.0         AC         SENSE: PULSE SOURCE OFF         Availan OFF         D4:48:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PMApr 12, 2023<br>ACE 12 3 4 5 6<br>YPE WWWWWWW<br>DET P. NNNNN            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |
|    | 50.0       60.0         60.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         770.0       60.0         60.0       60.0         770.0       60.0         60.0       60.0         770.0       60.0         60.0       60.0         60.0       60.0         60.0       60.0         60.0       60.0         60.0       60.0         MSG       50.0         Status       50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Span 0 Hz<br>(10001 pts)                                                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |





Page 81 of 97

| CT | 通测检测 TESTING CENTRE TECHNOLOGY Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o.: TCT230411E                     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|    | Dwell NVNT 2-DH3 2441MHz One Burst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
|    | Agilent Spectrum Analyzer - Swept SA           W// R         RF         50 x         Ac         SENSE:PULSE   SOURCE OFF         ▲ ALLIGN OFF         04:49:58 PM Apr 12;           Center Freq 2.441000000 GHz         Trig Delay-500.0 µs         Avg Type: Log-Pwr         Trace 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2023                               |
|    | PN0: Fast ++ Irig: Video Irre<br>IFGain:Low #Atten: 30 dB DET PNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|    | Ref Offset 6.9 dB         ΔMkr1 1.640           10 dB/div         Ref 20.00 dBm         -40.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    | -10.0 22 Text Text Text Text Text Text Text Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|    | -30.0<br>-40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|    | -50.0 solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n na serie<br><mark>Alexter</mark> |
| )  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    | Center 2.441000000 GHz         Span 0           Res BW 1.0 MHz         #VBW 3.0 MHz         Sweep 10.00 ms (10001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hz<br>ots)                         |
|    | MKR         MODE         TRC         SCL         X         Y         FUNCTION         FUNCTION WIDTH         FUNCTION VALUE           1         Δ2         1         t         (Δ)         1.640 ms         (Δ)         -40.41 dB         497.0 μs         -6.45 dBm         -6.45 dBm <td< td=""><td></td></td<> |                                    |
|    | 3     4     5     5       6     6     6     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >                                  |
|    | Dwell NVNT 2-DH3 2441MHz Accumulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|    | Agilent Spectrum Analyzer - Swept SA<br>100 R RF SD Q AC SENSE:PULSE  SOURCE OFF ▲ALIGN OFF 04:50:31 PM Apr 12,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2023                               |
|    | Center Freq 2.441000000 GHz Avg Type: Log-Pwr TRACE 128<br>PNO: Fast Trig: Free Run<br>IFGain: Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 5 6<br>MMM                       |
|    | Ref Offset 6.9 dB<br>10 dB/div Ref 20.00 dBm<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    | -20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|    | -90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| )  | -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|    | -70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|    | Center 2.441000000 GHz Span 0<br>Res BW 1.0 MHz #VBW 3.0 MHz Sweep 31.60 s (10001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hz<br>pts)                         |
|    | MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |