

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Shenzhen Kingsun Enterprises Co., Ltd.

Flashing Bluetooth Speaker

Model No.: DC-1445

FCC ID: 2AAPK-DC1445

Prepared for Address	:	Shenzhen Kingsun Enterprises Co., Ltd. 25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, China
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20191515
Date of Test	:	October 12-17, 2019
Date of Report	:	October 18, 2019

TABLE OF CONTENTS

D	•	· •	
Desc	rın	f101	n
	• • P	u o	

Page

T	ABLE	OF CONTENTS	2
1.	GE	NERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessory and Auxiliary Equipment	
	1.3.	Description of Test Facility	
	1.4.	Measurement Uncertainty	6
2.	M	EASURING DEVICE AND TEST EQUIPMENT	7
3.	OP	ERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	8
	3.2.	Configuration and peripherals	8
4.	FR	EQUENCY HOPPING SYSTEM REQUIREMENTS	9
	4.1.	Standard and Limit	
	4.2.	EUT Pseudorandom Frequency Hopping Sequence	9
5.	ТЕ	ST PROCEDURES AND RESULTS	
6.	201	DB BANDWIDTH TEST	11
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	12
7.	CA	RRIER FREQUENCY SEPARATION TEST	16
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(a)(1)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	
8.		MBER OF HOPPING FREQUENCY TEST	
	8.1.	Block Diagram of Test Setup.	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3. 8.4.	EUT Configuration on Measurement	
	8.4. 8.5.	Test Procedure	
	8. <i>5</i> . 8.6.	Test Result	
9.		VELL TIME TEST	
9.	9.1.	Block Diagram of Test Setup	
	9.1. 9.2.	The Requirement For Section 15.247(a)(1)(iii)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	
	9.5.	Test Procedure	

9.6.	Test Result	
10. MA	AXIMUM PEAK OUTPUT POWER TEST	
10.1.	Block Diagram of Test Setup	
10.2.	The Requirement For Section 15.247(b)(1)	
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	
10.5.	Test Procedure	
10.6.	Test Result	
11. RA	ADIATED EMISSION TEST	
11.1.	Block Diagram of Test Setup	
11.2.	The Limit For Section 15.247(d)	
11.3.	Restricted bands of operation	
11.4.	Configuration of EUT on Measurement	
11.5.	Operating Condition of EUT	
11.6.	Test Procedure	
11.7.	Data Sample	
11.8.	Tetst Results	
12. BA	ND EDGE COMPLIANCE TEST	
12.1.	Block Diagram of Test Setup	
12.2.	The Requirement For Section 15.247(d)	
12.3.	EUT Configuration on Measurement	
12.4.	Operating Condition of EUT	
12.5.	Test Procedure	
12.6.	Test Result	
13. AC	C POWER LINE CONDUCTED EMISSION TEST	
13.1.	Block Diagram of Test Setup	
13.2.	Power Line Conducted Emission Measurement Limits	
13.3.	Configuration of EUT on Measurement	
13.4.	Operating Condition of EUT	
13.5.	Test Procedure	64
13.6.	Data Sample	
13.7.	Test Results	
14. AN	TENNA REQUIREMENT	68
14.1.	The Requirement	
14.2.	Antenna Construction	

Test Report Certification

Applicant	:	Shenzhen Kingsun Enterprises Co., Ltd.
Manufacturer	:	ShenZhen MiaoMiao Digital Technology Co., Ltd
EUT	:	Flashing Bluetooth Speaker
Model No.	:	DC-1445

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	October 12-17, 2019
Date of Report :	October 18, 2019
Test Engineer :	Ben
	(Ben, Engineer)
Prepared by :	BobWarg
	(Boh Vang, En Leer)
Approved & Authorized Signer :	(Seen Lin Manager)
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number Bluetooth version	:	DC-1445 V5.0
Frequency Range	:	2402MHz-2480MHz
Number of Channels	:	79
Antenna Gain(Max)	:	-0.58dBi
Antenna type	:	Integral Antenna
Modulation mode	:	GFSK, $\pi/4$ DQPSK
Hardware version	:	V1.0
Software version Power Supply Applicant Address Manufacturer Address	: : : :	 V1.0 DC 3.7V (Powered by Lithium battery) or DC 5.0V (Powered by USB port) Shenzhen Kingsun Enterprises Co., Ltd. 25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, China ShenZhen MiaoMiao Digital Technology Co., Ltd Building 6, No.279, Dabutou Road, Guanlan District, Longhua District, Shenzhen City, Guangdong Province,
		China

1.2. Accessory and Auxiliary Equipment

AC/DC Power Adapter	:	Model:BEK-QC-001
(provided by laboratory)		INPUT: 120V~60Hz
		OUTPUT:5V/1A

1.3.Description of Test Facility

EMC Lab	:	Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358 Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2 Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193 Accredited by American Association for Laboratory Accreditation (A2LA)
		The Certificate Number is 4297.01
Name of Firm	:	Shenzhen Accurate Technology Co., Ltd.
Site Location	:	1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

1.4. Measurement Uncertainty

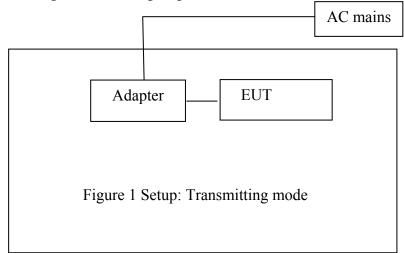
Radiated emission expanded uncertainty (9kHz-30MHz)	: U=2.66dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	: U=4.28dB, k=2
Radiated emission expanded uncertainty (1G-18GHz)	: U=4.98dB, k=2
Radiated emission expanded uncertainty (18G-26.5GHz)	: U=5.06dB, k=2
Conduction Emission Expanded Uncertainty (Mains ports, 9kHz-30MHz)	: U=2.72dB, k=2
Conduction Emission Expanded Uncertainty (Telecommunication ports, 150kHz-30MHz)	: U=2.94dB, k=2
Power disturbance Expanded Uncertainty Harmonic current expanded uncertainty	: U=2.92dB, k=2 : U=0.512%, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	1 Year
EMI Test Receiver	Rohde& Schwarz	ESR	101817	Jan. 05, 2019	1 Year
Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan. 05, 2019	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU1183540-01	3791	Jan. 05, 2019	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 05, 2019	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-2 375/2510-60/11SS	N/A	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.3	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-5m(Frequency range:9KHz-26.5GHz)	NO.4	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.5	Jan. 05, 2019	1 Year
RF COAXIAL CABLE	SUHNER	N-1m(Frequency range:9KHz-26.5GHz)	NO.6	Jan. 05, 2019	1 Year
Temporary antenna connector	NTGS	14AE	N/A	Jan. 21, 2019	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.



3. OPERATION OF EUT DURING TESTING

3.1.Operating Mode

The mode is used: Transmitting mode Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz Hopping

3.2.Configuration and peripherals

EUT Figure 2 Setup: for radiated emission
--

4. FREQUENCY HOPPING SYSTEM REQUIREMENTS

4.1.Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

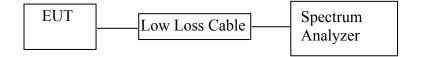
(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

4.2.EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 34, 51, 72, 09, 01, 64, 22, 33, 41, 32, 47, 65, 73, 53, 69, 06, 17, 04, 20, 36, 52, 38, 66, 70, 78, 68, 76, 21, 29, 10, 26, 49, 00, 58, 44, 59, 75, 13, 03, 14, 11, 35, 43, 37, 50, 61, 77, 55, 71, 02, 23, 07, 27, 39, 54, 46, 48, 15, 63, 62, 67, 25, 31, 12, 28, 19, 60, 42, 57, 74, 16, 05, 18, 30, 45, etc.

The system receiving have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


5. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emissions Test	Compliant
Section 15.203	Antenna Requirement	Compliant

6. 20DB BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.3.EUT Configuration on Measurement

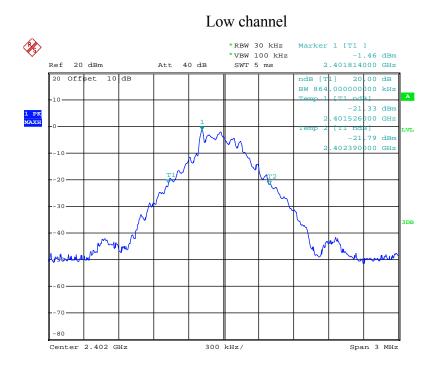
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

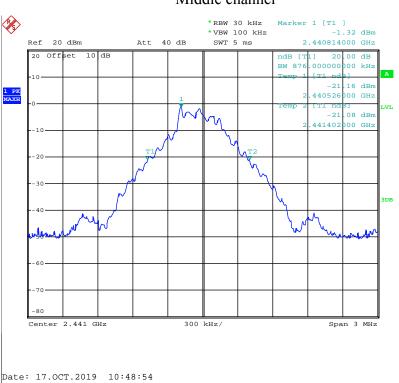
6.5. Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 6.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

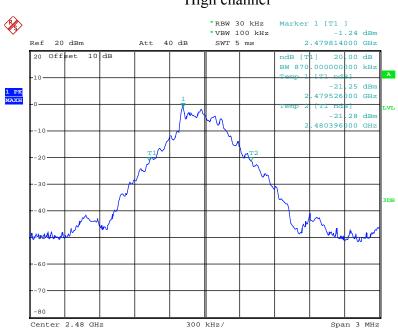

6.6.Test Result

Test Lab: Shielding room Test Engineer: Ben

Channel	Frequency (MHz)	GFSK 20dB Bandwidth (MHz)	∏/4-DQPSK 20dB Bandwidth (MHz)	Result
Low	2402	0.864	1.236	Pass
Middle	2441	0.876	1.236	Pass
High	2480	0.870	1.236	Pass

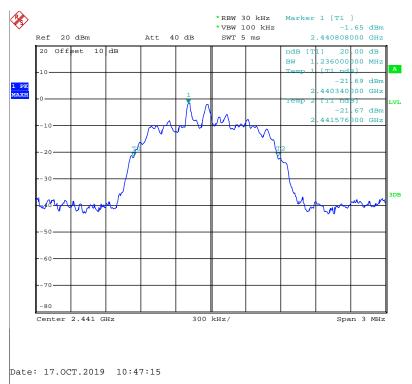

The spectrum analyzer plots are attached as below.

GFSK Mode



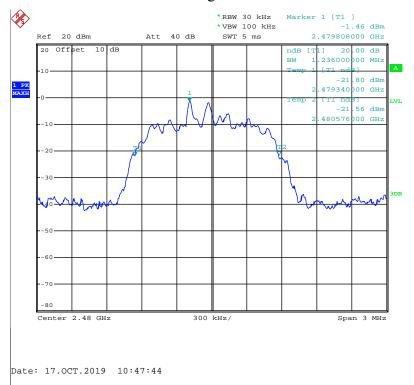
Date: 17.0CT.2019 10:49:26

Middle channel

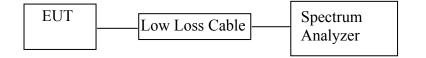

High channel

Date: 17.0CT.2019 10:48:15

∏/4-DQPSK Mode


Low channel × *RBW 30 kHz *VBW 100 kHz Marker 1 [T1] -1.49 dBm 2.401814000 GHz Ref 20 dBm Att 40 dB SWT 5 ms 20 Offset 10 dB 20 .00 dB ndB BW 236000 000 MH2 T1 n 1 (-21 .66 dBr 1 PK MAXH 401340000 GHz 11 30 dBn -21 Μ 402576000 GHz 10 20 -30 3DB 140 1 -50 -60 70 80 Center 2.402 GHz 300 kHz/ Span 3 MHz Date: 17.0CT.2019 10:46:37

Middle channel


High channel

7. CARRIER FREQUENCY SEPARATION TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1.Setup the EUT and simulator as shown as Section 6.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

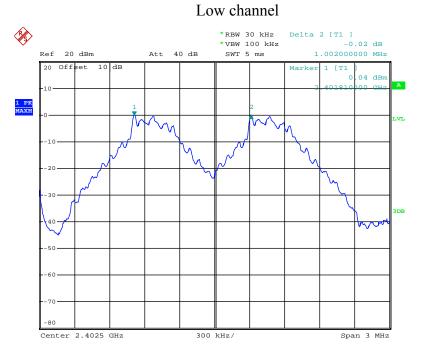
7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3 MHz.
- 7.5.3.Set the adjacent channel of the EUT Maxhold another trace.
- 7.5.4.Measurement the channel separation

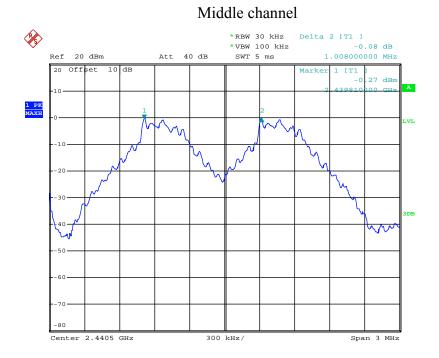
7.6.Test Result

Test Lab: Shielding room Test Engineer: Ben

GFSK

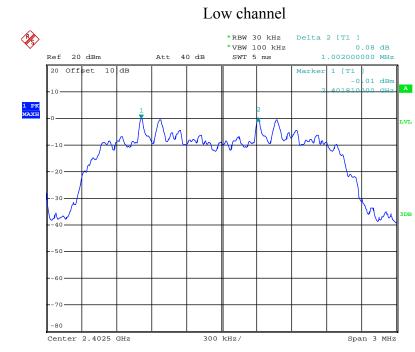

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result	
Low	2402	1.002	25KHz or 2/3*20dB	Pass	
	2403 2440		bandwidth 25KHz or 2/3*20dB		
Middle –	2441	1.008	bandwidth	Pass	
High	2479 2480	1.002	25KHz or 2/3*20dB bandwidth	Pass	

∏/4-DQPSK


Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.002	25KHz or 2/3*20dB bandwidth	Pass
Middle	2440 2441	1.002	25KHz or 2/3*20dB bandwidth	Pass
High	2479 2480	1.002	25KHz or 2/3*20dB bandwidth	Pass

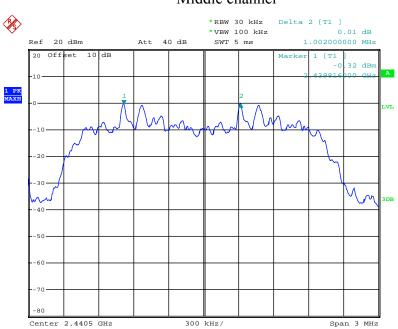
GFSK Mode

Date: 17.0CT.2019 15:45:34

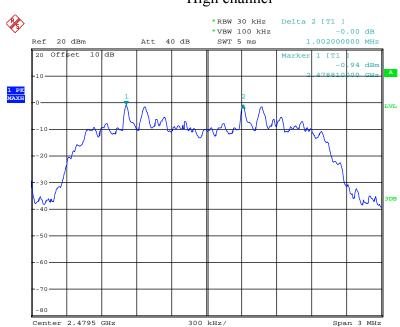


Date: 17.0CT.2019 15:49:51

High channel **X** *RBW 30 kHz *VBW 100 kHz SWT 5 ms Delta 2 [T1] 0.09 dB 1.002000000 MHz Ref 20 dBm Att 40 dB 20 Offset 10 dB [T1 Marker 08 dB 10 1 PK MAXH they л m -10 Ν 20 DB 40 m 50 60 70 80 Center 2.4795 GHz Span 3 MHz 300 kHz/


Date: 17.0CT.2019 15:51:10

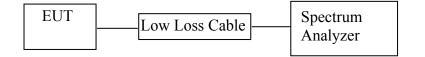
Π/4-DQPSK Mode


Date: 17.0CT.2019 15:46:37

Middle channel

Date: 17.0CT.2019 15:48:00

High channel


Date: 17.0CT.2019 15:52:37

FCC ID: 2AAPK-DC1445

8. NUMBER OF HOPPING FREQUENCY TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

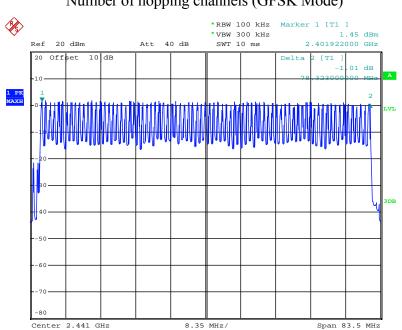
8.4.1.Setup the EUT and simulator as shown as Section 7.1.

8.4.2. Turn on the power of all equipment.

8.4.3.Let the EUT work in TX (Hopping on) modes measure it.

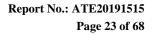
8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 8.5.3.Max hold, view and count how many channel in the band.

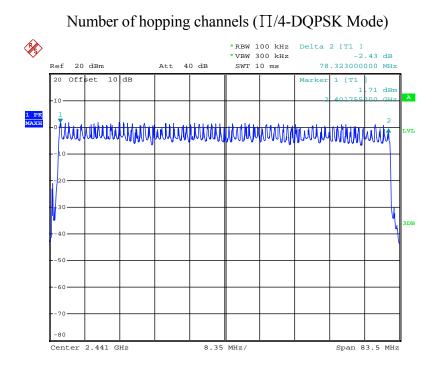


8.6.Test Result

Test Lab: Shielding room Test Engineer: Ben

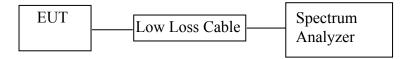

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	79	≥15	Pass

The spectrum analyzer plots are attached as below.



Number of hopping channels (GFSK Mode)

Date: 17.0CT.2019 16:01:04



Date: 17.0CT.2019 15:59:25

9. DWELL TIME TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1.Setup the EUT and simulator as shown as Section 8.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 9.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 9.5.4.Repeat above procedures until all frequency measured were complete.

9.6.Test Result

Test Lab: Shielding room Test Engineer: Ben

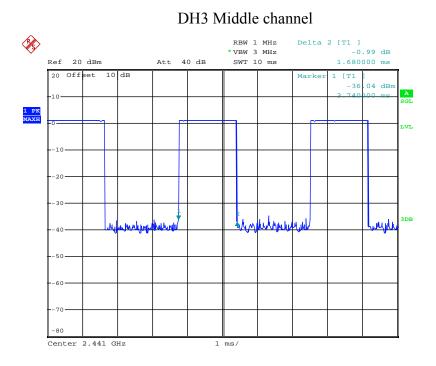
GFSK Mode (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2441	0.40	128	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$			79))×31.6	
DH3	2441	1.68	268.8	400
A period t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$			79))×31.6
DH5	2441	2.94	313.6	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

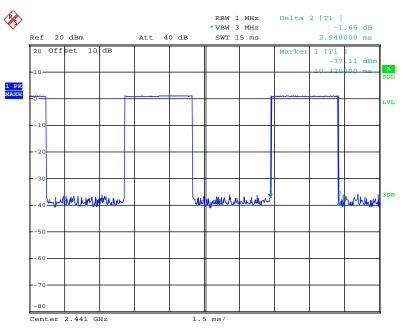
Π /4-DQPSK (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
DH1	2441	0.41	131.2	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				79))×31.6	
DH3	2441	1.69	270.4	400	
A period t	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2441	2.95	314.7	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

Note: We tested GFSK mode and Π /4-DQPSK mode the low, middle and high channel and recorded the Worse case data for all test mode.

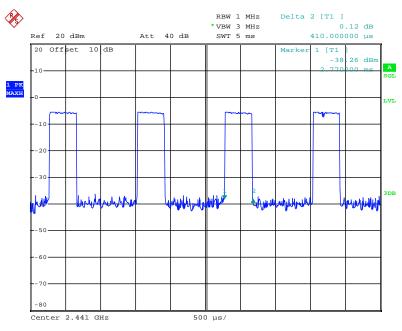

The spectrum analyzer plots are attached as below.

GFSK Mode


DH1 Middle channel Ø RBW 1 MHz *VBW 3 MHz Delta 2 [T1] -0.01 dB Ref 20 dBm Att 40 dB SWT 5 ms 400.000000 µs 20 Offset 10 dB 1 [T1 32 dBn -38 A SGL 10 1 PK MAXH LVL -10--20-30 DB hindligher HAM W h/hghhuy المليد -50 -60 -70 -80 Center 2.441 GHz 500 µs/

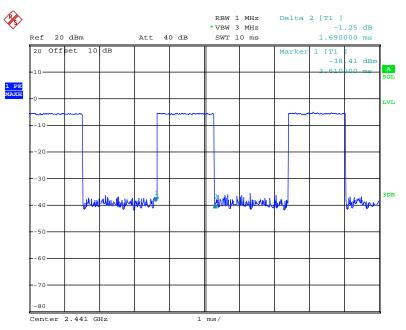
Date: 17.0CT.2019 13:47:56

Date: 17.0CT.2019 13:49:00

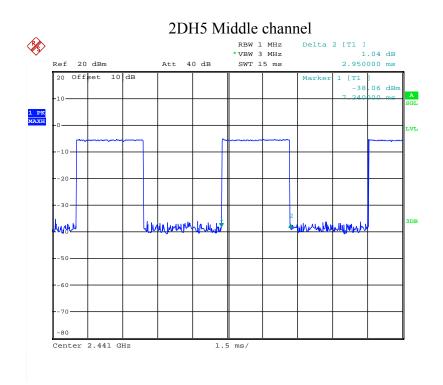


DH5 Middle channel

Date: 17.0CT.2019 13:49:54

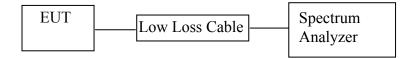


2DH1 Middle channel


Date: 17.0CT.2019 15:33:08

2DH3 Middle channel

Date: 17.0CT.2019 15:34:31



Date: 26.JUN.2019 18:36:54

10.MAXIMUM PEAK OUTPUT POWER TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1.Setup the EUT and simulator as shown as Section 9.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

10.5.Test Procedure

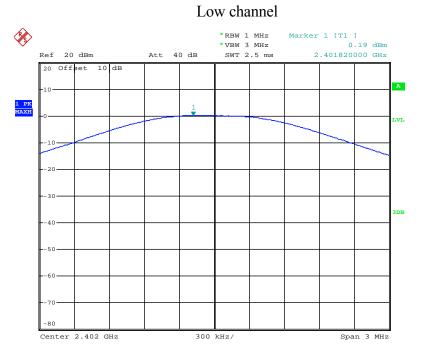
- 10.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz.
- 10.5.3.Measurement the maximum peak output power.

10.6.Test Result

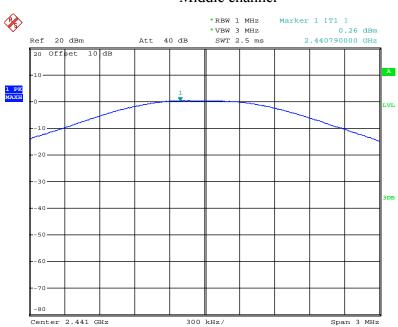
Test Lab: Shielding room Test Engineer: Ben

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	0.19/0.0010	21 / 0.125
Middle	2441	0.26/0.0011	21 / 0.125
High	2480	0.19/0.0010	21 / 0.125


Π /4-DQPSK Mode

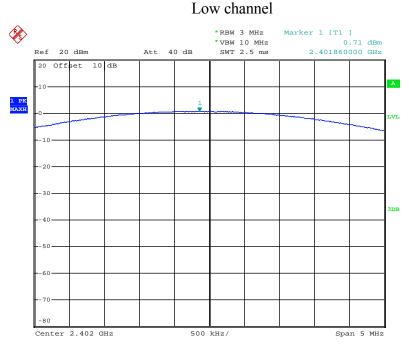
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	0.71/0.0012	21 / 0.125
Middle	2441	0.92/0.0012	21 / 0.125
High	2480	0.77/0.0012	21 / 0.125


The spectrum analyzer plots are attached as below.

GFSK Mode

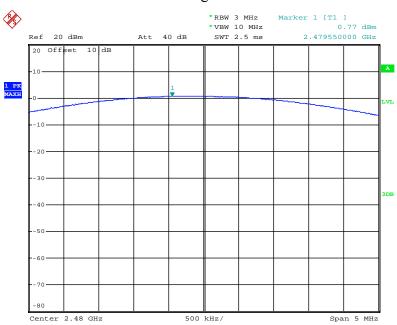
Date: 17.0CT.2019 10:41:05

Middle channel


Date: 17.0CT.2019 10:42:55

High channel **X** *RBW 1 MHz *VBW 3 MHz SWT 2.5 ms Marker 1 [T1] 0.19 dBm 2.479820000 GHz Ref 20 dBm Att 40 dB 20 Offset 10 dB А 10 1 PK MAXH -10--20-30 DB 40 50 60 -70 80 Span 3 MHz Center 2.48 GHz 300 kHz/

Date: 17.0CT.2019 10:43:31

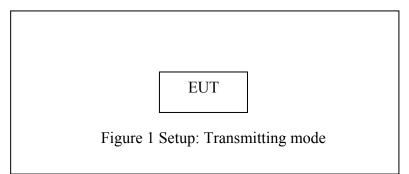


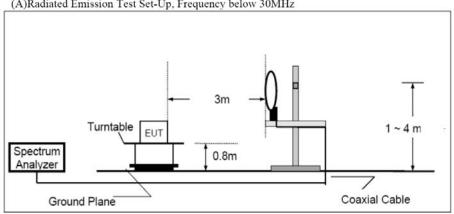
Date: 17.0CT.2019 10:45:24

Middle channel **I** *RBW 3 MHz *VBW 10 MHz SWT 2.5 ms Marker 1 [T1] 0.92 dBm 2.440630000 GHz Ref 20 dBm Att 40 dB 20 Offset 10 dB A 10 1 PK MAXH 1 vL -10--20 30 DB 40 50 60 -70 80 Center 2.441 GHz Span 5 MHz 500 kHz/

Date: 17.0CT.2019 10:44:54

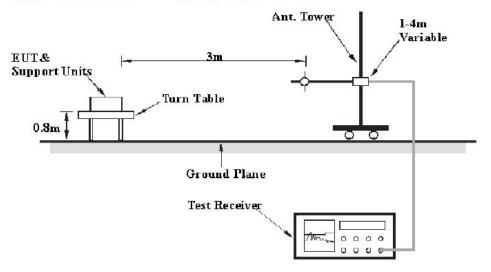
High channel


Date: 17.0CT.2019 10:44:20


11.RADIATED EMISSION TEST

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and peripherals


11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(A)Radiated Emission Test Set-Up, Frequency below 30MHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

11.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the

general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

	nited in any of the neque		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

11.4.Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 10.1.
- 11.5.2.Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the Worse case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

11.7.Data	Sam	ple
11./.Dutu	Juili	

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	28.66	-15.19	13.47	40.0	-26.53	QP

Frequency(MHz) = Emission frequency in MHz

Reading(dB μ v) = Uncorrected Analyzer/Receiver reading Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain Result(dB μ v/m) = Reading(dB μ v) + Factor(dB/m) Limit (dB μ v/m) = Limit stated in standard Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m) QP = Quasi-peak Reading

Calculation Formula: Margin(dB) = Result ($dB\mu V/m$)–Limit($dB\mu V/m$) Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

11.8.Tetst Results

Pass.

Test Lab: 3m Anechoic chamber Test Engineer: Ben

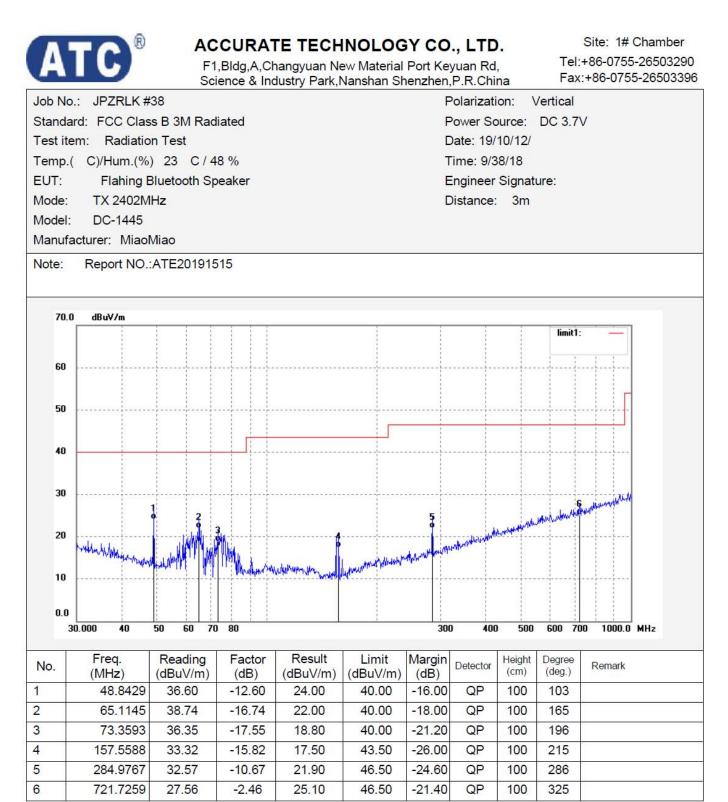
Note: 1.We tested GFSK mode, Π /4-DQPSK mode and recorded the Worse case data (GFSK mode) for all test mode.

2. Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

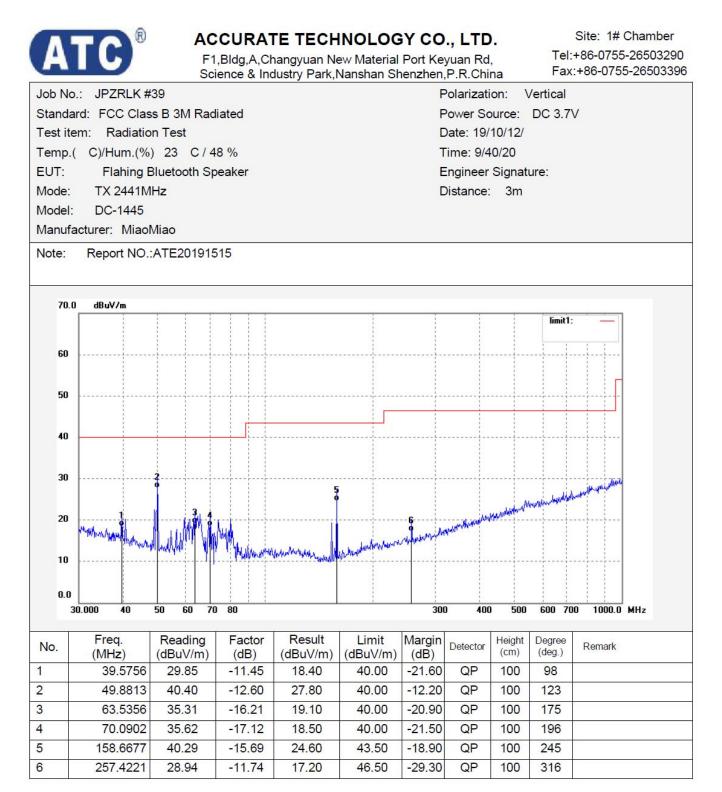
The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.

The spectrum analyzer plots are attached as below.

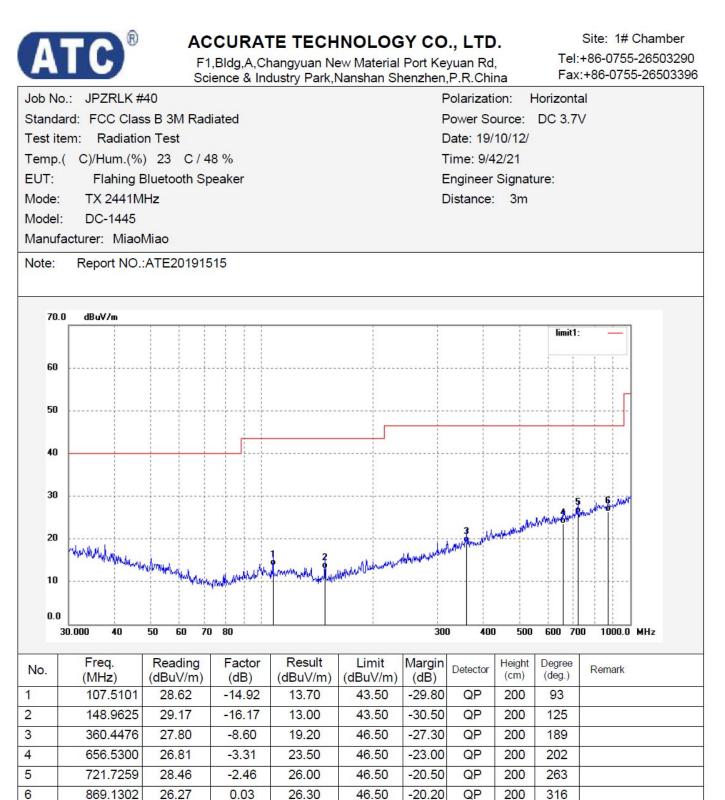
Below 1GHz

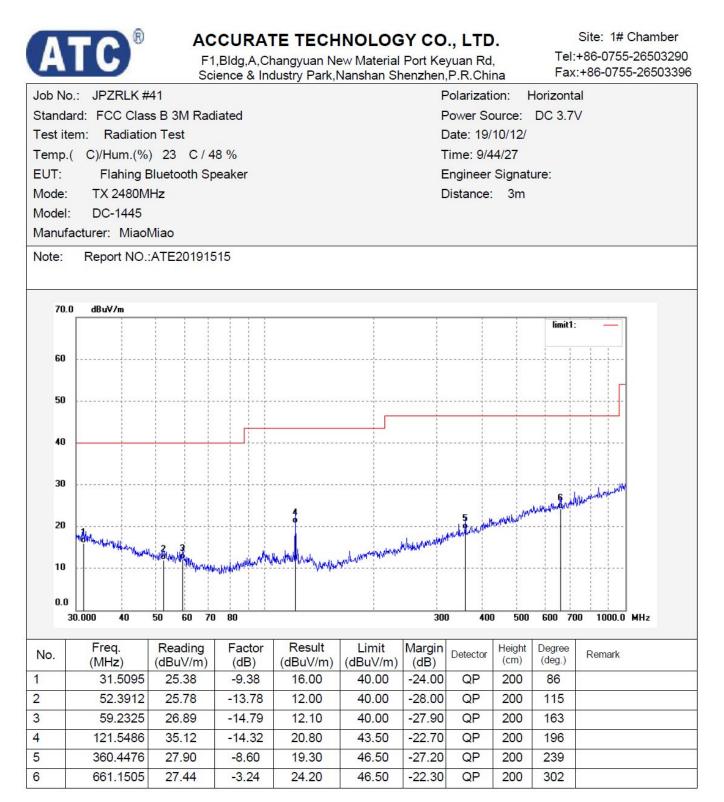


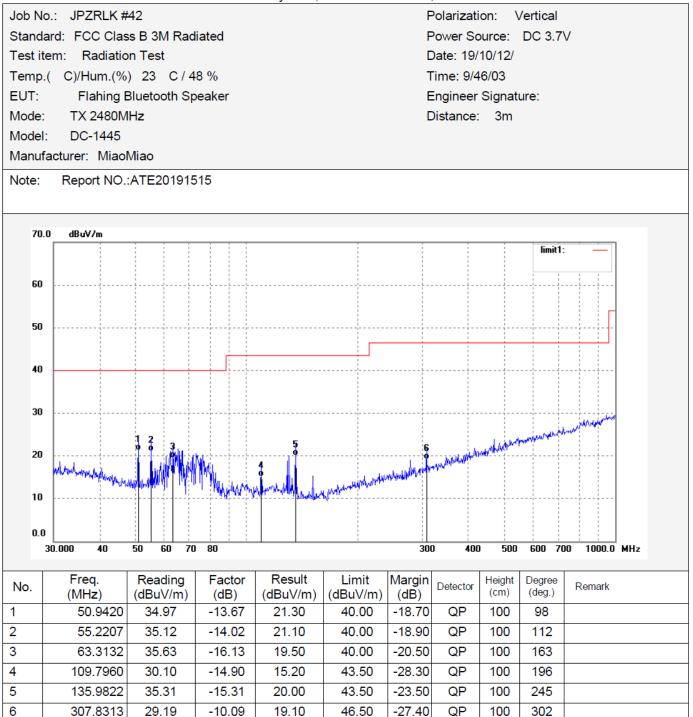
ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ob No	o.: JPZRLK #	37				I	Polarizati	na on: H	orizont	al
tanda	ard: FCC Clas	s B 3M Rad	iated			I	Power So	ource:	DC 3.7	V
est it	em: Radiatio	n Test				I	Date: 19/	10/12/		
emp.	(C)/Hum.(%)) 23 C/4	8 %			-	Time: 9/3	6/09		
UT:	Flahing E	Bluetooth Sp	eaker			I	Engineer	Signat	ure:	
lode:	TX 2402M	Hz				I	Distance:	3m		
lodel	: DC-1445									
lanuf	acturer: MiaoN	Miao								
ote:	Report NO.:	ATE201913	28							
70.	0 dBu∀/m									
									limit1:	
60										
50										
40										
30										
				2					Ninkuderal	town the address
20							- Alasonth	nubbrokup		
	for the adverse of the second of the	N	2		1 June and	handpunninghal	marchaldenorth			
10		www.www.www.way	lung on the Miles	Muniter and Married	No for the second second second					
0.0	1									
	30.000 40	50 60 70	80			30	0 400) 500	600 70	00 1000.0 MHz
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	33.6802	26.62	-10.02	16.60	40.00	-23.40	QP	200	95	
	84.4054	27.63	-16.53	11.10	40.00	-28.90	QP	200	136	
	123.2655	35.73	-14.53	21.20	43.50	-22.30	QP	200	186	
	154.2786	35.31	-16.11	19.20	43.50	-24.30	QP	200	202	
	360.4476	28.90	-8.60	20.30	46.50	-26.20	QP	200	286	
	721.7259	30.96	-2.46	28.50	46.50	-18.00	QP	200	336	







F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Above 1GHz

ATC®

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

			ience & Inc	dustry Park,	vansnan Sr					:+86-0755-2	000335	
ob No.	.: JPZRLK #	45				F	Polarizati	on: \	/ertical			
	rd: FCC PK					F	Power Source: DC 3.7V					
est ite	m: Radiatio	n Test				0	Date: 19/	10/12/				
emp.(C)/Hum.(%)) 23 C/4	8 %			٦	[ime: 11/	03/56				
UT:	Flahing E	Bluetooth Sp	beaker			E	Engineer	Signat	ure:			
ode:	TX 2402M	Hz				C	Distance:	3m				
odel:	DC-1445											
anufa	cturer: Miaol	Miao										
ote:	Report NO.:	ATE201915	515								_	
110.0	0 dBu∀/m								limit1:			
100			·····						limit2:			
			×									
90												
80												
70												
60					2							
50										and the second second second		
	1	1	- 1			1		manumann	and the second of the second o			
40				minerturennymethis	man	and the first of the second	when the second					
40 30	Kannananan Kanananan	and star and starting a	were and the second	properture and a state	and the second second	unand) - stad a ground d						
		An spatty over some per some	ware and manage	an and the second s	an a	anne franker franker						
30 20.0				3000	5000	6000 7	7000 8000 9	3000		18000.0 MH	Iz	
30 20.0			000 Factor (dB)	3000 Result (dBuV/m)	5000 Limit (dBuV/m)	6000 7 Margin (dB)		3000 Height (cm)	Degree (deg.)	18000.0 MH Remark	Iz	
30 20.0 10	000.000 Freq.	20 Reading	Factor	Result	Limit	Margin		Height			Iz	
30 20.0 10	5000.000 Freq. (MHz)	20 Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit	Margin	Detector peak	Height (cm)	(deg.)		Iz	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No	.: JPZRLK #	46				F	Polarizati	ion: H	orizont	al		
Standa	rd: FCC PK					F	Power Source: DC 3.7V					
Test ite	em: Radiatio	n Test				[Date: 19/	10/12/				
Temp.(C)/Hum.(%) 23 C/4	8 %			1	Time: 11	/05/46				
EUT:	Flahing E	Bluetooth Sp	eaker			E	Engineer	Signat	ure:			
Mode:	TX 2402M	Hz				[Distance	: 3m				
Model:	DC-1445											
Manufa	acturer: Miaol	Miao										
Note:	Report NO.:	ATE201915	515									
110.	0 dBuV/m								limit1:	_		
100			1						limit2:			
100					• • • • • • • • • • • • • • • • • • •							
90								ļļ				
80												
70		1										
10					2							
60					*							
12020				-								
50					••••• • ••••			-	www.www.www.	after and the second second		
40					man	monum	and the second states and sugar	ALVA-SEM				
30	alleney wandellene waarde wa	Marian	mar would	ngth and the share								
20.0												
	000.000	20	00	3000	5000	6000	7000 8000	9000		18000.0 MHz		
	Freq.	Reading	Factor	Result	Limit	Margin	D.A. I	Height	Degree	Demod		
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark		
1	2402.013	99.92	0.88	100.80			peak	200	103			
2	4804.110	55.35	7.40	62.75	74.00	-11.25	peak	200	163			
3	4804.110	42.80	7.40	50.20	54.00	-3.80	AVG	200	196			

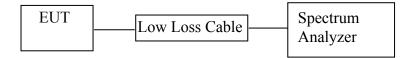
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

b No.	.: JPZRLK #			austry i aik,i			Polarizati		Horizonta	al
anda	rd: FCC PK					F	Power So	ource:	DC 3.7	V
st ite	m: Radiatio	n Test				[Date: 19/	10/12/		
mp.(C)/Hum.(%) 23 C/4	8 %			-	Time: 11	/09/20		
JT:		Bluetooth Sp				(Engineer	Signat	ure:	
ode:	TX 2441M						Distance:	-		
odel:	DC-1445									
anufa	cturer: Miaol	Miao								
ote:	Report NO.:	ATE201915	515							
110.	0 dBu∀/m						1		limit1:	
100			1						limit2:	
100			·····				1			
90								ļļ		
80										
-		1				_				
70					2					
60					×		ļ	ļ		
50					0				and water and the state	for an and the second second
			1		- marken	-	warman	and the second		
40			want	www.www.shanahanahanahanahanahanahanahanahanahan	NOTION THE SECOND SECOND					
30	handler and the second second second	www.www.www.www.ww								
20.0										
1	000.000	20	000	3000	5000	6000	7000 8000	9000		18000.0 MHz
	Freq.	Reading	Factor	Result	Limit	Margin		Height	Degree	
0.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark
	2441.012	99.34	1.06	100.40			peak	200	163	
								1		8
	4882.051	55.99	8.17	64.16	74.00	-9.84	peak	200	198	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ob No	.: JPZRLK #	0.010		dustry Park,			Polarizati	2. 2.	/ertical		
	rd: FCC PK						Power Sc			V	
	em: Radiatio	n Test					Date: 19/		00 0.7	v	
	(C)/Hum.(%)		8 %				Time: 11				
UT:		Bluetooth Sp					Engineer		uro:		
lode:	TX 2441M		eaner				Distance:	-	ure.		
lode:							Jistance.	SIII			
		1									
	acturer: Miaol		25.00								
ote:	Report NO .:	ATE201915	15								
110	.0 dBuV/m										
									limit1:		
100							ļ		limit2:	:	
			1 X								
90											
80					1		·				
70								<u></u>			
60			· · · · · · · · · · · · · · · · · · ·		2 X						
1.22						1					
50					1			miner	por a standard	Man man man	
40					amond in more	minimum	the substantion of the second	A			
		an Manufart parts	ment haven	and the second							
30	pannan and a second	Hora Harrison A.									
20.0											
	000.000	20		3000	5000	6000	7000 8000	9000		18000.0	MHz
	Energy 1	D		D- II	1.5.24						
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2441.012	92.21	1.06	93.27	(aba v/m)	(40)	peak	150	186		
	4882.051	51.03	8.17	59.20	74.00	-14.80		150	203		
	construction and a second s	12040-101220-040	CONTRACTS.	A STATE DAY DOLLAR	A AND	en ersonna.	**************************************	Service of the			
	4882.051	40.13	8.17	48.30	54.00	-5.70	AVG	150	296		

A'	TC [®]	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	l,		Site: 1# Chamber +86-0755-2650329 ::+86-0755-2650339
ob No.	.: JPZRLK #	49				F	Polarizati	ion: I	Horizonta	al
tanda	rd: FCC PK					F	ower So	ource:	DC 3.7	V
est ite	m: Radiatio	n Test				0	Date: 19/	10/12/		
emp.(C)/Hum.(%)	23 C/4	8 %			Т	ime: 11	/14/07		
UT:		Bluetooth Sp				E	Engineer	Signat	ure:	
lode:	TX 2480M						Distance			
lodel:	DC-1445									
	cturer: Miaol	Miao								
ote:	Report NO.:	ATE201915	10							
			~						limit1:	
100			¥						limit2:	·
90								·		
80										
70								ļ		
					3					
60					× *			·		
50					3					
50					Ī				A respectively and	communication where
40					munowhere	When an annual states	ingia-mymoushilling	wowned		
		an all all war war and	monnewlegener	for the second second						
30	an a	Mad Market II						+		
20.0										
	000.000	20	00	3000	5000	6000	7000 8000	9000		18000.0 MHz
l o.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2479.310	99.72	1.09	100.81			peak	200	145	
	4959.307	53.72	8.58	62.30	74.00	-11.70	peak	200	213	
	4959.307	41.62	8.58	50.20	54.00	-3.80	AVG	200	296	



A	TC®	F1	,Bldg,A,Cl	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,		Site: 1# Chambe +86-0755-265032 :+86-0755-26503
lob N	o.: JPZRLK #	50				F	Polarizati	ion: \	/ertical	
Stand	ard: FCC PK					F	ower So	ource:	DC 3.7	V
est if	tem: Radiatio	n Test				0	Date: 19/	10/12/		
emp	.(C)/Hum.(%)) 23 C/4	8 %			1	Time: 11	/16/07		
UT:		Bluetooth Sp				E	Engineer	Signat	ure:	
/lode:	and the second	- C					Distance:	-		
/lodel										
/anut	facturer: Miaol	Miao								
Note:	Report NO.:									_
									limit1:	
10	o				L			L	limit2:	
			1 X							
90		••••••••••••••••••••••••••••••••••••••								
80										
70								ļ		
60					*					
50										
							manne	-	menopulation	and the second
40				www.international.	perverentellerin	12 Marine and an and a second of the				
30	waldow have been all all all all all all all all all al	a spensor and a spensor								
20	0									
	.0	20	00	3000	: 5000	6000 7	7000 8000	<u>: :</u> 9000		18000.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2479.310	93.72	1.09	94.81			peak	150	175	
2	4959.307	51.22	8.58	59.80	74.00	-14.20	peak	150	215	
3	4959.307	40.12	8.58	48.70	54.00	-5.30	AVG	150	265	

12.BAND EDGE COMPLIANCE TEST

12.1.Block Diagram of Test Setup

12.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4.Operating Condition of EUT

- 12.4.1.Setup the EUT and simulator as shown as Section 11.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

12.5.Test Procedure

- 12.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 12.5.3.The band edges was measured and recorded.

12.6.Test Result

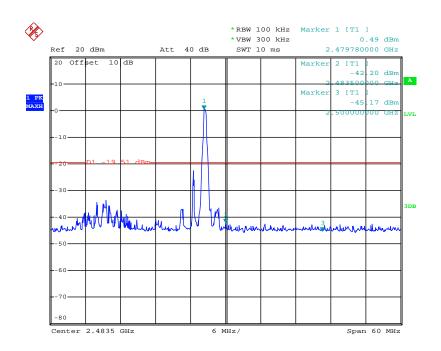
Test Lab: Shielding room Test Engineer: Ben

Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the Worse case was recorded in the test report.

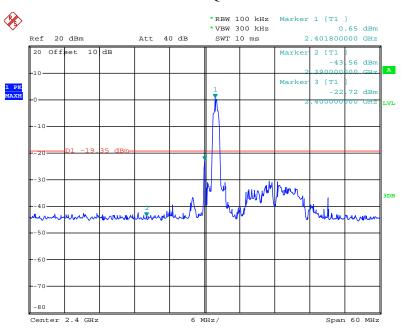
Conducted Band Edge Result

Non-hopping mode

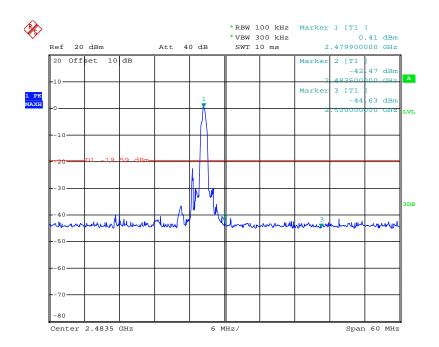
Frequency (MHz)	Result of Band Edge (dBc)	Limit of Band Edge (dBc)	Result
	(dbb)	(dbt)	
	GFSK Mo	de	
2400.00	22.68	> 20dBc	Pass
2483.50	41.71	> 20dBc	Pass
	∏/4-DQPSK	Mode	
2400.00	22.07	> 20dBc	Pass
2483.50	42.06	> 20dBc	Pass


The spectrum analyzer plots are attached as below.

I Marker 3 [T1] -23.03 dBm 2.400000000 GHz *RBW 100 kHz *VBW 300 kHz SWT 10 ms Ref 20 dBm Att 40 dB 20 Offset 10 dB 1 [T1 Marke 35 dBm А 10 Marke 2 [T1 1 PK MAXH 78 dBn -43 vL 10 Www more M DB Whattermonor 40 ml NÍM wal 60 70 -80 Span 60 MHz Center 2.4 GHz 6 MHz/


GFSK Mode

Date: 17.0CT.2019 10:51:22


Date: 17.0CT.2019 10:56:11

Π /4-DQPSK Mode

Date: 17.0CT.2019 10:52:56

Date: 17.0CT.2019 10:54:57

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.

2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

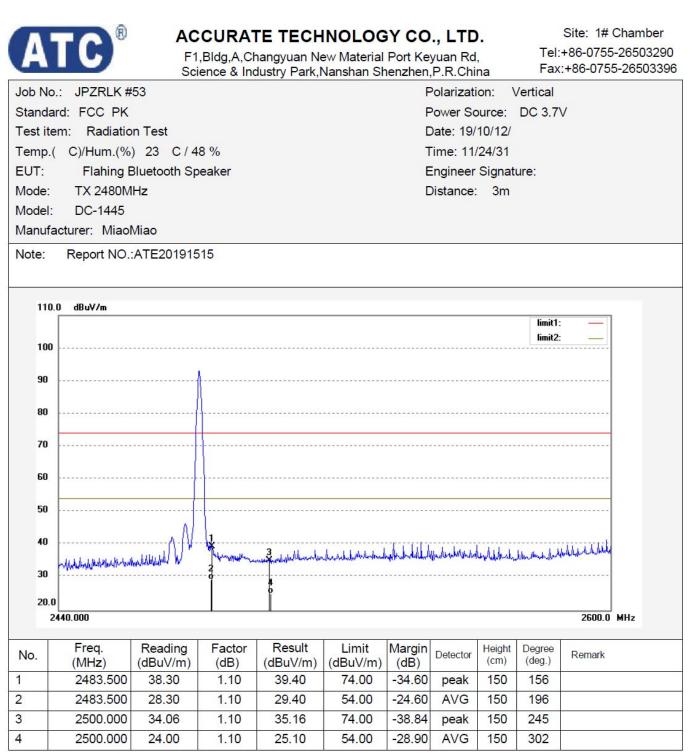
3.All modes of operation were investigated and the worse case (GFSK Mode) emissions are reported.

Test Lab: 3m Anechoic chamber

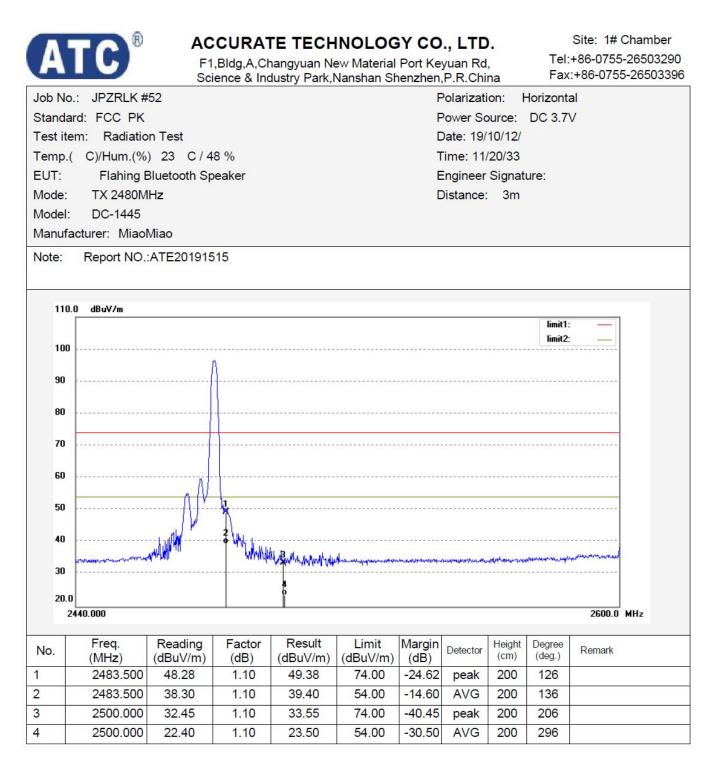
The spectrum analyzer plots are attached as below.

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.


F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

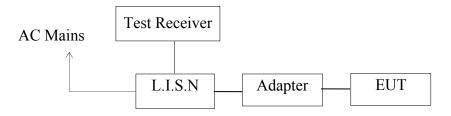
		Sci	ence & Ind	dustry Park,	Nanshan Sh	enzhen	P.R.Chi	na	Fax	:+86-075	5-2650339		
ob No.	.: JPZRLK #	55				F	Polarizati	on: H	lorizont	al			
Standar	rd: FCC PK					F	Power Sc	ource:	DC 3.7	V			
est ite	m: Radiatio	on Test				Date: 19/10/12/							
emp.(C)/Hum.(%) 23 C/4	8 %			Time: 11/32/22							
UT:	Flahing E	Bluetooth Sp	eaker			E	Ingineer	Signat	ure:				
lode:	TX 2402M	IHz				C	Distance:	3m					
lodel:	DC-1445												
/lanufa	cturer: Miaol	Miao											
lote:		:ATE201915	15										
110.0	0 dBu¥/m								limit1: limit2:				
100									limitz.	·			
00							Δ						
90													
80													
							$-\Pi$						
70													
60							×						
50							<u>∧-{</u> }\						
40								1					
40	المراجع المراجع		i la lua a	property and	Lubelshowm	holdensed	hut	Tythemale	Mudhham	www.hornderwohl			
30	Listadd Miller and Landard	hillion and a second second second		·····									
20.0						ē							
20.0	300.000									2440.0	MHz		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark			
ļ.	2390.000	35.47	0.79	36.26	74.00	-37.74	Street parks	200	125				
2	2390.000	25.51	0.79	26.30	54.00	-27.70	AVG	200	196				
	2400.000	62.16	0.88	63.04	74.00	- <mark>10.96</mark>	peak	200	245				
	2400.000	41.22	0.88	42.10	54.00	-11.90	AVG	200	326				

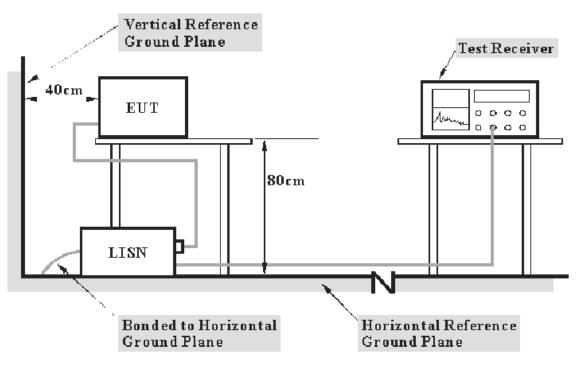


A	TC®	F1	,Bldg,A,C	TE TECH hangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd	,			Chamber -2650329 5-2650339
lob No	.: JPZRLK #	0.000		,			olarizati	10 I D W	/ertical		
Standa	ard: FCC PK					F	ower So			V	
	em: Radiatio	n Test)ate: 19/				
emp.	(C)/Hum.(%)) 23 C/4	8 %			т	ime: 11/	/28/28			
EUT:	• • •	, Bluetooth Sp				E	ngineer	Signat	ure:		
Aode:	TX 2402M	1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -)istance:	1.1			
Nodel:	DC-1445										
/lanufa	acturer: Miaol	Miao									
lote:	Report NO.:	ATE201915	15								
110	.0 dBuV/m								limit1:	1	
100									limit2:		
90							·····				
80											
00											
70											
							- 11				
60											
50 40							1. A.				
30	undellallyholeskihodenal	Which Who multime	throwen Marshaut	houlenthisticalises	haduluhahididan	2		n Hundersteile	hybriddhaddy	portal plants 14	
20.0							Ĩ				
2	2300.000									2440.0	MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2390.000	36.73	0.79	37.52	74.00	-36.48	peak	150	105		
2	2390.000	26.71	0.79	27.50	54.00	-26.50	AVG	150	186		
3	2400.000	42.90	0.88	43.78	74.00	-30.22	peak	150	245		
	2400.000	25.92	0.88	26.80	54.00	-27.20	AVG	150	316		

	C									Report N	o.: ATE201 Page 61
				Hor	oping mode	2					-
Λ	TC			TE TECH					Tal		Chamber 5-26503290
A				hangyuan Ne dustry Park,I							5-26503290
Job N	o.: JPZRLK #						Polarizati		-lorizonta	al	
Stand	lard: FCC PK					F	ower Sc	ource:	DC 3.7	V	
Test if	tem: Radiatic	n Test				0	0ate: 19/	10/12/			
Temp	.(C)/Hum.(%) 23 C/4	8 %			Т	ime: 11/	24/11			
EUT:	Flahing E	Bluetooth Sp	eaker			E	Engineer	Signat	ure:		
Mode:		i				0	Distance:	3m			
Model											
Manut	facturer: Miaol	Miao									
Note:	Report NO.	ATE201915	515								
11	0.0 dBuV/m										
									limit1:	-	
10	o			the market the state					limit2:	-	
90											
80											
70			3								
60			1								
50						5					
40		i i l	ľ			1			an a	11 P. 1	
40	mahumilleride	WWWWWWWWWW	whenlight			m	Sellin Melled	will will be a start of the	Albertabel	Marthuth	
30							8				
20	.0		ĬI								
	2300.000									2600.0	MHz
	Freq.	Reading	Factor	Result	Limit	Margin	ages we say	Height	Degree	8210	
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark	
1	2390.000	35.74	0.79	36.53	74.00	-37.47	peak	200	102		
2	2390.000	25.71	0.79	26.50	54.00	-27.50	AVG	200	136		
3	2400.000	65.40	0.88	66.28	74.00	-7.72	peak	200	175		
4	2400.000	45.42	0.88	46.30	54.00	-7.70	AVG	200	202		
-	2483.500	45.42	1.10	46.52	74.00	-27.48	peak	200	215		
5	0400 500	05 40			h / () ()		11/12	200	263		
5 6 7	2483.500 2500.000	35.40 34.55	1.10 1.10	36.50 35.65	54.00 74.00	-17.50 -38.35	AVG peak	200	302		

Note: Average measurement with peak detection at No.2&4&6&8


A	C [®]	F1	,Bldg,A,Ch	TE TECH nangyuan Ne dustry Park,I	ew Material	Port Ke	yuan Rd			+86-0755	Chamber 5-2650329 5-2650339
b No	: JPZRLK #	A COLONIA	chie a me	addiy i ark,i	Nanonan Or		Polarizati		/ertical		
	d: FCC PK						Power Sc			V	
	m: Radiatio	n Test					Date: 19/		200.		
emp.(C)/Hum.(%)) 23 C/4	8 %			-	Time: 11	25/27			
UT:		Bluetooth Sp				E	Engineer	Signat	ure:		
lode:	HOPPING						Distance:	-			
odel:	DC-1445										
lanufa	cturer: Miaol	Viao									
ote:	Report NO.:	ATE201915	15								_
110.0									limit1:	-	
100									limit2:		
			2	new manufactures	mater water to a particular	m					
90											
80											
70											
60											
50						5					
50			3			1					
40			THE REAL PROPERTY AND INCOMENTATION OF THE REAL PROPERTY AND INTERTY				z anada	atactated		himburnitur	
	workendradenterstations	Munduluthallut	mouto dana			"which	Here and the second second	An Manahanana.	or solution and		
30			2 8				8 q				
20.0											
23	00.000									2600.0	MHz
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2390.000	34.81	0.79	35.60	74.00	-38.40	peak	150	103		
	2390.000	24.81	0.79	25.60	54.00	-28.40	AVG	150	136		
	2400.000	41.82	0.88	42.70	74.00	-31.30	peak	150	175		
	2400.000	25.82	0.88	26.70	54.00	-27.30	AVG	150	196		
	2483.500	47.29	1.10	48.39	74.00	-25.61	peak	150	2 <mark>1</mark> 5		
	2483.500	37.30	1.10	38.40	54.00	-15.60	AVG	150	236		
	2500.000	35.86	1.10	36.96	74.00	-37.04	peak	150	286		


13.AC POWER LINE CONDUCTED EMISSION TEST

13.1.Block Diagram of Test Setup

13.1.1.Block diagram of connection between the EUT and simulators

13.1.2.Test System Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Frequency	Limit d	B(µV)					
(MHz)	Quasi-peak Level	Average Level					
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *					
0.50 - 5.00	56.0	46.0					
5.00 - 30.00	60.0	50.0					
NOTE1: The lower limit sha	ll apply at the transition freque	encies.					
NOTE2: The limit decreases	NOTE2: The limit decreases linearly with the logarithm of the frequency in the range						
0.15MHz to 0.50M	1Hz.						

13.2. Power Line Conducted Emission Measurement Limits

13.3.Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

13.4.Operating Condition of EUT

13.4.1.Setup the EUT and simulator as shown as Section 12.1.

13.4.2. Turn on the power of all equipment.

13.4.3.Let the EUT work in test mode and measure it.

13.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

13.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.6	25.3	17.0	59.0	49.0	33.4	31.7	Pass

Frequency(MHz) = Emission frequency in MHz

Transducer value(dB) = Insertion loss of LISN + Cable Loss Level(dB μ V) = Quasi-peak Reading/Average Reading + Transducer value Limit (dB μ V) = Limit stated in standard Margin = Limit (dB μ V) - Level (dB μ V)

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

13.7.Test Results

Pass.

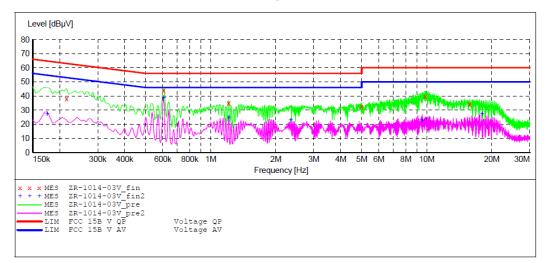
Test Lab: 3m Anechoic chamber Test Engineer: Ben

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Flashing Bluetooth Speaker M/N:DC-1445
Manufacturer:	MiaoMiao
Operating Condition:	BT Communication
Test Site:	1#Shielding Room
Operator:	Ben
Test Specification:	N 120V/60Hz
Comment:	Report NO.:ATE20191515
Start of Test:	10/14/2019 / 9:21:14AM

SCAN TABLE: "V 9K-30MHz fin"

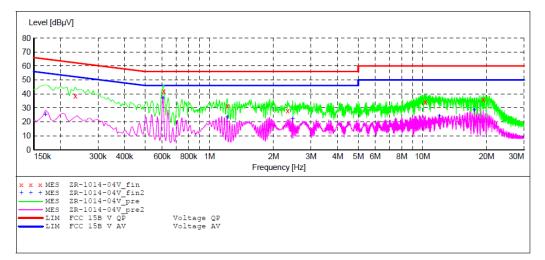
~	Short Desci			JB STD VTER	DM2 1 70		
	SHOLC Desci	Therou:		DP_SID_VIE	M12 I.70		
	Start	Stop	Step	Detector	Meas.	IF	Transducer
	Frequency	Frequency	Width		Time	Bandw.	
	9.0 kHz	150.0 kHz	100.0 Hz	~	1.0 s	200 Hz	NSLK8126 2008
				Average			
	150.0 kHz	30.0 MHz	5.0 kHz	~	1.0 s	9 kHz	NSLK8126 2008
				Average			

MEASUREMENT RESULT: "ZR-1014-03V_fin"

10/14/2019 9: Frequency MHz	25AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.215000 0.605000 1.210000 4.990000 9.840000 15.820000	38.10 43.80 34.90 32.70 39.80 34.10	10.5 10.7 10.9 11.2 11.3 11.4	63 56 56 60 60	24.9 12.2 21.1 23.3 20.2 25.9	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT: "ZR-1014-03V_fin2"

10/14/2019 9: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.175000 0.605000 1.210000 2.350000 9.530000 18.040000	27.20 39.00 24.60 23.00 22.70 27.20	10.5 10.7 10.9 11.0 11.3 11.4	55 46 46 50 50	27.5 7.0 21.4 23.0 27.3 22.8	AV AV AV AV AV AV	N N N N N	GND GND GND GND GND GND



CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:Flashing Bluetooth Speaker M/N:DC-1445Manufacturer:MiaoMiaoOperating Condition:BT CommunicationTest Site:1#Shielding RoomOperator:BenTest Specification:L 120V/60HzComment:Report NO.:ATE20191515Start of Test:10/14/2019 / 9:26:03AM

SCAN TABLE: "V 9K-30MHz fin"

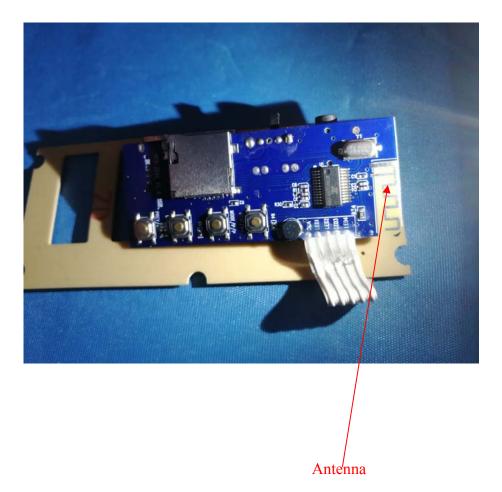
Short Desci	ciption:	_SU	JB_STD_VTER	RM2 1.70		
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
9.0 kHz	150.0 kHz	100.0 Hz	QuasiPeak	1.0 s	200 Hz	NSLK8126 2008
			Average			
150.0 kHz	30.0 MHz	5.0 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008
			Average			

MEASUREMENT RESULT: "ZR-1014-04V fin"

10/14/2019 9:: Frequency MHz	29AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.235000 0.610000 1.215000 2.330000 10.315000 19.315000	38.60 41.90 31.50 28.10 34.10 35.90	10.6 10.7 10.9 11.0 11.3 11.4	62 56 56 60 60	23.7 14.1 24.5 27.9 25.9 24.1	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "ZR-1014-04V_fin2"

10/14/2019 9: Frequency MHz	29AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000 0.605000 1.210000 2.460000 11.995000 17.500000	25.40 36.90 23.40 21.90 24.00 28.30	10.5 10.7 10.9 11.0 11.3 11.4	55 46 46 50 50	29.6 9.1 22.6 24.1 26.0 21.7	AV AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND


14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is -0.58dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****