FCC ID	2AAPK-DC-1295					
Test Report No:	TCT220307E003					
Date of issue:	Apr. 07, 2022					
Testing laboratory:	SHENZHEN TONGCE TEST	TING LAB				
Testing location/ address:	TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People Republic of China					
Applicant's name: :	Shenzhen Kingsun Enterpris	Shenzhen Kingsun Enterprises Co., Ltd.				
Address:	25/F, CEC Information Buildi Guangdong, 518034 China	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, 518034 China				
Manufacturer's name :	Shenzhen Kingsun Enterpris	ses Co., Ltd.				
Address:	25/F, CEC Information Buildi Guangdong, 518034 China	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, 518034 China				
Standard(s) :	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013					
Product Name:	Krypton-led light up bluetootl	h speaker				
Trade Mark:	N/A					
Model/Type reference :	DC-1295, KRS-6/1948					
Rating(s):	Rechargeable Li-ion Battery	DC 3.7V				
Date of receipt of test item	Mar. 07, 2022					
Date (s) of performance of test:	Mar. 0 7 , 2022 ~ Apr. 07, 202	22				
Tested by (+signature) :	Onnado YE	Onnado JANGCE 7				
Check by (+signature) :	Beryl ZHAO	Boyle PCT)				
Approved by (+signature):	Tomsin	Tomsies st				
TONGCE TESTING LAB. TH	his document may be altered	t the written approval of SHENZHE or revised by SHENZHEN TONGO revision section of the document. The				

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.				
	1.1. EUT description			3
	1.2. Model(s) list			
	1.3. Operation Frequency			3
2.	. Test Result Summary	\sim		4
3.	General Information			5
	3.1. Test environment and mode			5
	3.2. Description of Support Units			5
4.	. Facilities and Accreditations			6
	4.1. Facilities	<u>(c)</u>		6
	4.2. Location			6
	4.3. Measurement Uncertainty			6
5.				7
	5.1. Antenna requirement			7
	5.2. Conducted Emission			8
	5.3. Conducted Output Power	\sim		12
	5.4. Emission Bandwidth			
	5.5. Power Spectral Density			14
	5.6. Conducted Band Edge and Spurious Em	ission Measureme	nt	
	5.7. Radiated Spurious Emission Measureme	ent		17
Α	Appendix A: Test Result of Conducted T	est		
Α	Appendix B: Photographs of Test Setup			
	Appendix C: Photographs of EUT			

「CT通测检测 1. General Product Information

1.1. EUT description

Product Name:	Krypton-led light up bluetooth speaker	
Model/Type reference:	DC-1295	
Sample Number:	TCT220307E002-0101	
Bluetooth Version:	V5.0 (This report is for BLE)	
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	
Number of Channel:	40	
Modulation Type:	GFSK	
Antenna Type:	PCB Antenna	
Antenna Gain:	-0.58dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	DC-1295	X
Other models	KRS-6/1948	

Note: DC-1295 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of DC-1295 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
	<i>(</i>)		<i>(</i> ,		<u> </u>		<u> </u>	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9 2420MHz 19 2440MHz 29 2460MHz 39 2480MH								
Remark:	Remark: Channel 0, 19 & 39 have been tested.							

Page 3 of 44

Report No.: TCT220307E003

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS C
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

FCT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT220307E003

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	25.0 °C	25.0 °C				
Humidity:	55 % RH	55 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	FCC_assist_1.0.2.2					
Power Level:	10					
Test Mode:						

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
Adapter	JD-050200	2012010907576735		/	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

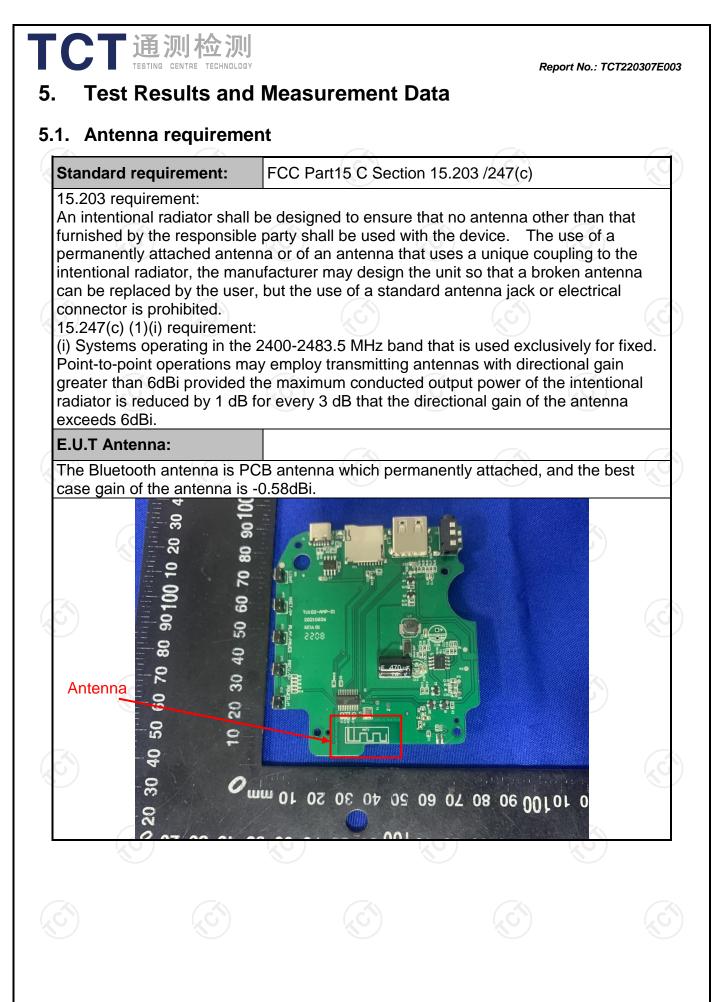
SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB


Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

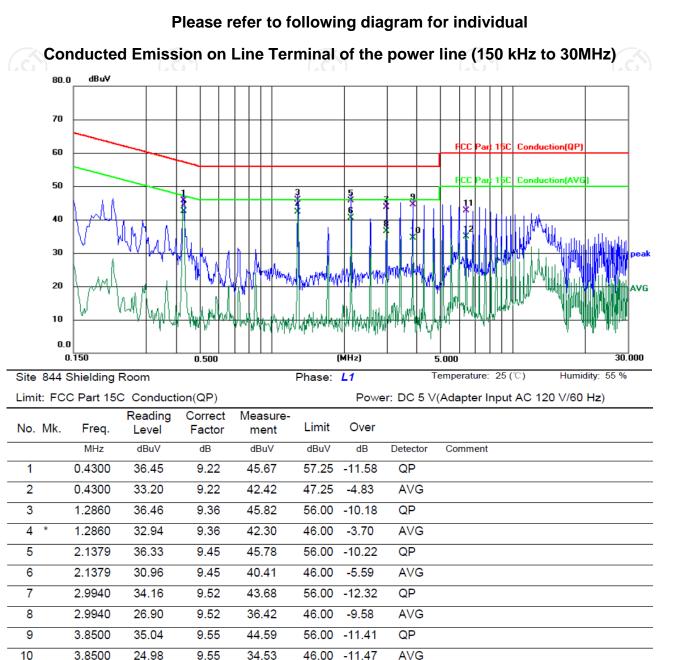
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

5.2.1. Test Specification

Teet Demuinement.	FCC Danta F C Castian	45 007				
Test Requirement:	FCC Part15 C Section	15.207	0			
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (o	dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Refere	nce Plane				
Test Setup:	E.U.T Adap Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne EMI Receiver	ter — AC power			
Test Mode:	Charging + Transmittir	ng Mode				
Test Procedure:	 The E.U.T is connerimpedance stabilizy provides a 500hm/s measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	zation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checkence. In order to fir re positions of equ s must be chang	(L.I.S.N.). This pedance for the a 50ohm/50uh nination. (Please test setup and d for maximun d the maximun ipment and all o ed according to			
Test Result:	PASS					


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022				
Line Impedance Stabilisation Newtork(LISN)	Stabilisation Schwarzbeck		8126453	Feb. 24, 2023				
Line-5			N/A	Jul. 07, 2022				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Page 9 of 44

5.2.3. Test data

Note:

6.4180

6.4180

33.11

25.26

42.67

34.82

9.56

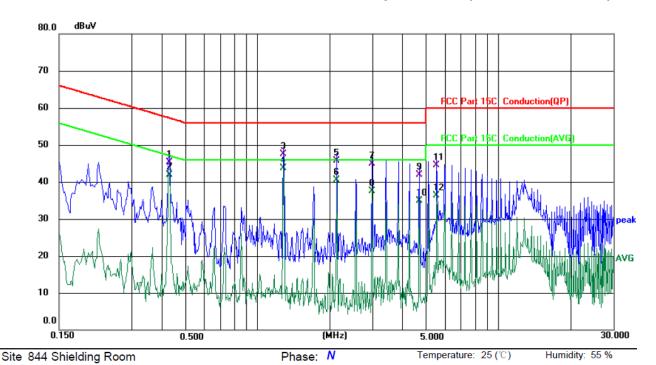
9.56

10

11

12

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz


60.00 -17.33

50.00 -15.18

QP

AVG

Page 10 of 44

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

								V I I	/
No. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.4300	36.14	9.22	45.36	57.25	-11.89	QP		
2	0.4300	32.70	9.22	41.92	47.25	-5.33	AVG		
3	1.2860	38.12	9.36	47.48	56.00	-8.52	QP		
4 *	1.2860	34.44	9.36	43.80	46.00	-2.20	AVG		
5	2.1379	36.31	9.45	45.76	56.00	-10.24	QP		
6	2.1379	30.96	9.45	40.41	46.00	-5.59	AVG		
7	2.9940	35.31	9.52	44.83	56.00	-11.17	QP		
8	2.9940	27.90	9.52	37.42	46.00	-8.58	AVG		
9	4.7060	32.33	9.56	41.89	56.00	-14.11	QP		
10	4.7060	25.36	9.56	34.92	46.00	-11.08	AVG		
11	5.5620	35.00	9.57	44.57	60.00	-15.43	QP		
12	5.5620	26.76	9.57	36.33	50.00	-13.67	AVG		

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 44

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	KDB 558074 D01 v05r02						
Limit:	30dBm						
Test Setup:							
T (M .) .	Spectrum Analyzer EUT						
Test Mode:	Refer to item 3.1						
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 						
Test Result:	PASS						

5.3.2. Test Instruments

Name	Manufacturer	turer Model No. Serial Numbe		Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
Combiner Box	Combiner Box Ascentest		N/A	Jul. 07, 2022	

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

4	Name Manufacturer		Model No.	Serial Number	Calibration Due	
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
	Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e) KDB 558074 D01 v05r02					
Test Method:						
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:						
	Spectrum Analyzer					
Test Mode:	Refer to item 3.1					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Name Manufacturer		Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022	

ТСТ通测检测

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

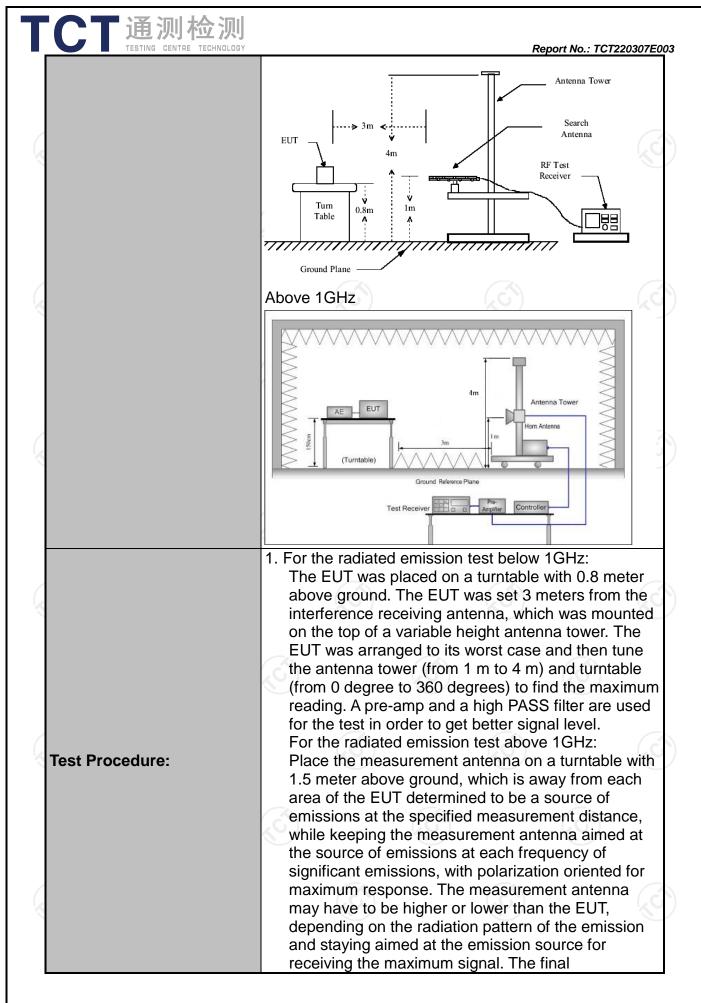
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
	 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022	
Ś	S	(Ś	

5.

Page 16 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

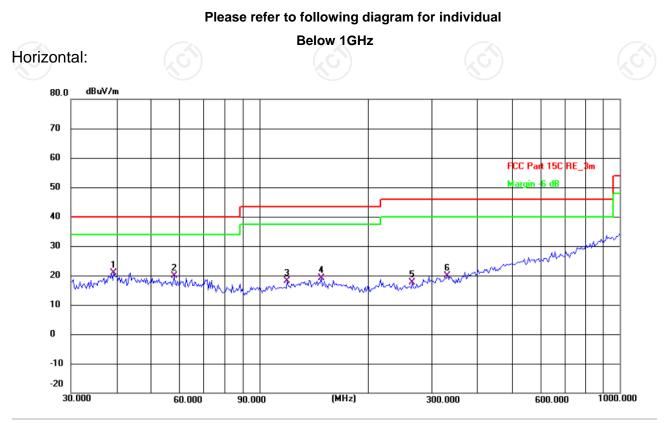
TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Frequency Range:	9 kHz to 25	GHz					
Measurement Distance:	3 m	K	9		No.		
Antenna Polarization:	Horizontal &	Vertical					
Operation mode:	Refer to item	n 3.1	((()			
Receiver Setup:	Frequency 9kHz- 150kHz	Detector Quasi-peak		VBW 1kHz	Remark Quasi-peak Value		
	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak Value		
	Above 1GHz	Peak Peak	1MHz 1MHz	<u>3MHz</u> 10Hz	Peak Value Average Value		
	Frequer	су	Field Stro (microvolts) 2400/F(1	ength /meter)	Measurement Distance (meters		
	0.009-0.490		2400/F(1 24000/F(,	<u> </u>		
	1.705-30		30	,	30		
	30-88		100		3		
Limit:	88-210		150		3		
Limit:	216-96 Above 9		<u>200</u> 500	3			
	///////////////////////////////////////	00		G)	3		
	Frequency		ield Strength crovolts/meter) Measure Distar (mete		ce Detector		
	Above 1GH	,	500 3		Average		
			5000	3	Peak		
	For radiated	emissions	s below 30)MHz			
Test setup:	EUT Pre -Amplifier						
	0.8m Turn table						
	Ground Plane						
	30MHz to 1GHz						

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

└ ∁ ┲通测检测	ļ]
	 Report No.: TCT220307E measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments


Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022			
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022			
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022			
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022			
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023			
Antenna Mast	Keleto	RE-AM	N/A	N/A			
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022			
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022			
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Page 20 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.7.3. Test Data

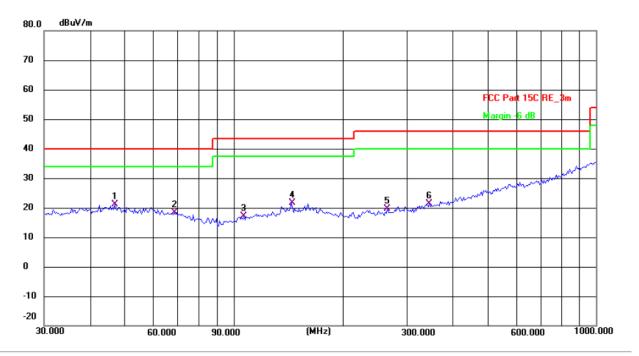
TCT通测检测 TCT通测检测

Site #1 3m Anechoic Chamber

Polarization: Horizontal

Temperature: 25(C)

Humidity: 55 %


Report No.: TCT220307E003

Limit:	FCC Part 150	CRE_3m			Po	wer: DC	3.7 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	39.4371	7.24	13.67	20.91	40.00	-19.09	QP	Ρ	
2	57.9992	7.44	12.44	19.88	40.00	-20.12	QP	Р	
3	119.4360	6.49	11.56	18.05	43.50	-25.45	QP	Р	
4	148.4410	6.19	12.96	19.15	43.50	-24.35	QP	Р	
5	265.6757	5.03	12.56	17.59	46.00	-28.41	QP	Ρ	
6	332.5187	5.56	14.33	19.89	46.00	-26.11	QP	Ρ	

 Image: Sector of the sector

Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY

Site #	1 3m Anecho	ic Chambe	r	Polariz	ation: Ve	ertical			Temperature:	25(C)	Humidity	: 55 %
Limit:	FCC Part 150	CRE_3m			Po	wer: DC	3.7 V					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark			
1 *	46.9947	7.48	13.54	21.02	40.00	-18.98	QP	Р				
2	68.6310	7.33	11.08	18.41	40.00	-21.59	QP	Р				
3	106.7587	6.62	10.45	17.07	43.50	-26.43	QP	Р				
4	144.3344	8.77	12.80	21.57	43.50	-21.93	QP	Р				
5	265.6757	7.09	12.56	19.65	46.00	-26.35	QP	Р				
6	346.8091	6.72	14.70	21.42	46.00	-24.58	QP	Р				

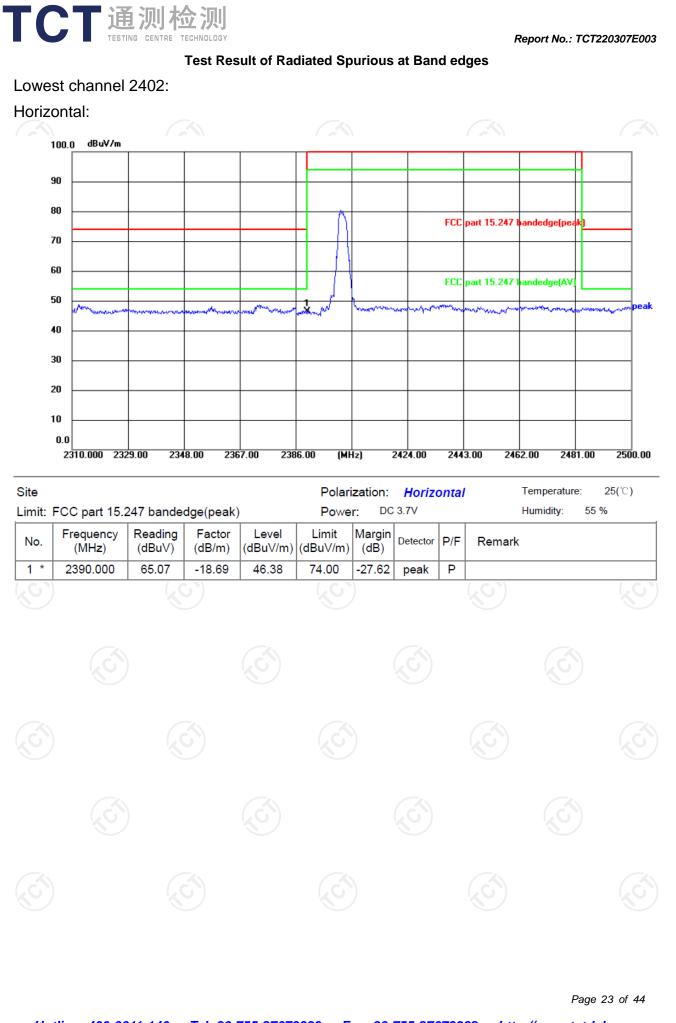
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

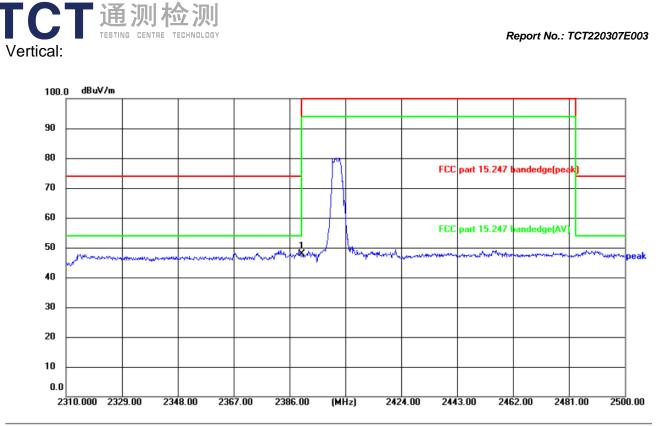
2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading \ level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


 $Limit (dB\mu V/m) = Limit stated in standard$

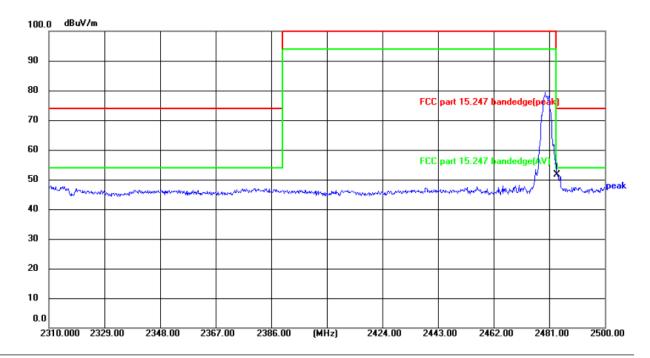

Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

 * is meaning the worst frequency has been tested in the test frequency range

Page 22 of 44

Report No.: TCT220307E003

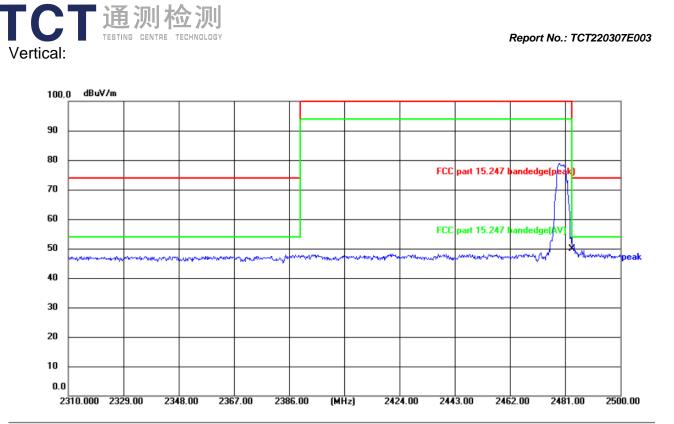
Site					Polar	ization:	Vertic	al	т	Temperature	: 25(° C)
Limit:	FCC part 15.	247 bande	dge(peak))	Powe	er: DO	C 3.7V		H	lumidity:	55 %
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark		
1 *	2390.000	66.54	-18.69	47.85	74.00	-26.15	peak	Ρ			



Page 24 of 44

Highest channel 2480:

TCT通测检测 TCT通测检测


Horizontal:

Site					Polar	ization:	Horizo	ontal	Temperature: 25(℃)
Limit:	FCC part 15.	247 bande	dge(peak))	Powe	er: DC	3.7V		Humidity: 55 %
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2483.500	70.13	-18.40	51.73	74.00	-22.27	peak	Ρ	

Report No.: TCT220307E003

Site					Polari	zation:	Vertica	a/	Temperature: 25(°C)
Limit:	FCC part 15.2	247 bande	dge(peak)		Power	r: DC	3.7V		Humidity: 55 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	68.40	-18.40	50.00	74.00	-24.00	peak	Ρ	

Page 26 of 44

Above 1GHz

Low chann	el: 2402 IV	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.09		0.66	45.75		74	54	-8.25
7206	Н	35.88		9.50	45.38		74	54	-8.62
	Н								
4804	V	45.48		0.66	46.14	×	74	54	-7.86
7206	ΟV	36.01	-4,0	9.50	45.51	<u>G</u> -)-	74	54	-8.49
	V								

Middle channel: 2440 MHz

imaale ena									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	46.85		0.99	47.84		74	54	-6.16
7320	Н	36.94		9.87	46.81		74	54	-7.19
	Н			·	(
			K.)					
4880	V	43.02		0.99	44.01		74	54	-9.99
7320	V	33.58		9.87	43.45		74	54	-10.55
	V								

High channel: 2480 MHz

Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	42.73	-6.6	1.33	44.06		74	54	-9.94
7440	Н	33.82		10.22	44.04		74	54	-9.96
	Н								
4960	V	44.40		1.33	45.73		74	54	-8.27
7440	V	35.27		10.22	45.49		74	54	-8.51
	V				/				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

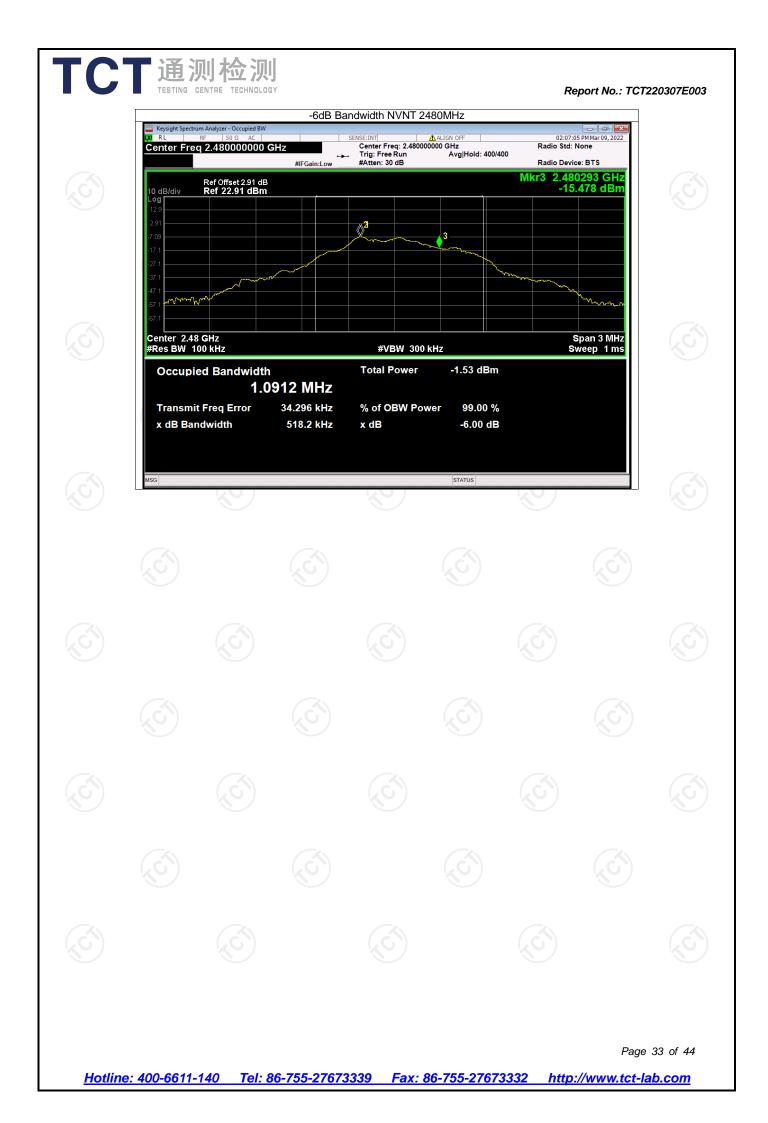
	Maximum Co	nducted Output	Power	
Conditio	n Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2402	-6.93	30	Pass
NVNT	2440	-6.69	30	Pass
NVNT	2480	-6.93	30	Pass

Page 28 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT220307E003

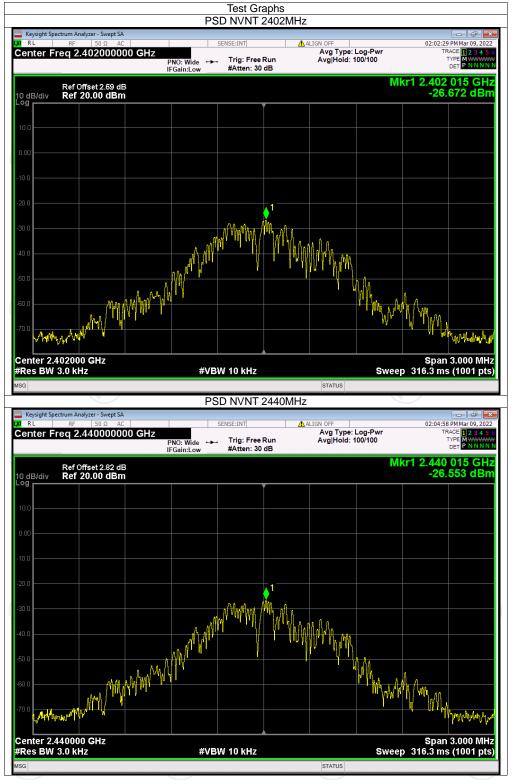
Page 29 of 44


	um Analyzer - Swept SA	Pc	ower NVNT 2480				
	RF 50 Ω AC CQ 2.480000000 G	Hz PNO: Fast ↔ IFGain:Low	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN OFF Avg Type: Log-Pw Avg Hold: 1000/100	02:06:50 r TR 10 T	PM Mar 09, 2022 ACE 1 2 3 4 5 6 YPE MWWWWW DET PNNNNN	
10 dB/div Log	Ref Offset 2.91 dB Ref 20.00 dBm				Mkr1 2.480 -6.9	000 GHz 931 dBm	
10.0							
0.00			1				
-10.0							
-30.0							
-40.0							
-50.0							
-70.0							
Center 2.48 #Res BW 2.	0000 GHz .0 MHz	#V	BW 6.0 MHz	s	Span Sweep 1.000 ms	6.000 MHz (1001 pts)	
MSG	<u>k</u> 97		KO /	STATUS	KO /		

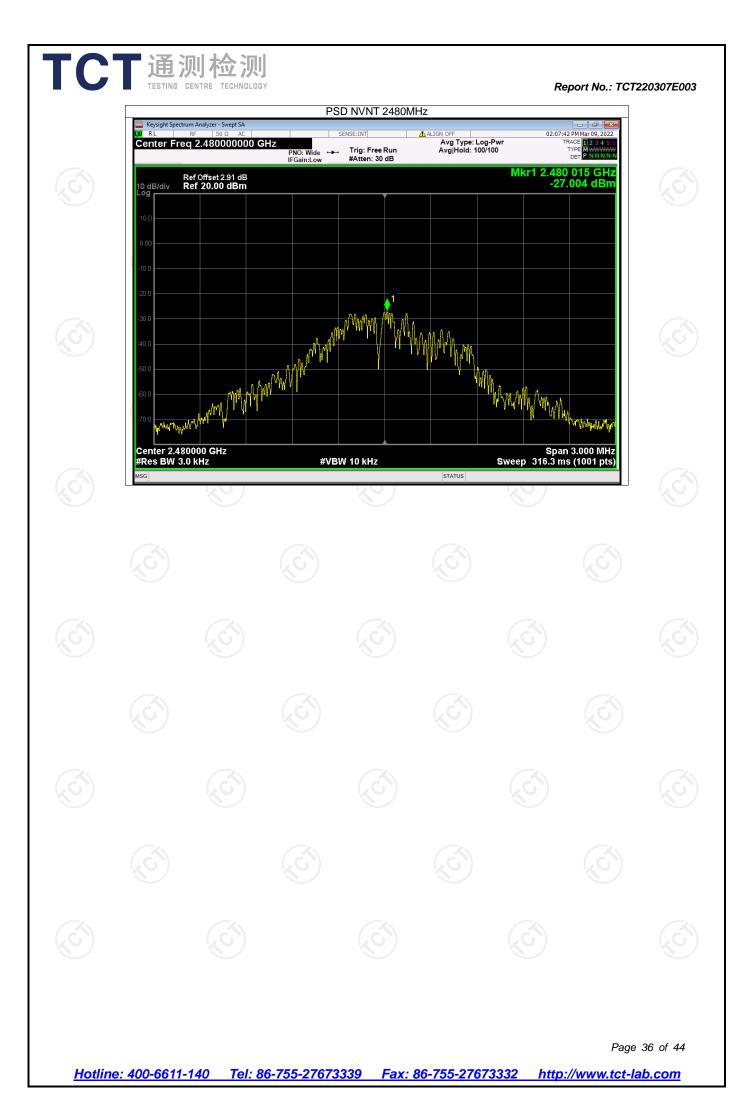
		imit -6 dB		B Bandwi B Bandwidt	 Frequency		
VerdictPassPass		dwidth (Mł 0.5 0.5		(MHz) 0.506 0.510	(MHz) 2402 2440	NVNT NVNT	
Pass	Ś	0.5	Ś	0.518	2480	NVNT	Ν

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

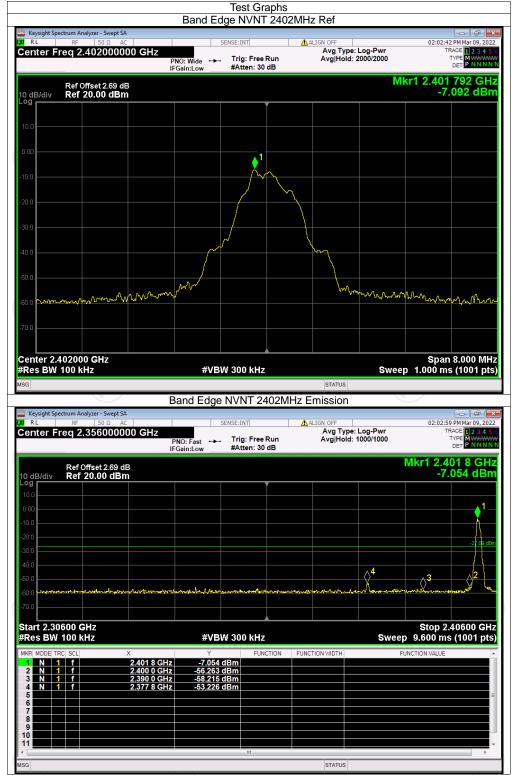
Page 32 of 44


NVNT	2440	-27.00	8	Pass	

Maximum Power Spectral Density Level


Conducted PSD Limit Frequency Condition Verdict (MHz) (dBm/3kHz) (dBm/3kHz) Pass **NVNT** 2402 -26.67 8 NVNT 2440 -26.55 8 Pass

Report No.: TCT220307E003



Page 35 of 44

Verdict Pass Pass	Limit (dBc) -20 -20	-46 -48	cy (MHz) 02 80	24	Condition NVNT NVNT	3

Page 38 of 44

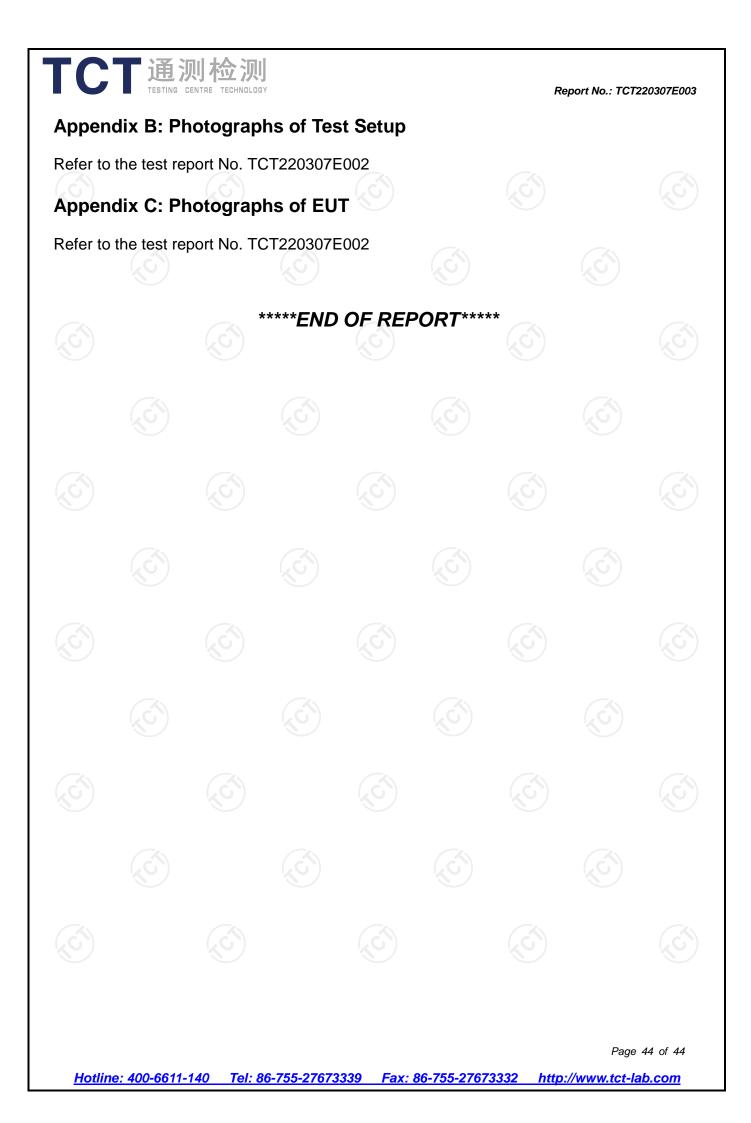
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:INT	ALIGN OFF	2:07:57 PM Mar 09, 2022
Center Freq 2.4800000	OU CHZ PNO: Wide ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 2000/2000	TRACE 123456 TYPE MWWWWW DET PNNNNN
Ref Offset 2.91 dl 10 dB/div Ref 20.00 dBn	3	Mkr1 2	479 792 GHz -7.060 dBm
10.0			
0.00			
-10.0			_
-20.0			
-30.0			
-40.0			
-50.0	mmmmmm	Jun wow	Mangana
-70.0			
Center 2.480000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 1.00	Span 8.000 MHz 10 ms (1001 pts)
		STATUS	
MSG	Band Edge NVNT 2480MF	status Iz Emission	
MSG Keysight Spectrum Analyzer - Swept SA XI RL RF 50 Ω AQ	SENSE:INT	Iz Emission	12:08:14 PM Mar 09, 2022 TRACE 12:34 5 6 TYPE MARKING
MSG Keysight Spectrum Analyzer - Sweet SA W RL RF SSWEET SA Center Freq 2.5260000	00 GHz PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN OFF Avg Type: Log-Pwr Avg Hold: 1000/1000	22:08:14 PM Mar 09, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN 2.479 8 GHz
MSG Keysight Spectrum Analyzer - Sweet Siz R RL RF 50 Ω AC Center Freq 2.52600000 Ref Offset 2.31 d 10 dB/div Ref 20.00 dBn	B	ALIGN OFF Avg Type: Log-Pwr Avg Hold: 1000/1000	02:08:14 PM Mar 09, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
MSG Keysight Spectrum Analyzer - Swept SA M RL RF 50 Ω At Center Freq 2.52600000 Ref Offset 2.91 d 10 dB/div Ref 20.00 dBr 10 0 0 00	B	ALIGN OFF Avg Type: Log-Pwr Avg Hold: 1000/1000	22:08:14 PM Mar 09, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN 2.479 8 GHz
MSG Keysight Spectrum Analyzer - Swept SA M RL RF 50 Ω At Center Freq 2.52600000 Ref Offset 2.91 d 10 dB/div Ref 20.00 dBr 10 0	B	ALIGN OFF Avg Type: Log-Pwr Avg Hold: 1000/1000	22:08:14 PM Mar 09, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN 2.479 8 GHz
MSG Keysight Spectrum Analyzer - Swept SA R RL RF 50 Ω Ad Center Freq 2.52600000 Ref Offset 2.91 d 10 dB/div Ref 20.00 dBr 10.0 10.0 -20.0 -30.0 -40.0	00 GHz PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB B N	ALIGN OFF Avg Type: Log-Pwr Avg Hold: 1000/1000	12:08:14 PMMar 09,2022 TRACE 12:3455 TYPE MWWWWY DET P.NNNN 2.4798 GHz -7.004 dBm
MSG Keysight Spectrum Analyzer - Swept S/A R RL RF 50 Ω Ad Center Freq 2.5260000 Ref Offset 2.91 d 10 dB/div Ref 20.00 dBr 10.0	OO GHz PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB B 0	Iz Emission	12:08:14 PMMar 09,2022 TRACE 12:3455 TYPE MWWWWY DET P.NNNN 2.4798 GHz -7.004 dBm
MSG Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.5260000 Ref Offset 2.91 d 10 dB/div Ref 20.00 dBr 10.0 10.	B n 3 3 3 3 3 3 3 3 3 3 3 3 3	Iz Emission	12:08:14 PMMar 09.2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P.NNNN 2.479 8 GHZ -7.004 dBm 2.77 06 68m -77 06 68m -77 06 68m -77 06 68m
MSG Keysight Spectrum Analyzer - Swept SA X RL RF 50 Q AG Center Freq 2.5260000 Ref Offset 2.91 d 10 dB/div Ref 20.00 dBm -00 -100 -00 -100 -00 -00 -00 -	SENSE:INT PNO: Fast →→ Trig: Free Run IFGain:Low → #Atten: 30 dB B 0 4 3 WBW 300 kHz #VBW 300 kHz 2.479 8 GHz -7.004 dBm	Iz Emission	12:08:14 PMMar 09.022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 1 P N N N N 2.479 8 GHz -7.004 dBm 2.7 06 dBm
MSG MSG Keysight Spectrum Analyzer - Swept SZ RL RF 50 Ω AC Center Freq 2.5260000 Ref Offset 2.91 d 10 10 dB/div Ref 20.00 dBn 10 dB/div Ref 20.00 dBn 10 10 10 10 10 dB/div Ref 20.00 dBn 10	B A B A B A A A A A A A A A A A A A	Iz Emission	12:08:14 PMMar 09.022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 7 TYPE 1 2 3 4 5 7 TYPE 1 P N N N N 2.479 8 GHz -7.004 dBm 2.7 06 dBm
Msg Keysight Spectrum Analyzer - Swept SA 20 RL RF [50 Ω AC Center Freq 2.5260000 Ref Offset 2.91 d 10 10 10 10 dB/div Ref 20.00 dBr 10 10 10 10.0 1 1 1 1 1 1 1 20.0 1	SENSE:INT PNO: Fast IFGain:Low → Trig: Free Run #Atten: 30 dB B 0 #VEW 300 kHz X 2.479 8 GHz 2.479 8 GHz -58.385 dBm 2.483 5 GHz 2.500 0 GHz -58.385 dBm 2.480 dBm	Iz Emission	12:08:14 PMMar 09.022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 7 TYPE 1 2 3 4 5 7 TYPE 1 P N N N N 2.479 8 GHz -7.004 dBm 2.7 06 dBm
MSG MSG MKeysight Spectrum Analyzer - Swept S2 RL RF 50 Ω AC Center Freq 2.5260000 Ref Offset 2.91 d 10	00 GHz SENSE:INT Free Run PNO: Fast IFGain:Low → Trig: Free Run #Atten: 30 dB #Atten: 30 dB B 0 - 4 - - 3 - - #VBW 300 kHz - - 2.479 8 GHz - - 2.500 0 GHz - - 2.494 4 GHz - - 2.494 4 GHz - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>Iz Emission</td> <td>12:08:14 PMMar 09.022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 7 TYPE 1 2 3 4 5 7 TYPE 1 P N N N N 2.479 8 GHz -7.004 dBm 2.7 06 dBm</td>	Iz Emission	12:08:14 PMMar 09.022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 7 TYPE 1 2 3 4 5 7 TYPE 1 P N N N N 2.479 8 GHz -7.004 dBm 2.7 06 dBm
MSG MSG Image: Section Analyzer - Swept SA RE 50 Q. Ac Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Ref Offset 2.91 d 10 Image: Section Analyzer - Swept SA Image: Section Analyzer - Swept SA 10 Image: Section Analyzer - Swept SA Image: Section Analyzer - Swept SA 10 Image: Section Analyzer - Swept SA Image: Section Analyzer - Swept SA 10 Image: Section Analyzer - Swept SA Image: Section Analyzer - Swept SA 10 Image: Section Analyzer - Swept SA Image: Section Analyzer - Swept SA 10 Image: Section Analyzer - Swept SA Image: Section Analyzer - Swept SA 10	SENSE:INT PNO: Fast IFGain:Low → Trig: Free Run #Atten: 30 dB B 0 #VEW 300 kHz X 2.479 8 GHz 2.479 8 GHz -58.385 dBm 2.483 5 GHz 2.500 0 GHz -58.385 dBm 2.480 dBm	Iz Emission	12:08:14 PMMar 09.022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 7 TYPE 1 2 3 4 5 7 TYPE 1 P N N N N 2.479 8 GHz -7.004 dBm 2.7 06 dBm

3	Condition NVNT NVNT NVNT	Frequen 24 24	cy (MHz) 02 40 80	F Spuric Max Valu -38 -37 -37	u e (dBc) .22 .56	Limit (dBc -20 -20 -20	Verdict Pass Pass Pass Pass	je Je

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT220307E003

FCT通测检测 TESTING CENTRE TECHNOLOGY


Page 41 of 44

STATUS

Keysight Spectrum Analyzer - Swept SA	Tx. Spurious NVNT 2440		
RL RF 50Ω AC Center Freq 2.440000000 GH;		Avg Type: Log-Pwr Avg Hold: 1000/1000	2:05:56 PM Mar 09, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N
Ref Offset 2.82 dB 0 dB/div Ref 20.00 dBm		Mkr1 2.43	9 781 0 GHz -6.863 dBm
10.0			
0.00	1		
10.0			
30.0			
40.0			
50.0			
60.0			
70.0			
Center 2.4400000 GHz Res BW 100 kHz sg	#VBW 300 kHz	Sweep 1.00	pan 1.500 MHz 0 ms (1001 pts)
	Tx. Spurious NVNT 2440MH		
keysight Spectrum Analyzer - Swept SA R L RF 50 Ω AC Center Freq 13.265000000 G	Z PNO: Fast → Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN OFF 0 Avg Type: Log-Pwr Avg Hold: 10/10	2:06:24 PM Mar 09, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNN
Ref Offset 2.82 dB Io dB/div Ref 20.00 dBm		Mkr	1 2.439 GHz -9.554 dBm
10.0			
-10.0			-26.86 dBm
-40.0	4 5		2 2
-60.0	A 5		
Start 0.03 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 2.5	stop 26.50 GHz 30 s (1001 pts)
N 1 f 2.439 2 N 1 f 25.256 3 N 1 f 4.874	GHz -9.554 dBm GHz -44.420 dBm	UNCTION WIDTH FUNCTION V	ALUE
4 N 1 f 7.203 5 N 1 f 9.956 6 7	GHz -56.151 dBm		E
8 9 10 11			
	m	STATUS	•
< SG			

Keysight Spectrum Analyzer - Swept SA μ RL RF 50 Ω AC	Tx. Spurious NVNT 2480MH	LIGN OFF 02:0	8:23 PM Mar 09, 2022
Center Freq 2.48000000	0 GHz PNO: Wide ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN
Ref Offset 2.91 dB 10 dB/div Ref 20.00 dBm Log		Mkr1 2.479	782 5 GHz 7.108 dBm
10.0			
0.00			
-10.0			
-20.0			
-30.0			
-40.0			
-50.0			
-60.0			
-70.0			
Center 2.4800000 GHz		Sp	an 1.500 MHz
#Res BW 100 kHz	#VBW 300 kHz	Sweep 1.000	ms (1001 pts)
Keysight Spectrum Analyzer - Swept SA	Tx. Spurious NVNT 2480MHz E	mission 🔀	
RL RF 50 Ω AC Center Freq 13.26500000 Center Freq 13.2650000000 Center Freq 13.265000000000000000000000000000000000000	00 GHz	LIGN OFF 02:0 Avg Type: Log-Pwr Avg Hold: 10/10	8:52 PM Mar 09, 2022
	PNO: Fast Irig: Free Run IFGain:Low #Atten: 30 dB		2.492 GHz
Ref Offset 2.91 dB 10 dB/div Ref 20.00 dBm		-1	1.829 dBm
0.00			
10.0			
			-27.11 dBm
10.0 0.00 -10.0 -20.0 -30.0	4 5 the second s	Marana and a start and a start and a	-27.11 dBm
10.0 000 -10.0 -20.0 -30.0 -40.0 -50.0			-27.11 dBm 2 2
100 000 100 -200 -200 -400 -600 -600	#VBW 300 kHz	St	-27.11 dBm
100 000 100 100 200 200 300 400 500 500 500 500 500 500 5	#VBW 300 kHz	St	
100 000 100 200 300 400 500 500 500 500 500 500 5	#VBW 300 kHz	Sweep 2.53	
100 000 100 200 200 300 400 400 500 500 500 500 500 5	YBW 300 kHz 2.492 GHz -11.829 dBm 24.832 GHz -44.737 dBm 4.953 GHz -48.261 dBm 7.521 GHz -56.416 dBm	Sweep 2.53	
100 000 100 200 300 400 500 500 500 500 500 500 5	YBW 300 kHz 2.492 GHz -11.829 dBm 24.932 GHz -44.737 dBm 4.953 GHz -48.261 dBm 7.521 GHz -56.416 dBm 9.956 GHz -54.545 dBm	Sweep 2.53	
100 000 100 200 300 400 500 400 500 500 500 500 5	YBW 300 kHz 2.492 GHz -11.829 dBm 24.832 GHz -44.737 dBm 4.953 GHz -48.261 dBm 7.521 GHz -56.416 dBm	Sweep 2.53	
100 000 -100 -200 -200 -300 -400 -500 -600 -600 -600 -700 -500 -700 -500 -700 -500 -600 -7	YBW 300 kHz 2.492 GHz -11.829 dBm 24.932 GHz -44.737 dBm 4.953 GHz -48.261 dBm 7.521 GHz -56.416 dBm 9.956 GHz -54.545 dBm	TION WIDTH FUNCTION VAL	

