	TEST REPOR				
FCC ID :	2AAPK-MA-3675B				
Test Report No:	TCT230717E006				
Date of issue:	Jul. 20, 2023				
Testing laboratory: :	SHENZHEN TONGCE TESTIN	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuha Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China				
Applicant's name: :	Shenzhen Kingsun Enterprises	Co., Ltd.			
Address:	25/F, CEC Information Building Guangdong 518034 China	, Xinwen Rd., Shenzhen	,		
Manufacturer's name :	Shenzhen Kingsun Enterprises	Co., Ltd.			
Address:	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong 518034 China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name::	Prodigy Pro TWS Earphones w	ith Charging Case			
Trade Mark:	N/A				
Model/Type reference :	MA-3675-B, Al1009, Al1009-BL	.K, AI1009-WHT			
Rating(s):	Rechargeable Li-ion Battery DC	3.7V			
Date of receipt of test item	Jul. 17, 2023	(C)	(S)		
Date (s) of performance of test:	Jul. 17, 2023 - Jul. 20, 2023				
Tested by (+signature) :	Ronaldo LUO	R-malo twase			
Check by (+signature) :	Beryl ZHAO	BoyCon TOT			
Approved by (+signature):	Tomsin	Jomsmes 32			
TONGCE TESTING LAB. TR TESTING LAB personnel on	oduced except in full, without th his document may be altered or ly, and shall be noted in the revi- apply to the tested sample.	revised by SHENZHEN	TONGCE		

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	6
3.2. Description of Support Units	
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	8
5.2. Conducted Emission	9
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	14
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Prodigy Pro TWS Earphones with Charging Case	(3)
Model/Type reference:	МА-3675-В	
Sample Number:	TCT230717E006-0101	
Bluetooth Version:	V5.3	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	Chip Antenna	
Antenna Gain:	2.67dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

Model No.					
	\boxtimes				
AI10					
			(C)		
			Page 3 of 98		
	ested model, other	MA-3675-B AI1009, AI1009-BLK, AI1009 ested model, other models are derivative mode			

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
·		·				·	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S		.		S		<u> </u>
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark:	Channel 0, 3	89 & 78 ha	ave been te	sted for G	FSK, π/4-D	QPSK, 8	DPSK

Remark: Channel 0, 39 & 78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

Page 4 of 98

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 98

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	23.5 °C	25.3 °C					
Humidity:	52 % RH	55 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	BT_Tool V1.1.1						
Power Level:	Maximum level 7						
Test Mode:							
Engineering mode:	Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.						
The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.							

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	1	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

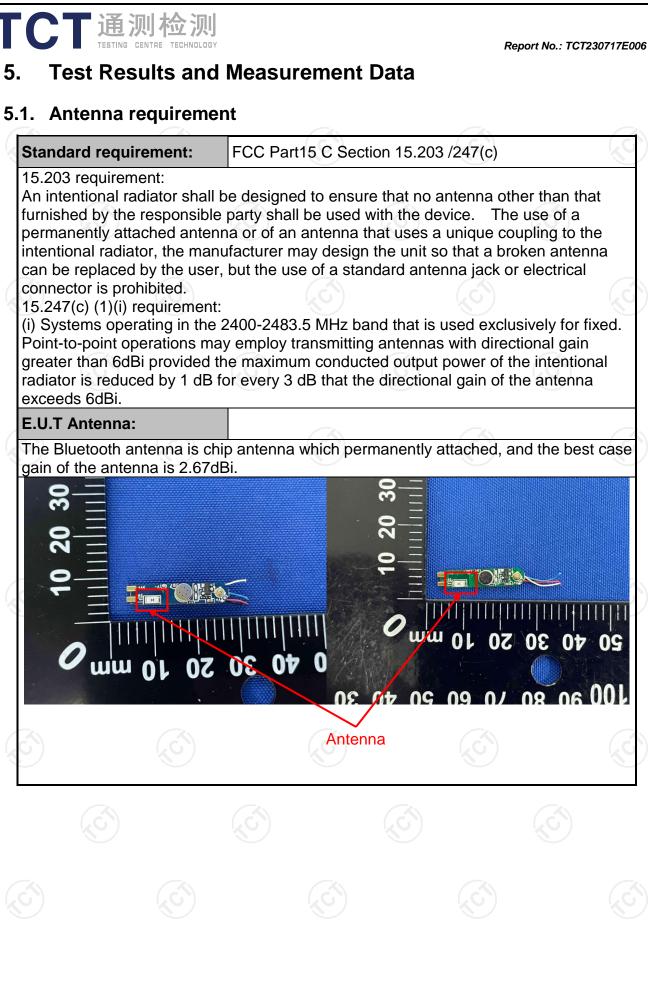
IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location


SHENZHEN TONGCE TESTING LAB

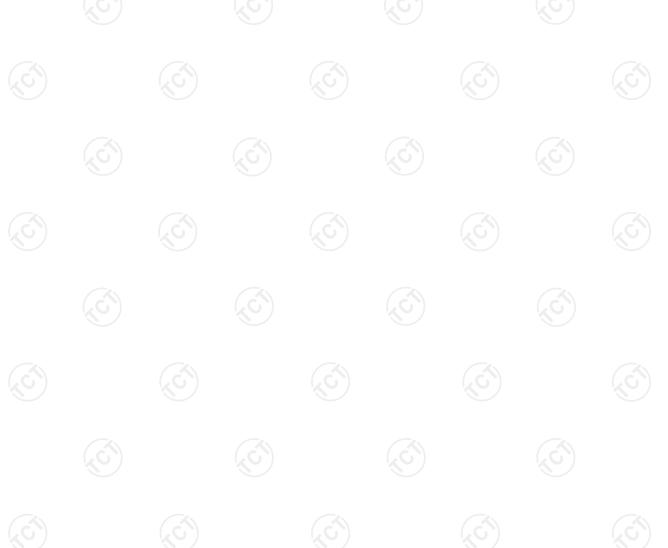
Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

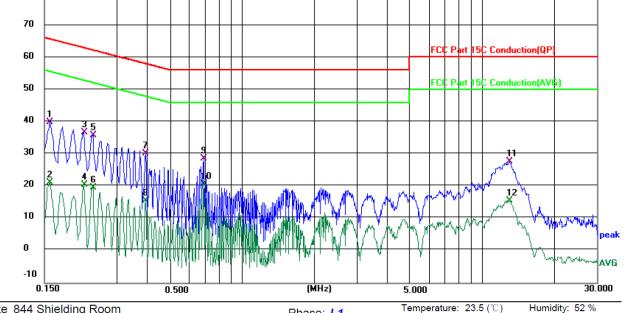

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	\mathcal{C}	(\mathbf{c})			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Áverage			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	e Plane				
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	Receiver				
Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m Charging	Receiver				
Test Mode: Test Procedure:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	Receiver etwork cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checken nce. In order to fin e positions of equi must be changed	(L.I.S.N.). This pedance for the ected to the main a 500hm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all of according to			
	 EUT: Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m Charging 1. The E.U.T is connering impedance stabilizing provides a 500hm/5 measuring equipment 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables 	Receiver etwork cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checken nce. In order to fin e positions of equi must be changed	(L.I.S.N.). This pedance for the ected to the main a 500hm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all of according to			

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
	Equipment	Manufacturer Model Serial Number		Calibration Due				
	EMI Test Receiver	R&S	R&S ESCI3 100898		Jun. 29, 2024			
	Line Impedance Stabilisation Newtork(LISN)	Stabilisation Schwarzbeck NSLK 8126 8126		8126453	Feb. 20, 2024			
	Line-5			Line-5 TCT CE-05 /		/	Jul. 03, 2024	
	EMI Test Software Shurple Technology		EZ-EMC	1	1			

Page 10 of 98


5.2.3. Test data

80.0

dBuV

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Report No.: TCT230717E006

Site 844 Shielding Room

Phase: L1 Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Limit: FCC Part 15C Conduction(QP)

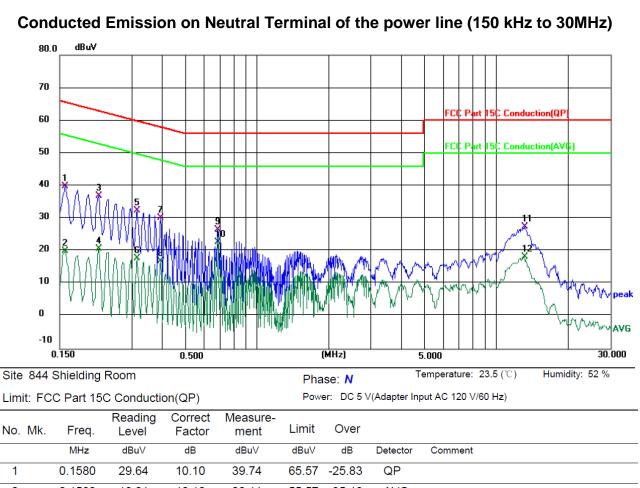
Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1580 29.62 10.12 39.74 65.57 -25.83 QP 2 0.1580 11.14 10.12 21.26 55.57 -34.31 AVG 3 0.2180 26.64 9.95 36.59 62.89 -26.30 QP 4 0.2180 10.61 9.95 20.56 52.89 -32.33 AVG QP 5 0.2380 25.83 9.95 35.78 62.17 -26.39 6 0.2380 9.68 9.95 19.63 52.17 -32.54 AVG 7 0.3940 20.57 9.56 30.13 57.98 -27.85 QP 0.3940 5.96 9.56 15.52 47.98 -32.46 AVG 8 9 0.6900 19.37 9.27 28.64 56.00 -27.36 QP 10 0.6900 11.53 9.27 20.80 46.00 -25.20 AVG 13.0219 60.00 -32.34 QP 11 17.50 10.16 27.66 12 13.0219 5.42 10.16 15.58 50.00 -34.42 AVG

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$


Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

	110. 1011	1109.	Lever	1 actor	mont				
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1580	29.64	10.10	39.74	65.57	-25.83	QP	
-	2	0.1580	10.01	10.10	20.11	55.57	-35.46	AVG	
	3	0.2179	26.88	9.95	36.83	62.90	-26.07	QP	
-	4	0.2179	10.71	9.95	20.66	52.90	-32.24	AVG	
	5	0.3140	22.88	9.63	32.51	59.86	-27.35	QP	
-	6	0.3140	8.05	9.63	17.68	49.86	-32.18	AVG	
-	7	0.3940	20.57	9.56	30.13	57.98	-27.85	QP	
-	8	0.3940	7.24	9.56	16.80	47.98	-31.18	AVG	
-	9	0.6860	17.25	9.28	26.53	56.00	-29.47	QP	
	10 *	0.6860	13.43	9.28	22.71	46.00	-23.29	AVG	
-	11	13.1300	17.25	10.23	27.48	60.00	-32.52	QP	
-	12	13.1300	7.98	10.23	18.21	50.00	-31.79	AVG	
	12	13.1300	7.98	10.23	18.21	50.00	-31.79	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

Page 12 of 98

Report No.: TCT230717E006

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Toot Doguiromont	FCC Dort 1E C Sportion 1E 247 (a)(1)			
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

5.5.2. Test Instru	ments			
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	1

Page 15 of 98

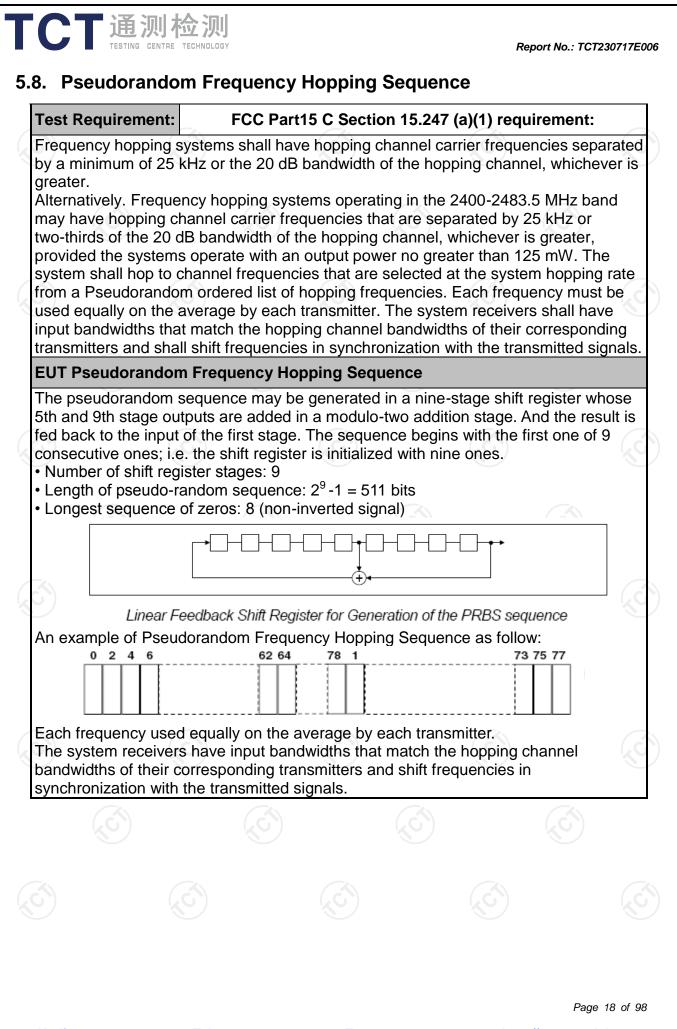
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 		
Test Result:	PASS		

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/


5.7. Dwell Time

5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fa in the restricted bands must also comply with the radiated emission limits.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 30 kHz (≥RBW). Band edge emissions must be at leas 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 			
Test Result:	PASS			

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.10. Conducted Spurious Emission Measurement

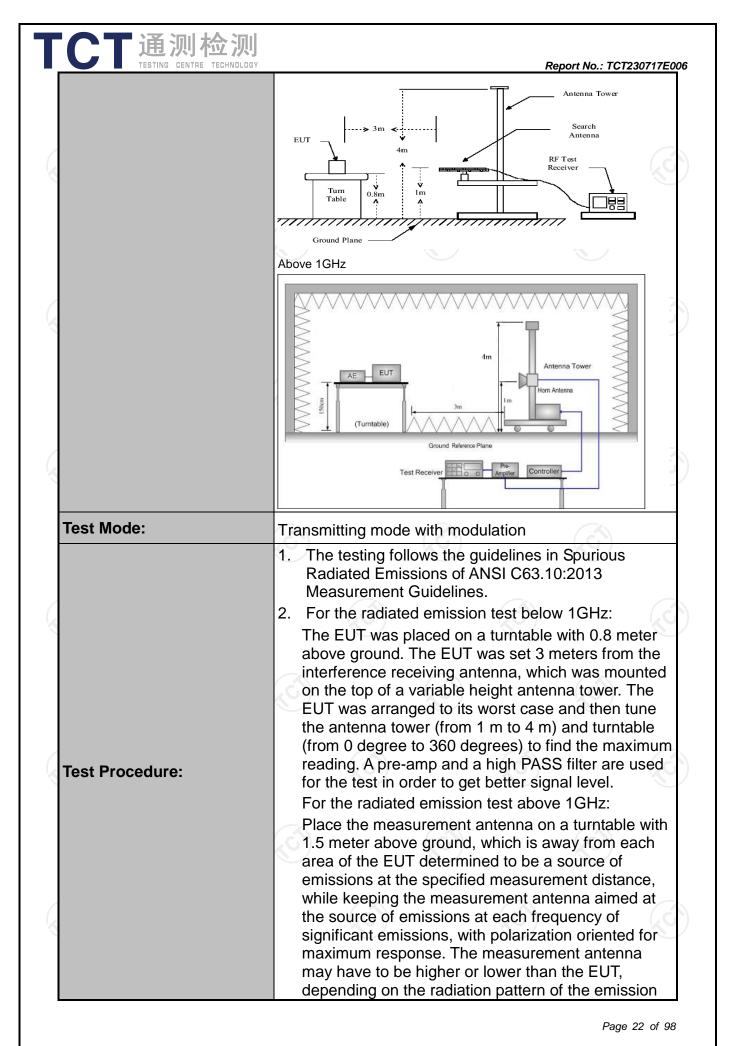
5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

Page 20 of 98


5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

	FUC Partis	C Sectior	n 15.209 👆			
Test Method:	ANSI C63.10	0:2013				
Frequency Range:	9 kHz to 25	GHz				6
Measurement Distance:	3 m				R	
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector	RBW	VBW		Remark
	9kHz- 150kHz	Quasi-pea		1kHz		si-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-pea	k 9kHz	30kHz	Quas	si-peak Value
	30MHz-1GHz	Quasi-pea		300KHz		si-peak Value
	Above 1GHz	Peak	1MHz	3MHz		eak Value
		Peak	1MHz	10Hz	Ave	erage Value
	Fragues		Field Str	ength	Me	asurement
	Frequer	ю	(microvolts	-	Dista	nce (meters)
	0.009-0.4		2400/F(I			300
	0.490-1.3		24000/F	(KHz)		30
	1.705-3		30			30
	30-88	1	100			3
Limit:	88-210		150 200			3 3
Linnt.	Above 9		500			3
			ovolts/meter) 500	(mete 3	rs)	Average
	Above 1GH	2	5000	3		Peak
Test setup:	For radiated emi	ssions below		Pre -	Comput	Peak

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	receiv measu maxim anteni restric above 3. Set to EUT 4. Use t (1) S e (2) S fo	ving the max urement an nizes the er na elevation cted to a rar the ground o the ground o the maxin transmit con the following or f>1GHz; Sweep = au = max hold For average correction fa 5.35(c). Du	g spectrum and vide enough to ing measured; 20 kHz for f < 7 VBW≥RBW; uto; Detector fu for peak e measuremen actor method p ty cycle = On f	The final n shall be that measurement n emissions sh of from 1 m to ground plane. etting and ena alyzer settings fully capture 1 GHz, RBW= unction = peal nt: use duty cy per	t which hall be o 4 m able the s: the able the s: the s: the s: the seconds
		Where N1 i length of ty Average Er Level + 20* Corrected Re	s number of ty pe 1 pulses, et nission Level = log(Duty cycle eading: Antenr	vpe 1 pulses, l tc. = Peak Emissi e) na Factor + Ca	_1 is ion able
Test results:		Where N1 i length of ty Average Er Level + 20* Corrected Re	s number of ty pe 1 pulses, et nission Level = log(Duty cycle	vpe 1 pulses, l tc. = Peak Emissi e) na Factor + Ca	_1 is ion able
Test results:	C C C	Where N1 i length of ty Average Er Level + 20* Corrected Re	s number of ty pe 1 pulses, et nission Level = log(Duty cycle eading: Antenr	vpe 1 pulses, l tc. = Peak Emissi e) na Factor + Ca	_1 is ion able
Test results:	C C C	Where N1 i length of ty Average Er Level + 20* Corrected Re	s number of ty pe 1 pulses, et nission Level = log(Duty cycle eading: Antenr	vpe 1 pulses, l tc. = Peak Emissi e) na Factor + Ca	_1 is ion able
Test results:	C C C	Where N1 i length of ty Average Er Level + 20* Corrected Re	s number of ty pe 1 pulses, et nission Level = log(Duty cycle eading: Antenr	vpe 1 pulses, l tc. = Peak Emissi e) na Factor + Ca	_1 is ion able

5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		1

Page 24 of 98

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

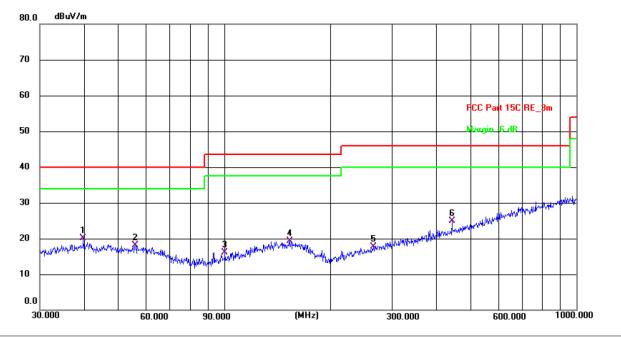
5.11.3. Test Data

TCT通测检测 TCT通测检测

Please refer to following diagram for individual

Site #2 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(C) Humidity: 55 %

Limit: FCC Part 15C RE_3m


Power: DC 3.7 V

-										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1 *	39.8542	5.75	14.41	20.16	40.00	-19.84	QP	Р	
	2	56.0007	4.63	13.51	18.14	40.00	-21.86	QP	Р	
	3	93.7685	5.67	10.36	16.03	43.50	-27.47	QP	Ρ	
	4	153.7385	4.25	15.14	19.39	43.50	-24.11	QP	Р	
	5	244.2321	4.44	12.94	17.38	46.00	-28.62	QP	Р	
	6	443.2943	6.66	18.25	24.91	46.00	-21.09	QP	Р	

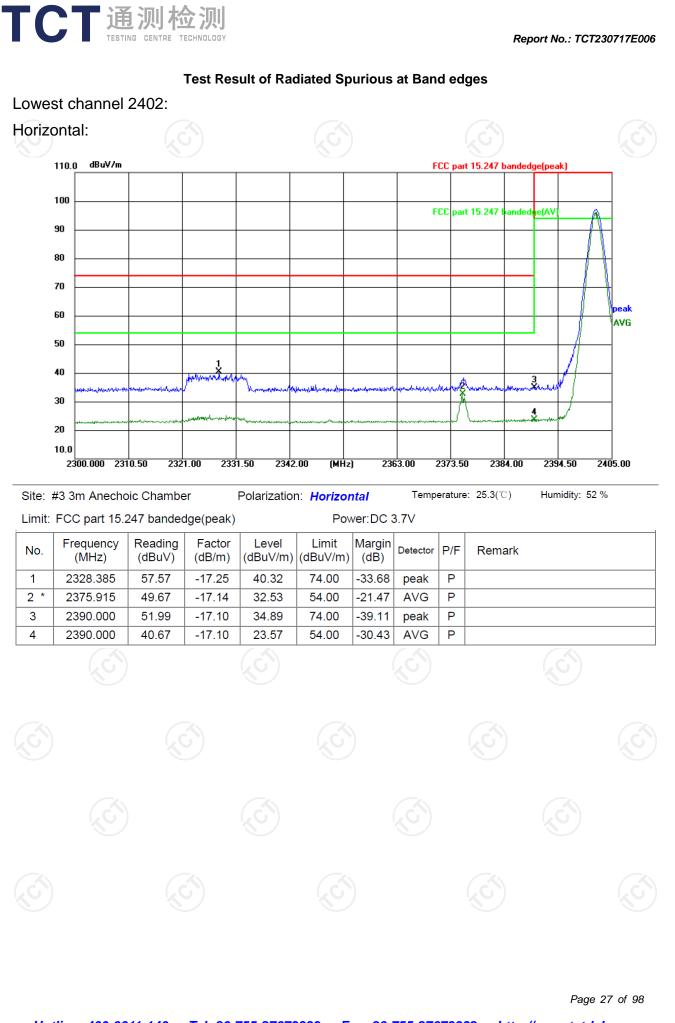
Page 25 of 98

Report No.: TCT230717E006

Vertical:

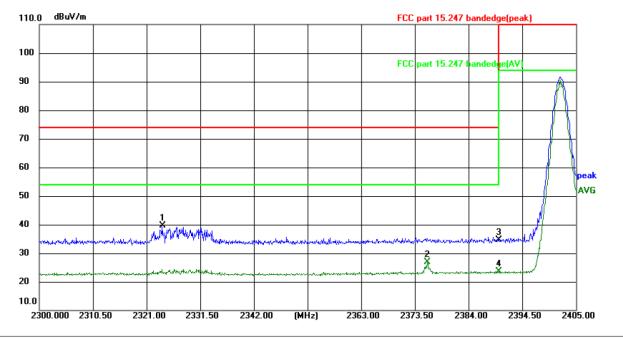
Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 25.3(C) Humidity: 55 %

Limit: FCC Part 15C RE 3m


Power: DC 3.7 V Reading Factor Level Limit Frequency Margin Detector P/F Remark No (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 39.8542 5.75 14.41 20.16 40.00 -19.84 QP Ρ 2 56.0007 4.63 13.51 18.14 40.00 -21.86 QP Ρ 3 100.5806 5.29 10.77 16.06 43.50 -27.44 QP Ρ 4 153.7385 4.25 15.14 19.39 43.50 -24.11 QP Ρ 5 265.6757 4.13 13.55 17.68 46.00 -28.32 QP Ρ 6 443.2943 6.66 18.25 24.91 46.00 -21.09 QP Ρ

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only.


- 3. Frea. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- Limit $(dB\mu V/m) = Limit$ stated in standard
- $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
- * is meaning the worst frequency has been tested in the test frequency range.

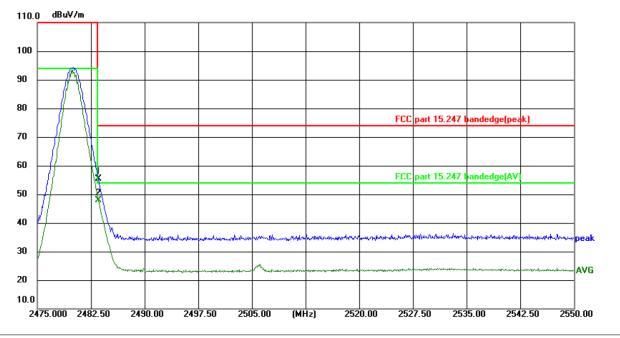
Report No.: TCT230717E006

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 25.3(°C) Humidity: 52 %

Limit: FCC part 15.247 bandedge(peak)


Power:DC 3.7V

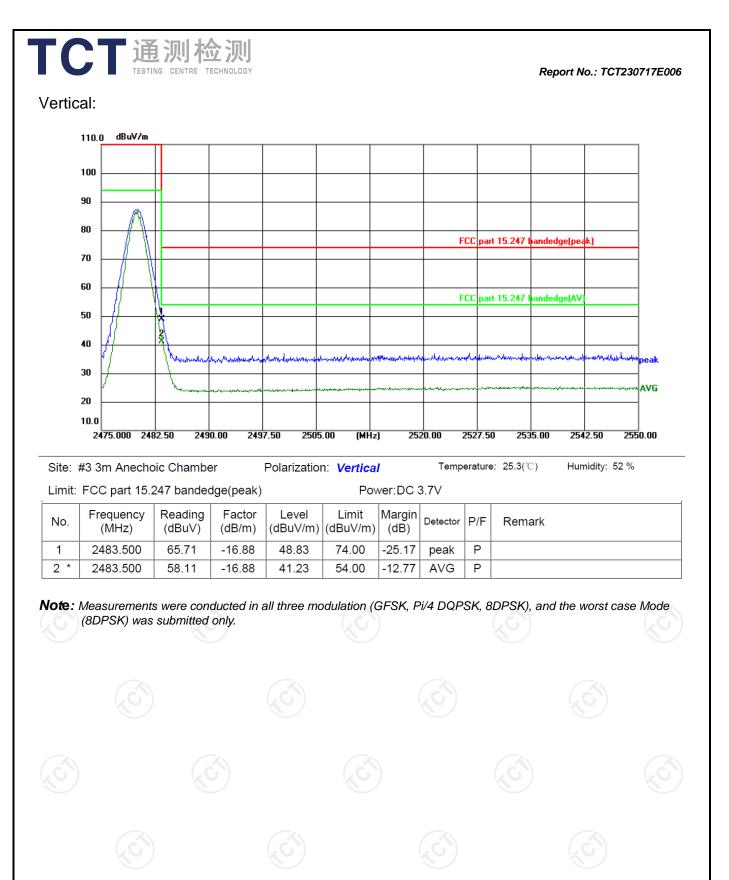
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2324.115	56.80	-17.26	39.54	74.00	-34.46	peak	Ρ	
2 *	2375.985	43.91	-17.14	26.77	54.00	-27.23	AVG	Ρ	
3	2390.000	51.65	-17.10	34.55	74.00	-39.45	peak	Ρ	
4	2390.000	40.80	-17.10	23.70	54.00	-30.30	AVG	Ρ	
		2	<u>(` ر</u>		12)			

Page 28 of 98

Highest channel 2480:

Horizontal:

Site: #3 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 25.3(°C) Humidity: 52 %


Limit: FCC part 15.247 bandedge(peak)

1 2483.500 72.15 -16.88 55.27 74.00 -18.73 peak P	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	2483.500	72.15	-16.88	55.27	74.00	-18.73	peak	Р	
2 ^ 2483.500 64.71 -16.88 47.83 54.00 -6.17 AVG P	2 *	2483.500	64.71	-16.88	47.83	54.00	-6.17	AVG	Р	

Power:DC 3.7V

Page 29 of 98

Report No.: TCT230717E006

Page 30 of 98

Above 1GHz

Modulation	Type: 8D	PSK								
Low channel: 2402 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4804	Н	46.17		0.66	46.83		74	54	-7.17	
7206	Н	37.60		9.50	47.10		74	54	-6.90	
	Н					~~~~				
(<u> </u>		J.J	•)		· C`)		(\mathcal{O})		
4804	V	45.82		0.66	46.48		74	54	-7.52	
7206	V	35.49		9.50	44.99		74	54	-9.01	
	V									

Middle cha	nnel: 2441	MHz))				Š
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)		Margin (dB)
4882	Н	45.26		0.99	46.25		74	54	-7.75
7323	KOĤ)	35.91	-1,0	9.87	45.78	0	74	54	-8.22
	Ĥ								
4882	V	47.55		0.99	48.54		74	54	-5.46
7323	V	36.03		9.87	45.90		74	54	-8.10
	V			V	/				

High channel: 2480 MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

Frequency	Ant Pol	Peak		Correction	Emissic	on Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading	reading	Factor	Peak	AV	(dBuV/m)	(dBµV/m)	(dB)
((dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(42,47,11)	(00,00,00)	. ,
4960	Н	45.38		1.33	46.71		74	54	-7.29
7440	Н	35.74		10.22	45.96		74	54	-8.04
	Н								
GN)		(.G)		(.0			(.c)		Ĵ.)
4960	V	43.67		1.33 🔪	45.00		74	54	-9.00
7440	V	34.42		10.22	44.64		74	54	-9.36
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

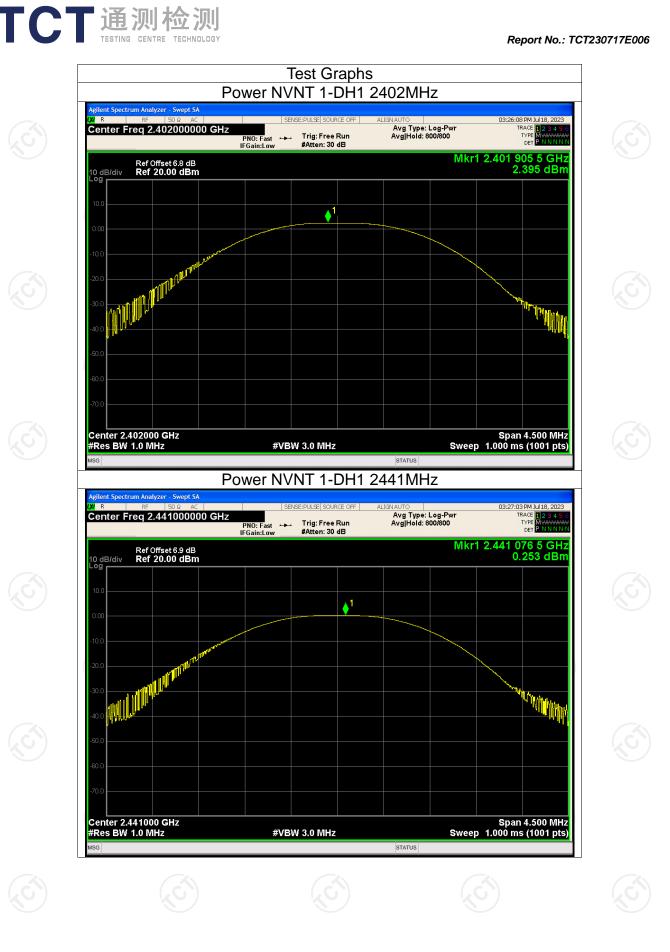
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

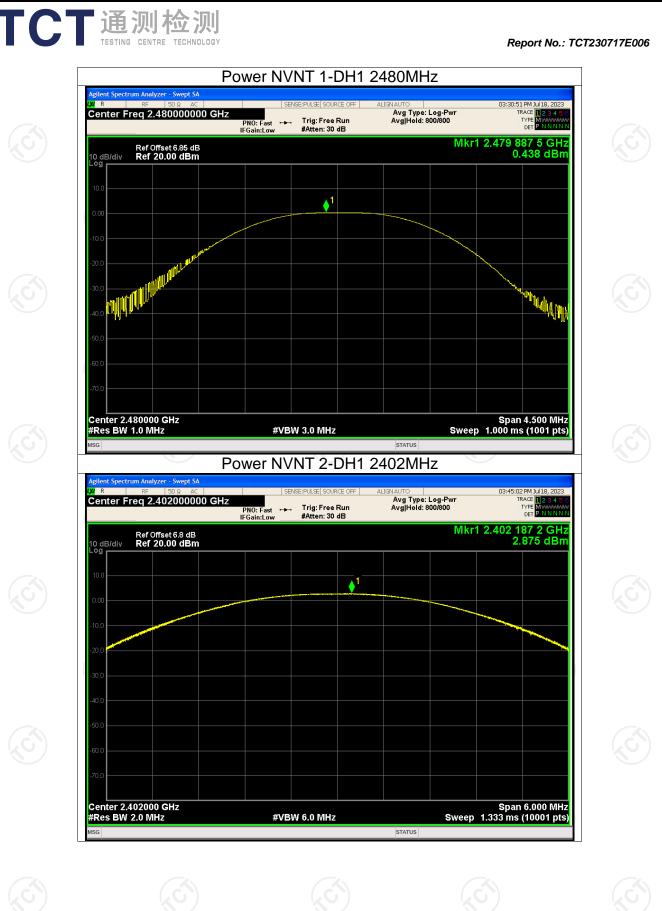
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

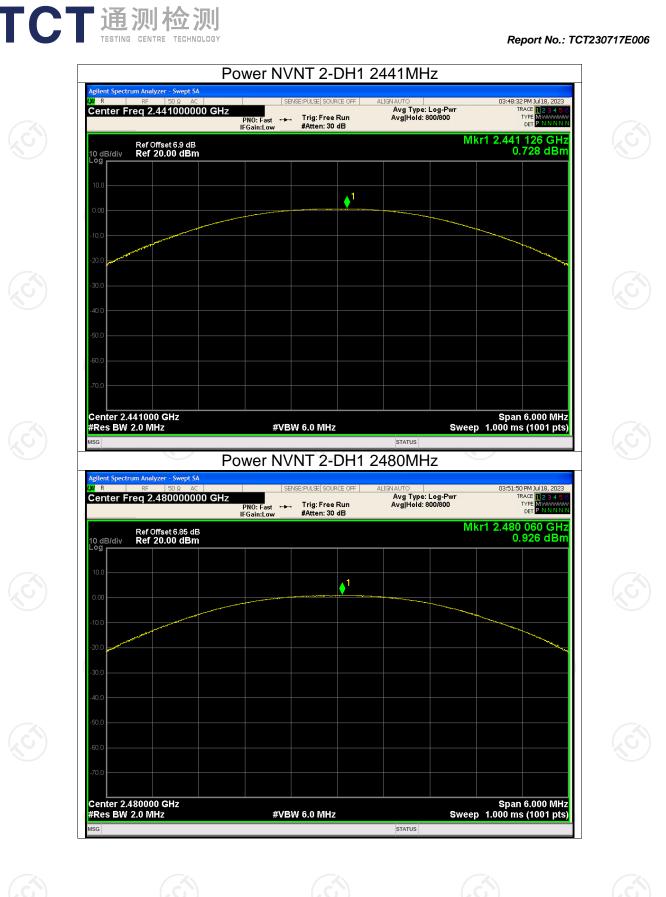
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

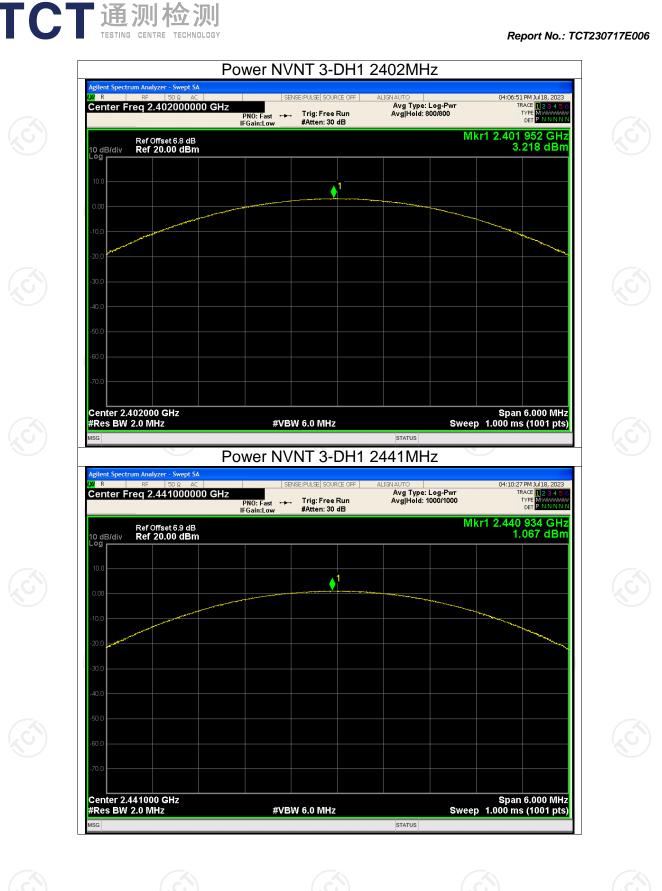
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

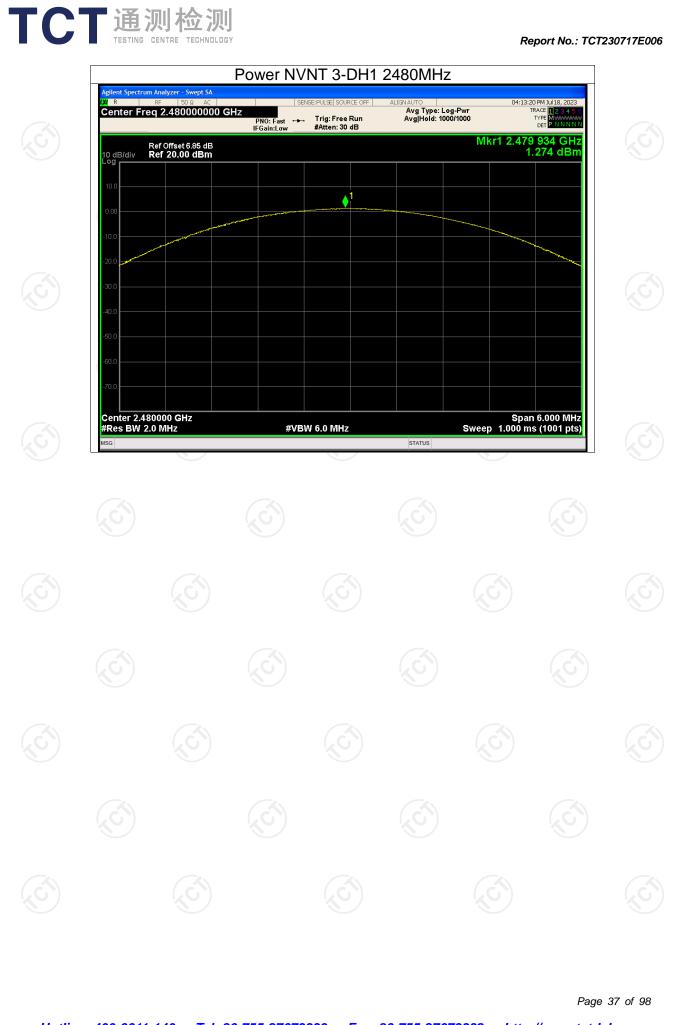
7. All the restriction bands are compliance with the limit of 15.209.




Appendix A: Test Result of Conducted Test


(Maximum Conducted Output Power												
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict								
NVNT	1-DH1	2402	2.40	30	Pass								
NVNT	1-DH1	2441	0.25	30	Pass								
NVNT	1-DH1	2480	0.44	30	Pass								
NVNT	2-DH1	2402	2.88	21	Pass								
NVNT	2-DH1	2441	0.73	21	Pass								
NVNT	2-DH1	2480	0.93	21	Pass								
NVNT 🔇	3-DH1	2402	3.22	21	Pass								
NVNT	3-DH1	2441	1.07	21	Pass								
NVNT	3-DH1	2480	1.27	21	Pass								

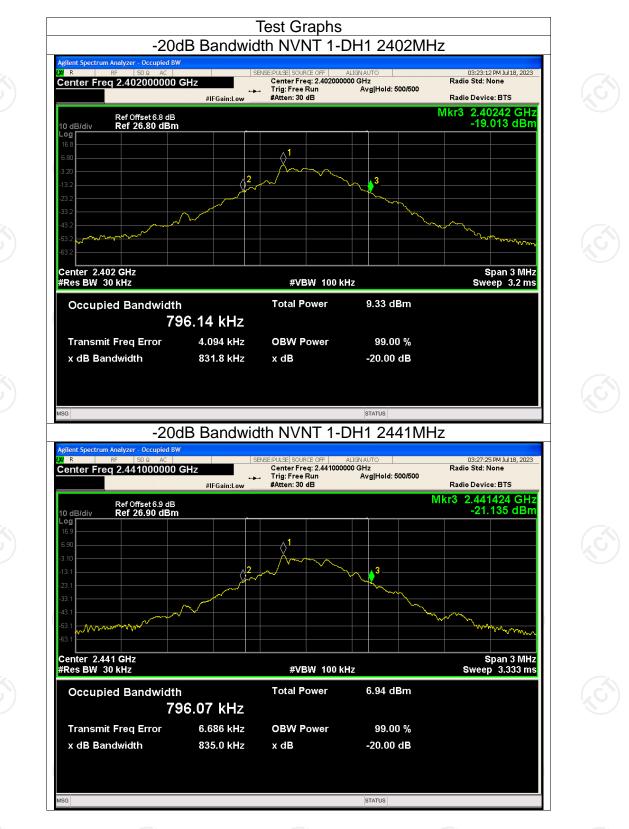

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



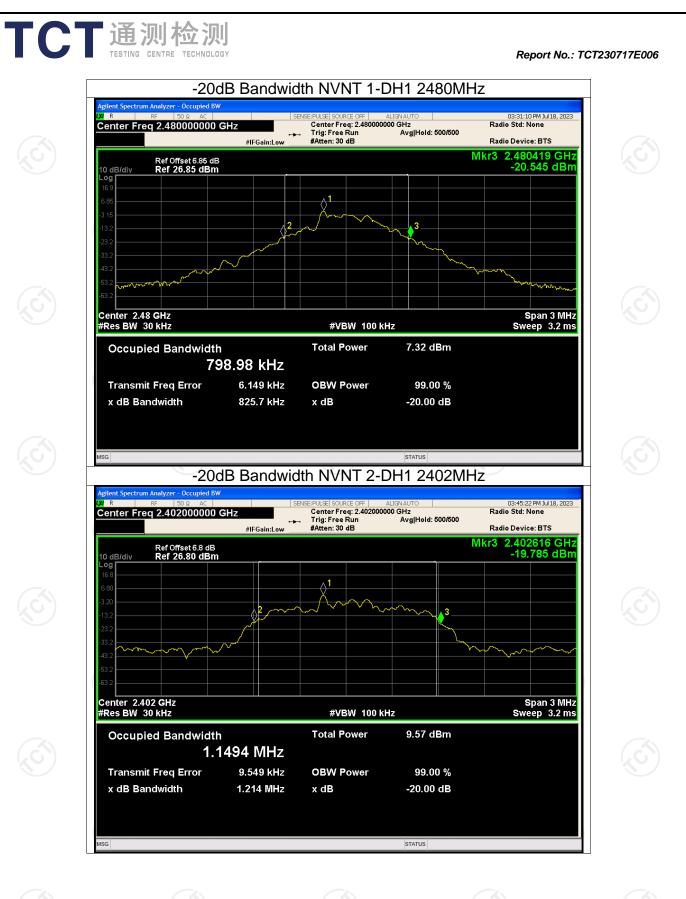
Page 35 of 98

Page 36 of 98

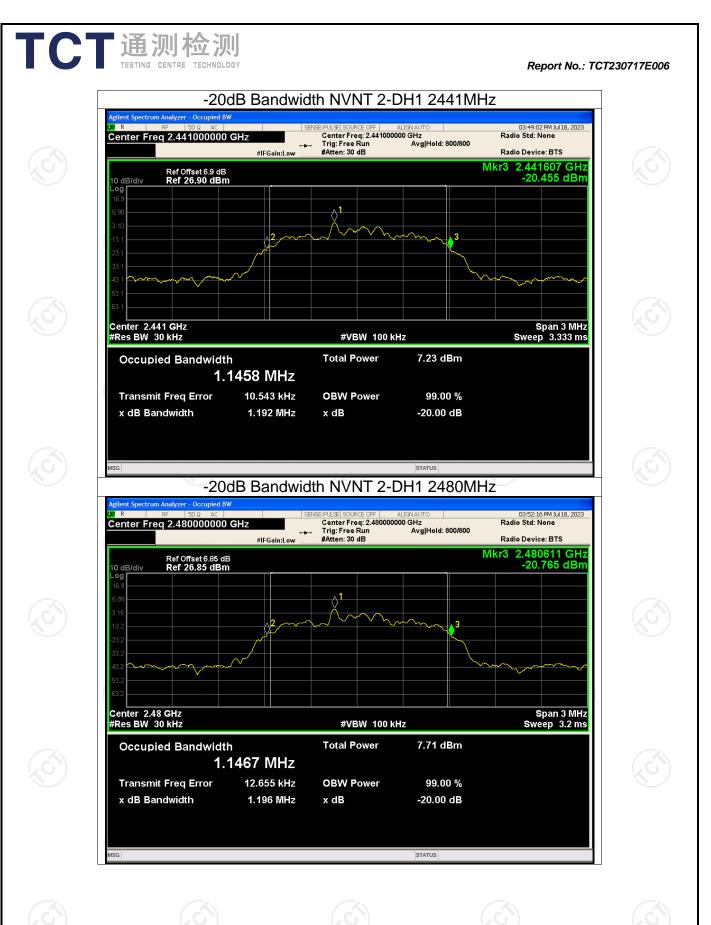
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

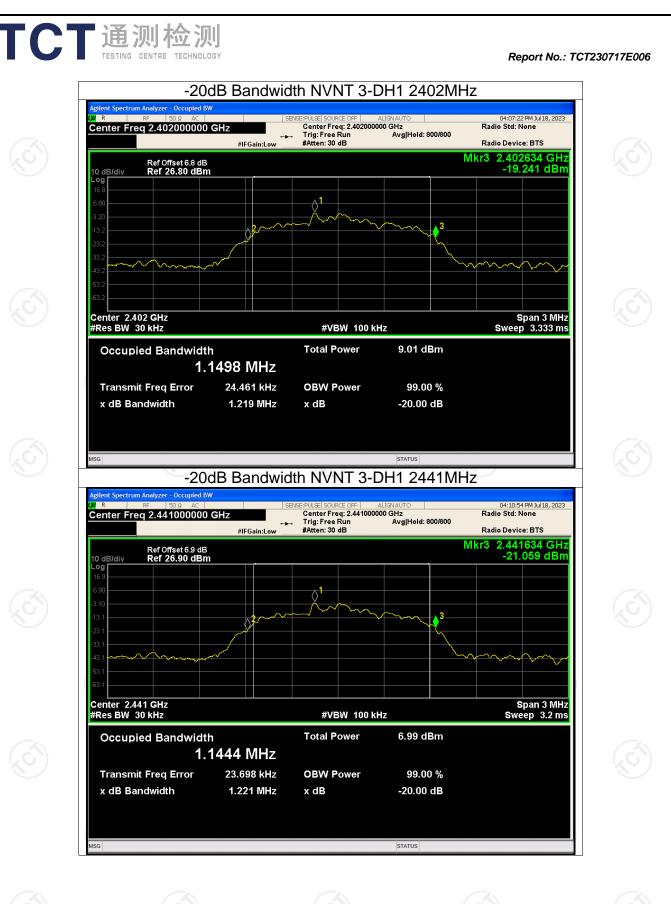

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict		
NVNT	1-DH1	2402	0.832	Pass		
NVNT 🚫	1-DH1	2441	0.835	Pass		
NVNT	1-DH1	2480	0.826	Pass		
NVNT	2-DH1	2402	1.214	Pass		
NVNT	2-DH1	2441	1.192	Pass		
NVNT	2-DH1	2480	1.196	Pass		
NVNT	3-DH1	2402	1.219	Pass		
NVNT	3-DH1	2441	1.221	Pass		
NVNT	3-DH1	2480	1.218	Pass		
X	5)					

Report No.: TCT230717E006

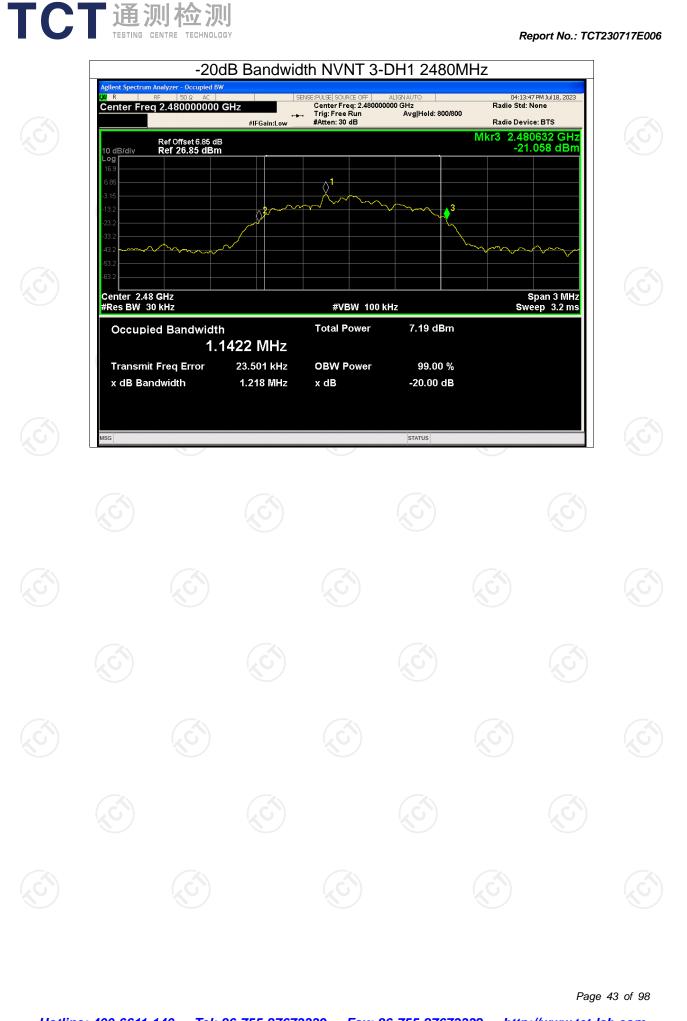


Page 38 of 98




CT通测检测 TESTING CENTRE TECHNOLOGY

Page 39 of 98



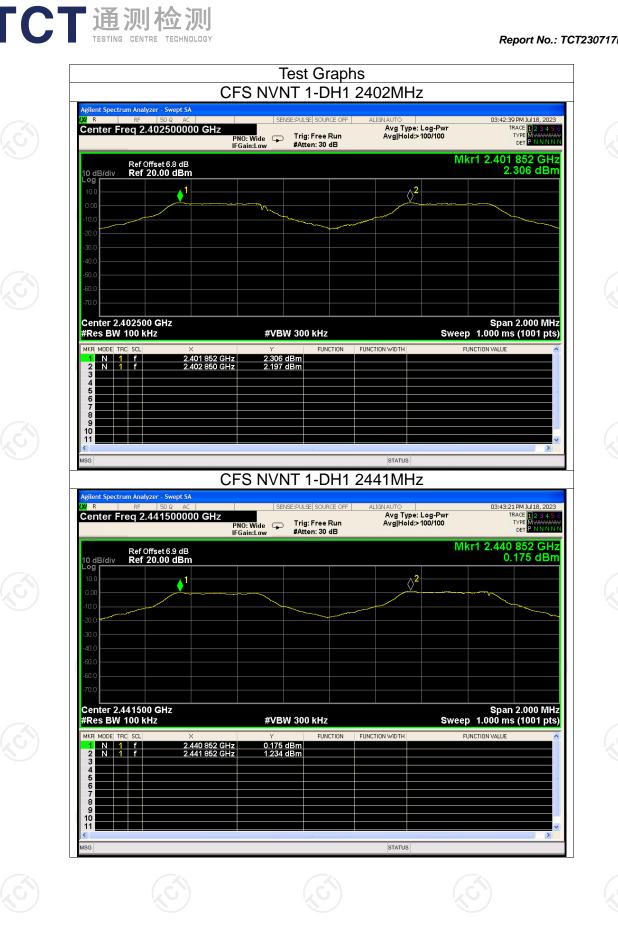
Page 40 of 98

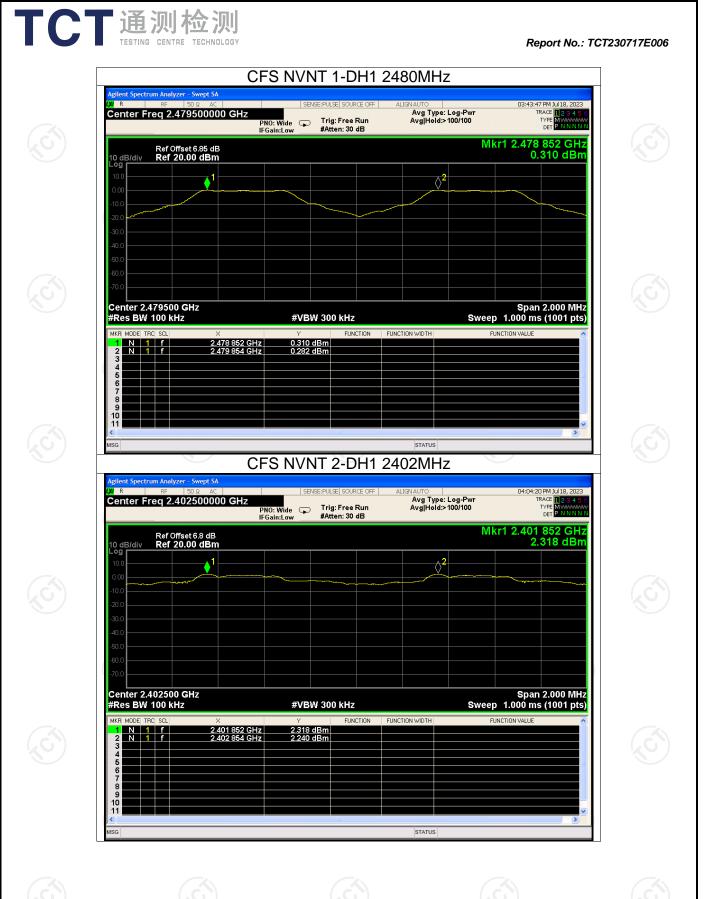
Page 42 of 98

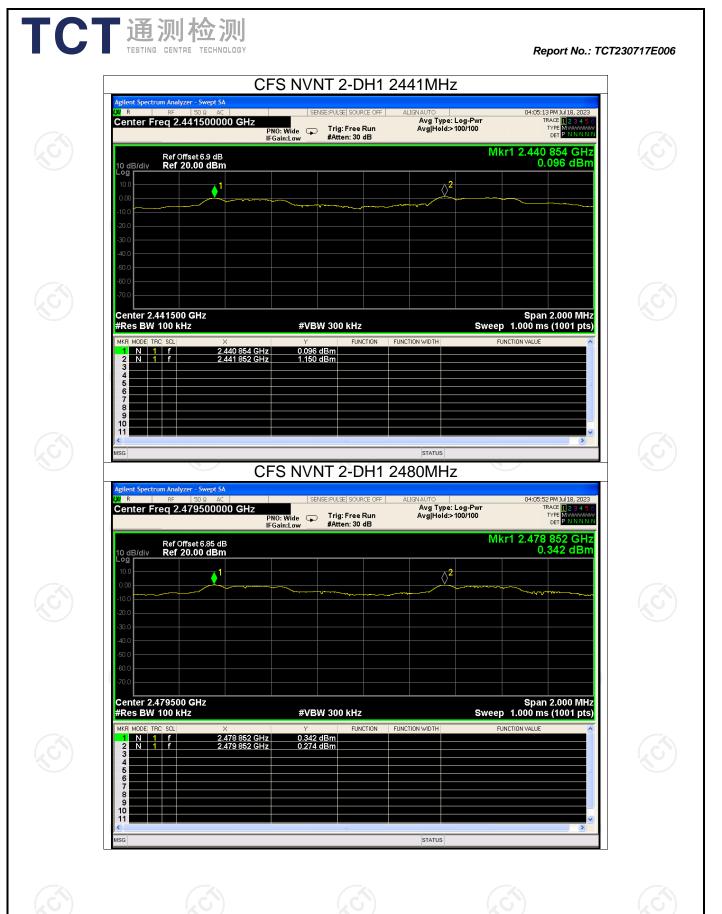
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Carrier Frequencies Separation

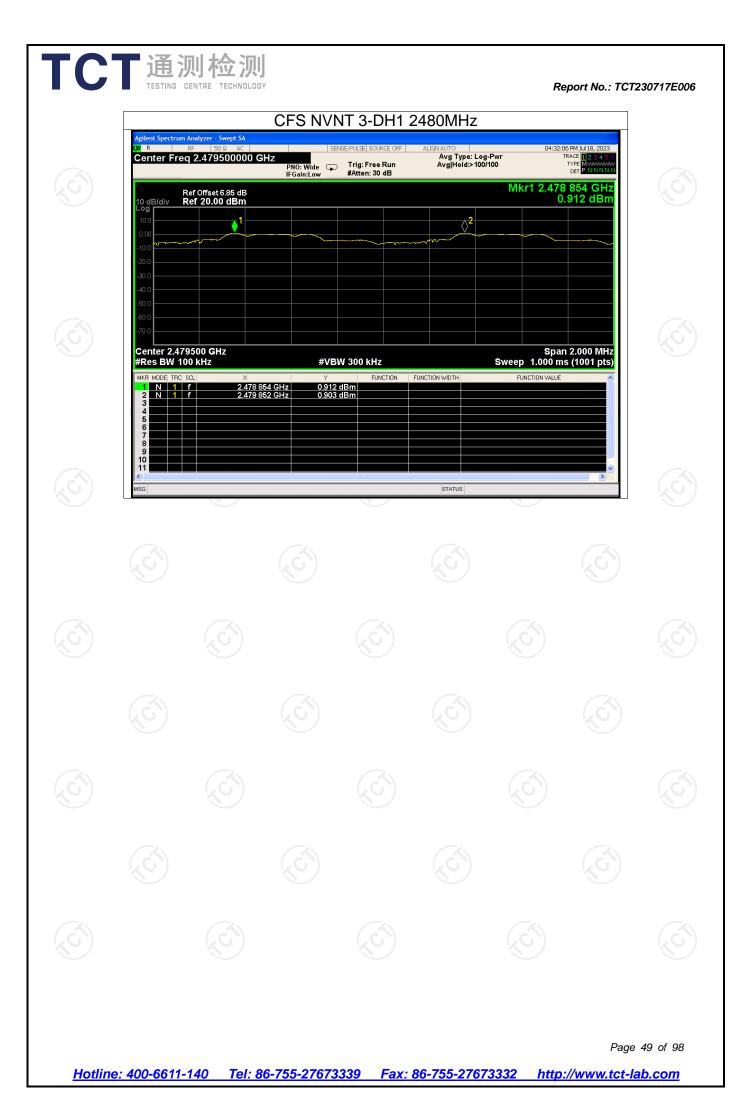



Report No.: TCT230717E006


Page 44 of 98

Report No.: TCT230717E006


Page 45 of 98



Page 47 of 98

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-52.88	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-51.11	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-53.23	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-51.38	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-52.95	-20	Pass
NVNT 🔇	3-DH1	2480	No-Hopping	-50.78	-20	Pass

			Band Edge		·	
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verd
NVNT	1-DH1	2402	No-Hopping	-52.88	-20	Pas
NVNT	1-DH1	2480	No-Hopping	-51.11	-20	Pas
NVNT	2-DH1	2402	No-Hopping	-53.23	-20	Pas
NVNT	2-DH1	2480	No-Hopping	-51.38	-20	Pas

Report No.: TCT230717E006

Test Graphs Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref PULSE SOURCE OFF Jul 18, 2 TRACE 1 2 3 4 5 0 TYPE MWWWWW DET P N N N N Avg Type: Log-Pwr Avg|Hold: 2000/2000 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 856 GHz 2.298 dBm

STATUS

ᢆ᠕᠕᠕ www Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz

Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission

B		zer - Swept SA											
	RF	50 Ω AC			SENSE:PUL	.SE SOUR	CE OFF	ALI	GNAUTO				9 PM Jul 18, 20
enter F	req 2.3	35600000	F	PNO: Fast ← Gain:Low		g: Free F ten: 30 (e: Log-Pwi I: 2000/2000			RACE 1234 TYPE MUMUA DET PNNN
dB/div		fset 6.8 dB 2 6.80 dBm										Mkr1 2.4 2.	01 9 GI 323 dB
9 5.8													
80													<u>1</u>
20													<u>í</u>
3.2													-17.10
.2													
.2													
.2										^ 4	L	<u>^</u> 3	A2
2	والمرامحوني	and the state of t	ويرابيان المراجع	م	مردور معارستها	the second second		مهامدس			محررامي	-	Miner
1.2													
		-										2 4 0	
	0600 GH	ΗZ		#\	BW 30	0 kHz				2	woon	Stop 2.	40600 G (1001 p
		z		"							weeh	9.000 1113	
Res BW	100 kH	×		Y			CTION	FUNCTI	ON WIDTH			INCTION VALUE	
Res BW	100 kH	×	2.401 9 GHz 2.400 0 GHz	Y 2.3	23 dBm 13 dBm		CTION	FUNCTI	ON WIDTH				
Res BW	100 kH	×	2.401 9 GHz 2.400 0 GHz 2.390 0 GHz	¥ 2.3 -49.6 -53.1	43 dBm 34 dBm		CTION	FUNCTI	ON WIDTH				
Res BW	100 kH	×	2.401 9 GHz 2.400 0 GHz	¥ 2.3 -49.6 -53.1	13 dBm		CTION	FUNCTI	ON WIDTH				
Res BW (R) MODE TF 1 N 1 2 N 1 3 N 1 4 N 1 5 - - 6 - - 7 - -	100 kH	×	2.401 9 GHz 2.400 0 GHz 2.390 0 GHz	¥ 2.3 -49.6 -53.1	43 dBm 34 dBm		CTION	FUNCTI	ON WIDTH				
Res BW	100 kH	×	2.401 9 GHz 2.400 0 GHz 2.390 0 GHz	¥ 2.3 -49.6 -53.1	43 dBm 34 dBm		CTION	FUNCTI	ON WIDTH				
Res BW R MODE TR R MODE TR R MODE TR R N 1	100 kH	×	2.401 9 GHz 2.400 0 GHz 2.390 0 GHz	¥ 2.3 -49.6 -53.1	43 dBm 34 dBm		CTION	FUNCTI	ON WIDTH				
R MODE TH N MODE TH N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1	100 kH	×	2.401 9 GHz 2.400 0 GHz 2.390 0 GHz	¥ 2.3 -49.6 -53.1	43 dBm 34 dBm		CTION	FUNCTI	ON WIDTH)

Report No.: TCT230717E006

Page 51 of 98

ım Anal

Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 26.80 dBm

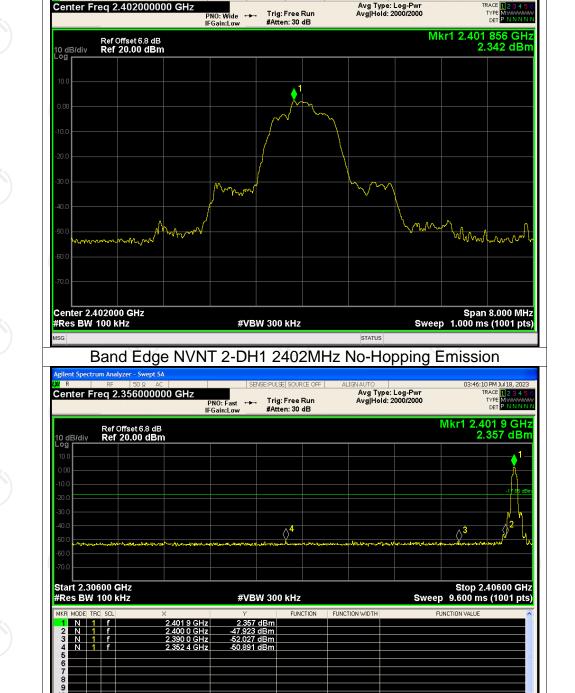
UR

10 dB/div Loa

Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

SENSE: PULSE SOURCE OFF

Center Freg 2.480000000 GHz


UR

Report No.: TCT230717E006

Page 52 of 98

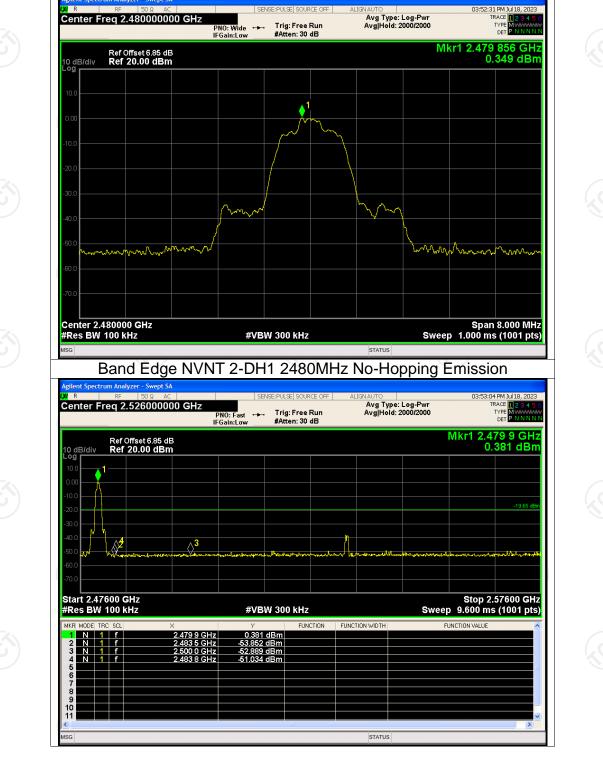
03:31:25 PM Jul 18, 20 TRACE 12 3 4

STATUS

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 2000/2000

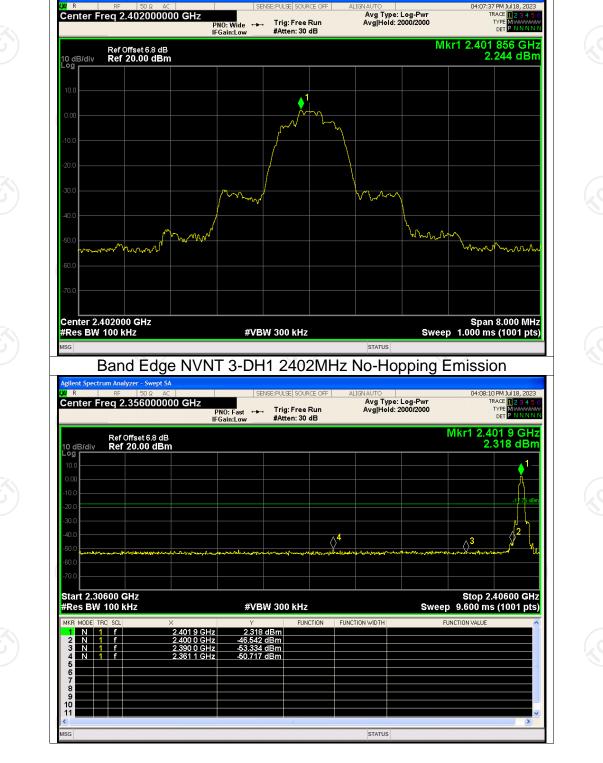
SENSE:PULSE SOURCE OF


Center Freg 2.402000000 GHz

R

Report No.: TCT230717E006

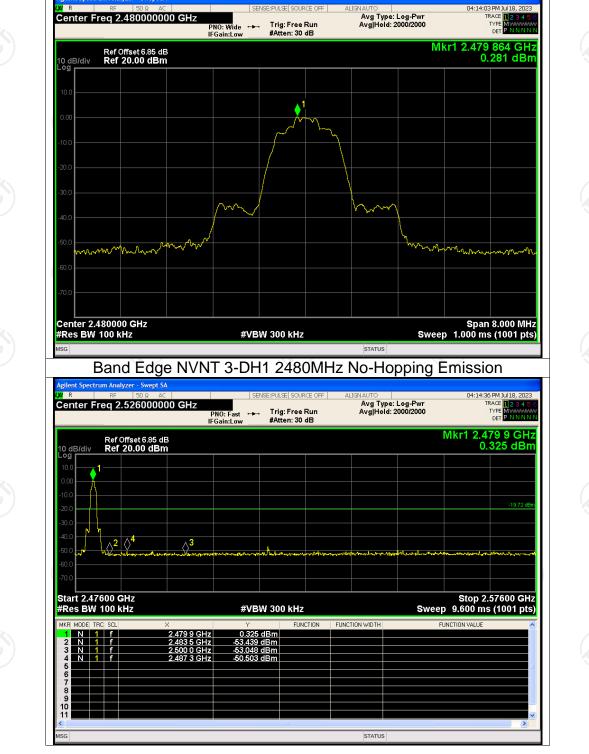
Page 53 of 98


03:45:37 PM Jul 18, 20: TRACE 12, 3, 4

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

FCT 通测检测 TESTING CENTRE TECHNOLOGY

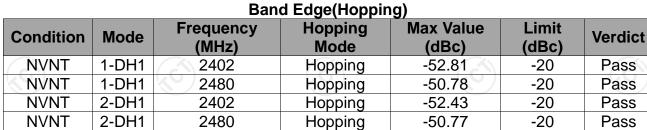
Report No.: TCT230717E006


Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

FCT 通测检测 TESTING CENTRE TECHNOLOGY

R

Report No.: TCT230717E006


Page 55 of 98

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

Report No.: TCT230717E006

Hopping

-52.95

-50.94

Report No.: TCT230717E006

Pass

Pass

-20

-20

NVNT	3-DH1	2480	Hopping

2402

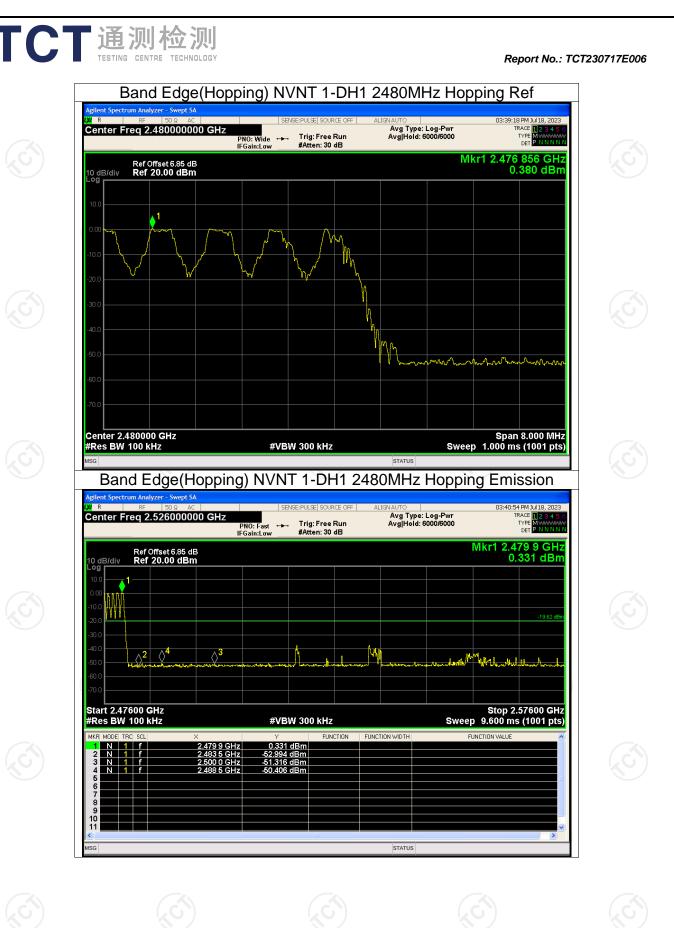
3-DH1

NVNT

Page 57 of 98

Test Graphs Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref nt Spectrum A)6 PM Jul 18, 2 ULSE SOURCE OFF TRACE 1 2 3 4 5 TYPE MWWWW DET PINNNN Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 6000/6000 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 856 GHz 2.265 dBm Ref Offset 6.8 dB Ref 20.00 dBm ۵ Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

UR


10 dB/div Log

Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission

Ref Offset 6.3 dB Mkr1 2.401 9 GHz 10 2.346 dBm 100 1	Agilent Spectrum Analyzer - Swept SA (# R RF 50 & AC Center Freq 2.356000000 GHz	SENSE:PULSE SOURCE OFF	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 6000/6000	03:36:42 PM Jul 18, 2023 TRACE 1 2 3 4 5 6 TYPE M
Start 2.30600 GHz #Res BW 100 KHz #VBW 300 kHz Stop 2.40600 GHz #Res BW 100 KHz #VBW 300 kHz Sweep 9.600 ms (1001 pts) MKR MODE TRC SCL × Y Function Function violtH Function violtH 1 N 1 f 2.401 9 GHz 2.346 dBm - - 2 N 1 f 2.400 0 GHz -50.748 dBm - - - - 3 N 1 f 2.390 0 GHz -50.748 dBm -	10 dB/div Ref 20.00 dBm 10.0	4 		2.346 dBm
1 N 1 f 2.401 9 GHz 2.346 dBm 2 N 1 f 2.400 0 GHz -50.748 dBm 3 N 1 f 2.390 0 GHz -53.034 dBm 4 N 1 f 2.351 6 GHz -50.647 dBm 5 - - - - - 6 - - - - - 7 - - - - - 9 - - - - - 10 - - - - -	#Res BW 100 kHz			p 9.600 ms (1001 pts)
	1 1 f 2.4019 GH 2 N 1 f 2.400 0 GH 3 N 1 f 2.390 0 GH 4 N 1 f 2.351 6 GH 5 - - - - 6 - - - - 7 - - - - - 9 -	Iz 2.346 dBm Iz -50.748 dBm Iz -53.034 dBm		~

Report No.: TCT230717E006

Page 58 of 98

Page 59 of 98

UR :04 PM Jul 18, 20 SENSE: PULSE SOURCE OFF Center Freg 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 6000/6000 TRACE PNO: Wide ↔ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE MWWWWW DET P N N N N Mkr1 2.402 856 GHz 2.228 dBm Ref Offset 6.8 dB Ref 20.00 dBm 10 dB/div Log ▲1 WV mond hm \nr M -MMMAnd an Center 2.402000 GHz #Res BW 100 kHz #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Emission SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 6000/6000 Center Freq 2.356000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 6.8 dB Ref 20.00 dBm 10 dB/div Log \Diamond^4 <mark>,</mark>2 \Diamond^3

Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Ref

#VBW 300 kHz FUNCTION WIDTH FUNCTION 50.220 dBm 52.300 dBm 50.202 dBm 0 GHz 0 GHz 2.390 0 GHz 2.342 8 GHz Ν STATUS

Report No.: TCT230717E006

Page 60 of 98

ICT通测检测 TESTING CENTRE TECHNOLOGY