

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Certification				
2. Test	Result Summary	<u>, (6)</u>		<u>(6)</u>	4
	Description				
4. Gen	era Information				
4.1. 7	Test environment an	d mode	\sim		6
4.2. [Description of Supp	ort Units			6
	lities and Accred				
5.1. F	acilities	\sim			7
5.2. L	ocation				7
5.3. N	Measurement Uncer	tainty	<u>(G)</u>		
	Results and Mea				
6.1. <i>A</i>	Antenna requiremen	t			8
6.2. 0	Conducted Emission	n			9
	Conducted Output P				
6.4. 2	OdB Occupy Bandv	vidth			
6.5. 0	Carrier Frequencies	Separation			
6.6. H	Hopping Channel Nu	ımber			16
	Dwell Time				
6.8. F	Pseudorandom Freq	uency Hopping	Sequence		
	Conducted Band Ed				
6.10.	Conducted Spuriou	s Emission Mea	surement		
6.11.	Radiated Spurious	Emission Measu	rement		21
Appen	dix A: Test Resul	t of Conducte	d Test		
Appen	dix B: Photograp	hs of Test Set	up		
	dix C: Photograp		•		
••					

1. Test Certification

Product:	Bluetooth Earphone						
Model No.:	AZ100XX						
Additional Model:	AZ10008, AZ10009, AZ10021, AZ10010, MA-3508, MA-3507-B, MA-3509-A, MA-3509-B, MA-3518						
Trade Mark:	N/A (C) (C)						
Applicant:	Shenzhen Kingsun Enterprises Co., Ltd.						
Address:	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, 518034 China						
Manufacturer:	Shenzhen Kingsun Enterprises Co., Ltd.						
Address:	25/F, CEC Information Building, Xinwen Rd., Shenzhen, Guangdong, 518034 China						
Date of Test:	May 07, 2018 – May 15, 2018						
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247						

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Reviewed By:

Beryl Zhao

msn

Approved By:

Tomsin

Date: May 15, 2018

Jun. 26, 2018

Date: Jun. 26, 2018

Date:

Page 3 of 65

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209 §2.1053, §2.1057	PASS
Band Edge	Band Edge §15.247(d) §2.1051, §2.1057	
Note: 1. PASS: Test item meets the requir 2. Fail: Test item does not meet the 3. N/A: Test case does not apply to	requirement.	
4. The test result judgment is decide		

Page 4 of 65

3. EUT Description

Product:	Bluetooth Earphone					
Model No.:	AZ100XX					
Additional Model:	AZ10008, AZ10009, AZ10021, AZ10010, MA-3508, MA-3507-B, MA-3509-A, MA-3509-B, MA-3518					
Trade Mark:	N/A					
Hardware Version:	V8					
Software Version:	V2012					
Bluetooth version:	V4.2					
Operation Frequency:	2402MHz~2480MHz					
Transfer Rate:	1/2 Mbits/s					
Number of Channel:	79					
Modulation Type:	GFSK, π/4-DQPSK					
Modulation Technology:	FHSS					
Antenna Type:	PCB Antenna					
Antenna Gain:	2dBi					
Power Supply:	Rechargeable Li-ion Battery DC 3.7V					
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.					
$\langle \mathcal{O} \rangle$						

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark:	Channel 0, 3	9 &78 ha	ve been tes	ted for GI	-SK, π/4-D0	PSK mo	dulation mode.

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
, 2	1			

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 65

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

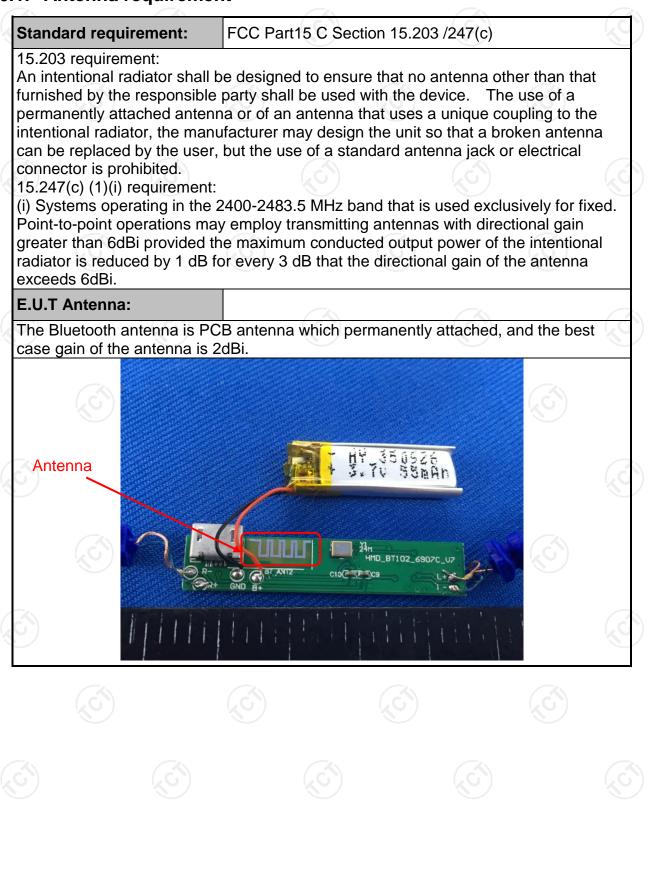
Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

Tel: 86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%



Page 8 of 65

6. Test Results and Measurement Data

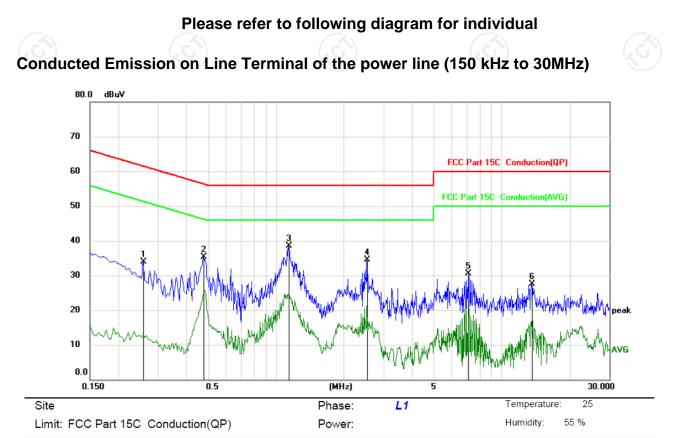
6.1. Antenna requirement

6.2. Conducted Emission

6.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	\mathcal{C}	$\left(\begin{array}{c} c \end{array} \right)$				
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto				
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Áverage				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane					
Гest Setup: 	E.U.T AC power Filter AC power Filter AC power Filter AC power E.U.T AC power Fest table/Insulation plane EMI Receiver Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Refer to item 4.1 AC power						
Γest Procedure:	 The E.U.T is connecting impedance stability provides a 500hm/s measuring equipmer The peripheral deviation power through a L coupling impedance refer to the block photographs). Both sides of A.C conducted interfere emission, the relative the interface cables 	zation network 50uH coupling im ent. ces are also conne ISN that provides e with 50ohm tern diagram of the . line are checkence. In order to fin ve positions of equ	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all o				
	ANSI C63.10:2013						

Page 9 of 65


6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer Model Serial Number		Serial Number	Calibration Due					
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018					
LISN	Schwarzbeck	warzbeck NSLK 8126 87		Sep. 27, 2018					
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					

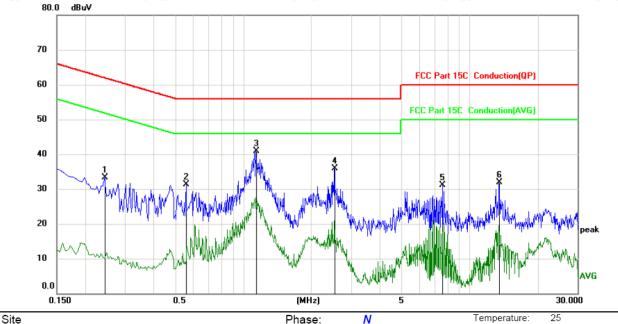
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 65

6.2.3. Test data

No. M	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2580	22.60	11.34	33.94	61.50	-27.56	peak	
2		0.4785	23.98	11.23	35.21	56.37	-21.16	peak	
3 *		1.1400	27.51	11.03	38.54	56.00	-17.46	peak	
4		2.5350	23.29	11.17	34.46	56.00	-21.54	peak	
5		7.1070	19.84	10.58	30.42	60.00	-29.58	peak	
6		13.6185	16.43	11.05	27.48	60.00	-32.52	peak	

Note:


Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ - Limits $(dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Report No.: TCT180625E901

55 %

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site Phase: N Temperat Limit: FCC Part 15C Conduction(QP) Power: Humidity:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2445	22.05	11.35	33.40	61.94	-28.54	peak	
2	0.5595	20.18	11.19	31.37	56.00	-24.63	peak	
3 *	1.1400	29.96	11.03	40.99	56.00	-15.01	peak	
4	2.5350	24.65	11.17	35.82	56.00	-20.18	peak	
5	7.5975	20.54	10.65	31.19	60.00	-28.81	peak	
6	13.5195	20.78	11.05	31.83	60.00	-28.17	peak	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (Middle channel and GFSK) was submitted only.

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013		
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.		
Test Setup:			
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation C		
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel RBW > the 20 dB bandwidth of the emission bein measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to th peak of the emission.		
Test Result:	PASS		

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 13 of 65

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (a)(1)	
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test Setup:	Spectrum Analyzer	EUT	C C
Test Mode:	Transmitting mode with	modulation	
Test Procedure:	 The testing follows Alguidelines. The RF output of EUT analyzer by RF cable was compensated to measurement. Set to the maximum p EUT transmit continue Use the following spe Bandwidth measurem Span = approximatel bandwidth, centered ≤5% of the 20 dB be Sweep = auto; Detect hold. Measure and record to the state of th	T was connected to e and attenuator. To the results for each ower setting and e cover setting and e curum analyzer set ment. by 2 to 5 times the to on a hopping char andwidth; VBW \geq 31 ctor function = peal	o the spectrum The path loss ch enable the ttings for 20dB 20 dB nnel; 1% ≪RBW RBW; k; Trace = max
Test Result:	PASS		

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

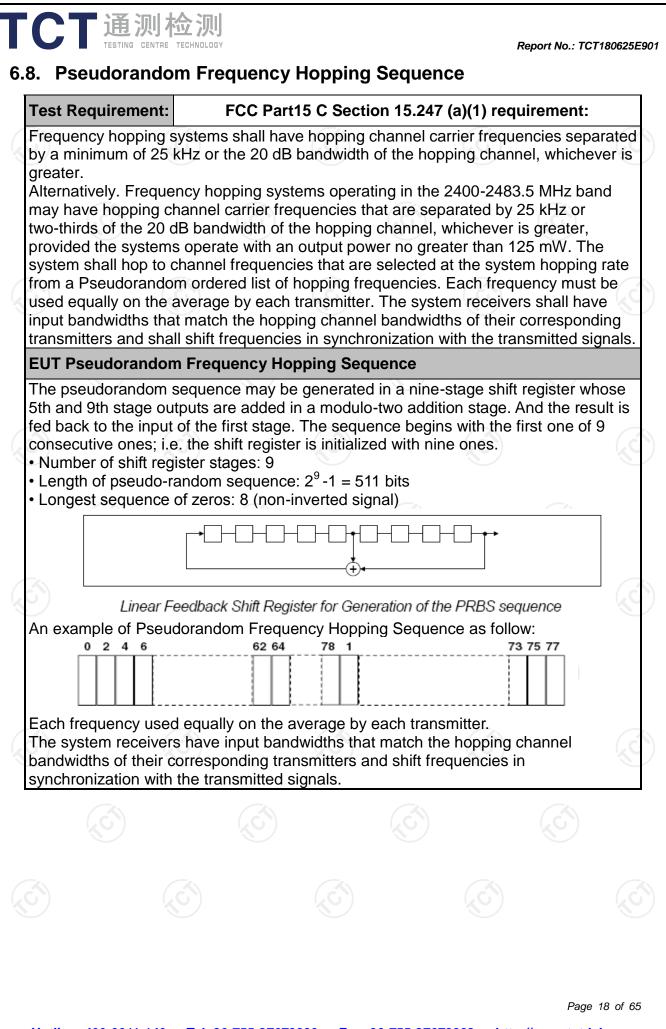
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

6.7. Dwell Time

6.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Report No.: TCT180625E901

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

FCC Part15 C Section 15.247 (d)			
ANSI C63.10:2013			
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which in the restricted bands must also comply with the radiated emission limits.			
Spectrum Analyzer EUT			
Transmitting mode with modulation			
 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 			
PASS			

6.9.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 19 of 65

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

6.10.2. Test Instruments

	RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due							
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018							
RF Cable (9KHz-40GHz)	тст	RE-06	N/A	Sep. 27, 2018							
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 20 of 65

6.11. Radiated Spurious Emission Measurement

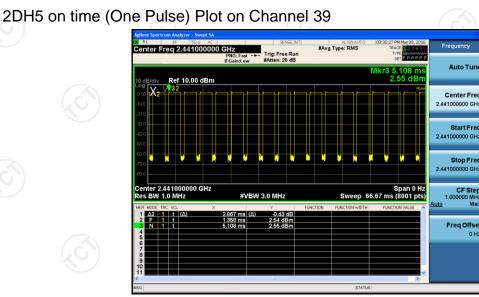
6.11.1. Test Specification

Field S		s/meter) KHz) (KHz))))) Measure Distar	Quas Quas Quas Pe Ave Distar	Remark ii-peak Value ii-peak Value eak Value erage Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
tor beak beak k k k Field S	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts 2400/F(1 24000/F(1 24000/F(1 30 100 500 500 500	1kHz 30kHz 300KHz 3MHz 10Hz ength s/meter) KHz) (KHz) (KHz) (KHz) (KHz)	Quas Quas Quas Pe Ave Distar	ii-peak Value ii-peak Value eak Value erage Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
tor beak beak k k k Field S	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts 2400/F(1 24000/F(1 24000/F(1 30 100 500 500 500	1kHz 30kHz 300KHz 3MHz 10Hz ength s/meter) KHz) (KHz) (KHz) (KHz) (KHz)	Quas Quas Quas Pe Ave Distar	ii-peak Value ii-peak Value eak Value erage Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
tor beak beak k k k Field S	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts 2400/F(1 24000/F(1 24000/F(1 30 100 500 500 500	1kHz 30kHz 300KHz 3MHz 10Hz ength s/meter) KHz) (KHz) (KHz) (KHz) (KHz)	Quas Quas Quas Pe Ave Distar	ii-peak Value ii-peak Value eak Value erage Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
Field S	200Hz 9kHz 100KHz 1MHz 1MHz Field Stre (microvolts 2400/F(1 24000/F(1 24000/F(1 30 100 500 500 500	1kHz 30kHz 300KHz 3MHz 10Hz ength s/meter) KHz) (KHz) (KHz) (KHz) (KHz)	Quas Quas Quas Pe Ave Distar	ii-peak Value ii-peak Value eak Value erage Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
Field S	9kHz 100KHz 1MHz 1MHz Field Stre (microvolts 2400/F(l 24000/F(l 24000/F(l 300 100 150 200 500 Strength olts/meter)	30kHz 300KHz 3MHz 10Hz ength s/meter) KHz) (KHz) (KHz) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Quas Quas Pe Ave Distan	ii-peak Value eak Value erage Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30
Field S	100KHz 1MHz 1MHz Field Stre (microvolts 2400/F(l 2400/F(l 30 100 150 200 500 Strength olts/meter)	300KHz 3MHz 10Hz ength s/meter) KHz) (KHz) (KHz)))))))))))))))))))	Quas Pe Ave Mea Distar	i-peak Value eak Value asurement nce (meters) 300 30 30 30 30 30 3 3 3 3 3 3 3
k k k <td>1MHz 1MHz Field Stra (microvolts 2400/F(l 24000/F(l 24000/F(30 100 150 200 500 Strength olts/meter)</td> <td>3MHz 10Hz ength s/meter) KHz) (KHz) (KHz)))))))))))))))))))</td> <td>Pe Ave Distar</td> <td>eak Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 3</td>	1MHz 1MHz Field Stra (microvolts 2400/F(l 24000/F(l 24000/F(30 100 150 200 500 Strength olts/meter)	3MHz 10Hz ength s/meter) KHz) (KHz) (KHz)))))))))))))))))))	Pe Ave Distar	eak Value asurement nce (meters) 300 30 30 30 30 30 30 30 30 3
Field S	1MHz Field Stre (microvolts 2400/F(l 24000/F(30 100 150 200 500 Strength olts/meter)	10Hz ength s/meter) KHz) (KHz) (KHz))))) Measure Distar	Ave Mea Distar	asurement nce (meters) 300 30 30 30 30 3 3 3 3 3 3 3 3
Field S	Field Stre (microvolts 2400/F(1 24000/F(30 100 150 200 500 Strength olts/meter)	ength /meter) KHz) (KHz)))) Measure Distar	Mea Distar	asurement nce (meters) 300 30 30 30 3 3 3 3 3 3 3
Field S	(microvolts 2400/F(l 24000/F(30 100 150 200 500 Strength olts/meter)	s/meter) KHz) (KHz))))) Measure Distar	Distar	nce (meters) 300 30 30 30 3 3 3 3 3 3 3 3
Field S	(microvolts 2400/F(l 24000/F(30 100 150 200 500 Strength olts/meter)	s/meter) KHz) (KHz))))) Measure Distar	Distar	nce (meters) 300 30 30 30 3 3 3 3 3 3 3 3
Field S	2400/F(l 24000/F(30 100 150 200 500 Strength olts/meter)	KHz) (KHz)))) Measure Distar	ement	300 30 30 3 3 3 3 3 3 3
nicrovo 5	24000/F(30 100 200 500 Strength blts/meter)	(KHz)	nce	30 30 3 3 3 3 3
nicrovo 5	100 150 200 500 Strength blts/meter)))) Measure Distar	nce	3 3 3 3
nicrovo 5	150 200 500 Strength blts/meter))) Measure Distar	nce	3 3 3
nicrovo 5	200 500 Strength blts/meter))) Measure Distar	nce	3 3
nicrovo 5	500 Strength blts/meter)	Measure Distar	nce	3
nicrovo 5	Strength olts/meter)	Measure Distar	nce	
nicrovo 5	olts/meter)	Distar	nce	Detector
	crovolts/meter)		ance Detector ters) 3 Average 3 Peak	
elow 30	X		Comput	
Ground Pl	ane		Receiver	
. (Ţ	Ground Plane		Receiver

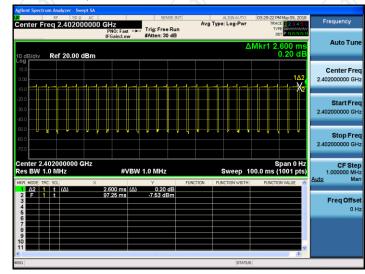
CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT180625E
	EUT Antenna Tower FUT Antenna Tower Turm 0.8m 1m Table 0.8m 1m Antenna Tower Im Antenna Tower Search Antenna Tower Comparison of the search Comparison of the search
	Ground Plane Above 1GHz
	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10:2013 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT,

	and stareceivi measu maxim antenr restrice above 3. Set to EUT t 4. Use th (1) Si er (2) Si fo (3) F	ding on the radiation aying aimed at the ing the maximum so arement antenna elevation for ma- ted to a range of he the ground or reference the ground or reference on the maximum por ransmit continuous the following spectro pan shall wide enoremission being mea- tet RBW=100 kHz for f>1GHz; VBW≥F Sweep = auto; Dete for average measurement for average measurement for time =N1*L1+N2 Where N1 is number ength of type 1 put Average Emission for Level + 20*log(Duty orrected Reading:	on pattern of the emission source signal. The finate fields of from the fights of fights of fights of fights of fights of fights of from the fights of fight	rce for al be that which ement ons shall be 1 m to 4 m plane. nd enable the ettings: pture the RBW=1MHz = peak; Trace duty cycle 0 milliseconds LNn-1+Nn*Ln ilses, L1 is Emission
Test results:	PASS	oss + Read Level -	Preamp Facto	or = Level

Page 23 of 65


6.11.2. Test Instruments

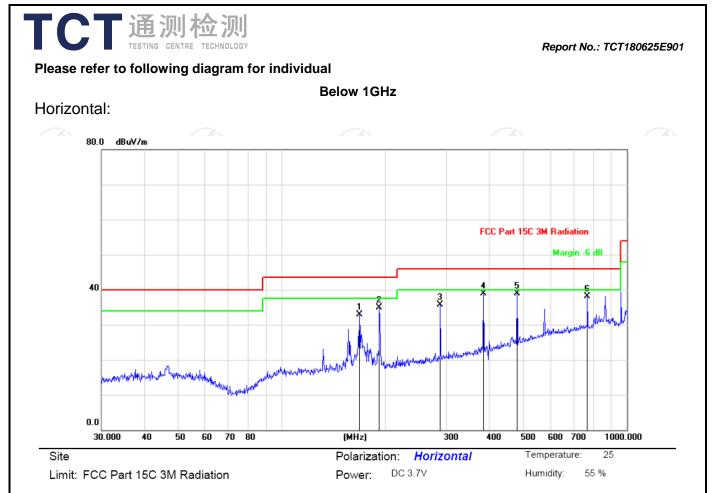
	Radiated Em	ission Test Sit	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

CT通测检测 6.11.3. Test Data

Duty cycle correction factor for average measurement

2DH5 on time (Count Pulses) Plot on Channel 00

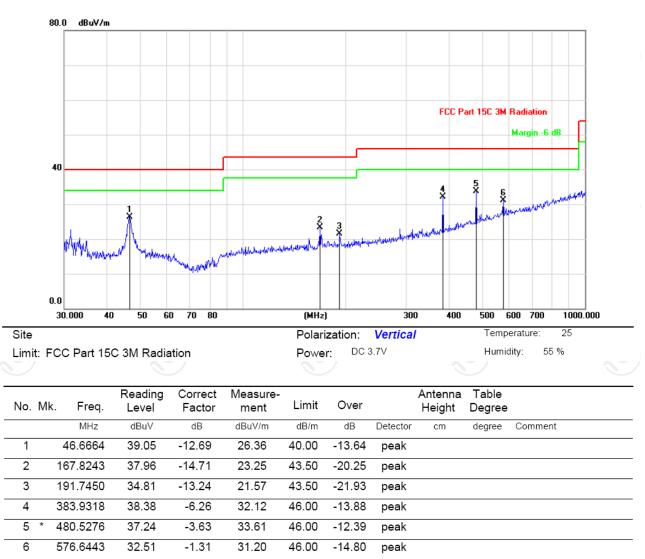


Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = (2.867*27+2.600)/100= 0.8001
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -1.94dB
- 3. 2DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-1.94dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Page 25 of 65

Report No.: TCT180625E901



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		167.8243	47.66	-14.71	32.95	43.50	-10.55	peak			
2		191.7450	48.15	-13.24	34.91	43.50	-8.59	peak			
3		287.9904	44.88	-9.20	35.68	46.00	-10.32	peak			
4		383.9318	45.14	-6.26	38.88	46.00	-7.12	peak			
5	*	480.5276	42.52	-3.63	38.89	46.00	-7.11	peak			
6		768.7481	36.72	1.30	38.02	46.00	-7.98	peak			

Page 26 of 65

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4 DQPSK) and the worst case Mode (Middle channel and GFSK) was submitted only.

Report No.: TCT180625E901

Above 1GHz

Modulation	Type: GF	SK							
Low chann	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390	Н	45.93		-8.27	37.66		74	54	-16.34
4804	Н	48.16		0.66	48.82		74	54	-5.18
7206	Н	38.45		9.5	47.95	~~~	74	54	-6.05
(CH)		-+-, C	•)	(<u>, C }-</u>		(
					1				
2390	V	43.85		-8.27	35.58		74	54	-18.42
4804	V	44.07		0.66	44.73		74	54	-9.27
7206	V	37.52		9.5	47.02		74	54	-6.98
0)	V			1)				

Middle channel: 2441 MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Frequency	Ant Pol	Peak	AV	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)		(dBµV/m)		(dB)
4882	Ĥ	43.87		0.99	44.86		74	54	-9.14
7323	Н	38.24		9.87	48.11		74	54	-5.89
	Н								
				(((ć
4882	V	44.62		0.99	45.61		74	54	-8.39
7323	V	39.11		9.87	48.98		74	54	-5.02
	V								

High channel: 2480 MHz

rign chan	iei. 2400 iv	/ ПZ		·)					
Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV/limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)
2483.5	Н	46.36		-7.83	38.53		74	54	-15.47
4960	Н	48.55		1.33	49.88		74	54	-4.12
7440	Н	39.29		10.22	49.51		74	54	-4.49
	Н								
2483.5	N	48.71		-7.83	40.88		74	54	-13.12
4960	V	47.03	- 40	1.33	48.36		74	54	-5.64
7440	V	37.58		10.22	47.80	$\underline{\bigcirc}$	74	54	-6.20
	V								

Note:

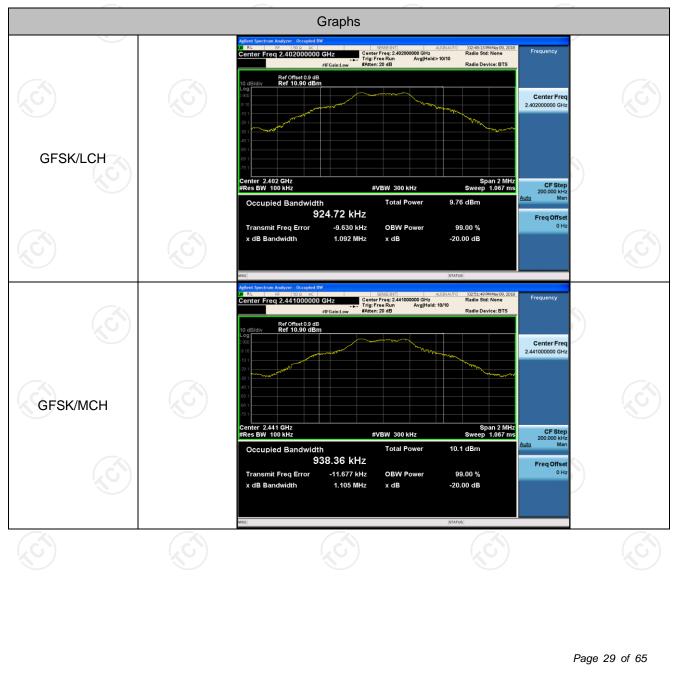
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all two modulation (GFSK, Pi/4 DQPSK), and the worst case Mode (GFSK) was submitted only.


Appendix A: Test Result of Conducted Test

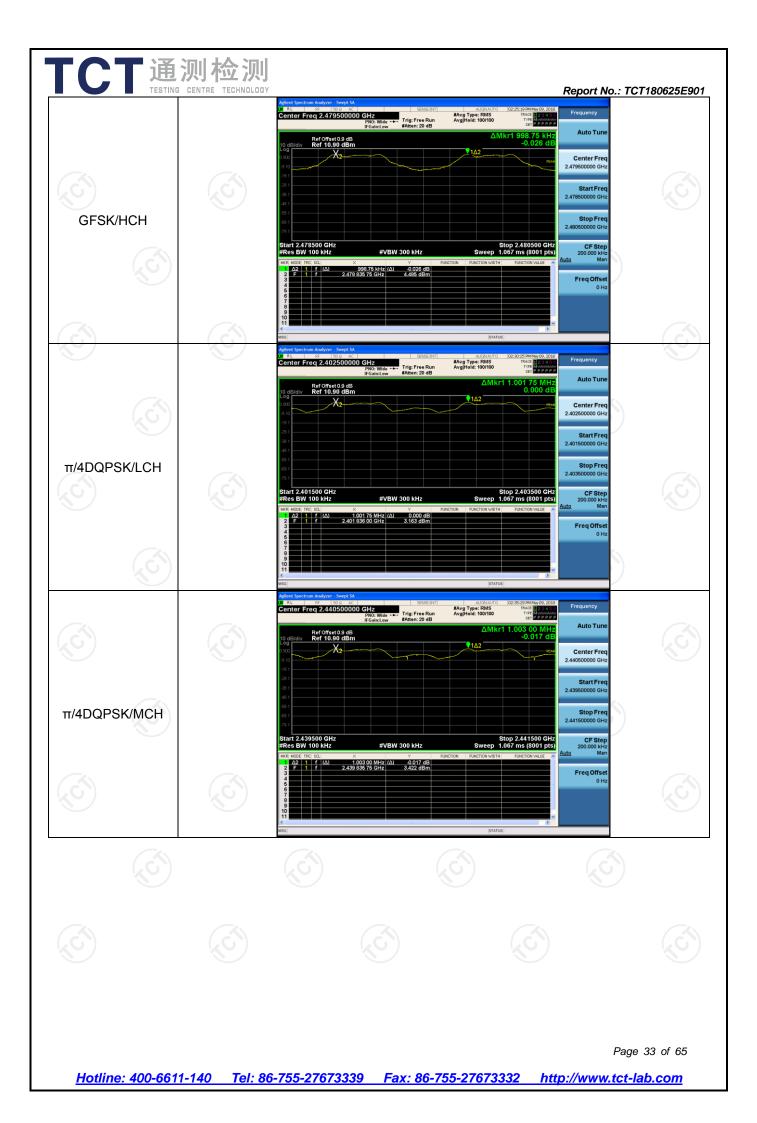
20dB Occupied Bandwidth

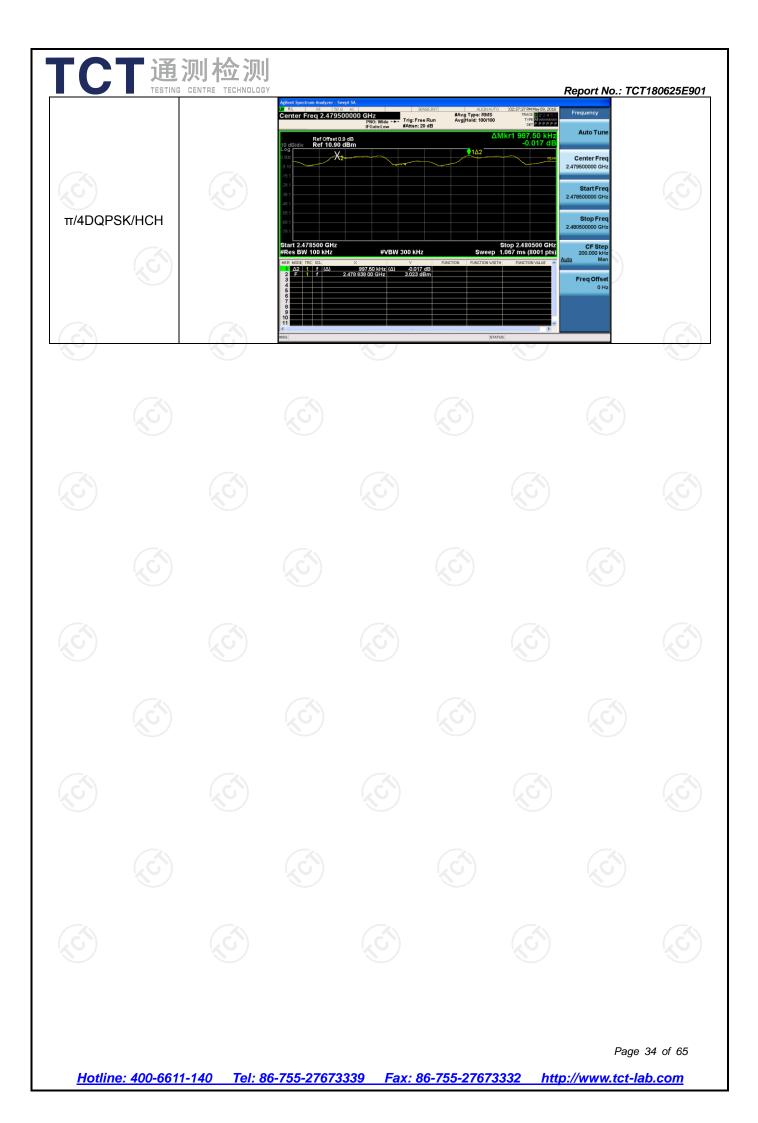
Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.092	0.92472	PASS
GFSK	MCH	1.105	0.93836	PASS
GFSK	HCH	1.103	0.94549	PASS
π /4DQPSK	LCH	1.270	1.1526	PASS
π /4DQPSK	MCH	1.267	1.1503	PASS
π /4DQPSK	HCH	1.276	1.1367	PASS

Test Graph

Carrier Frequency Separation

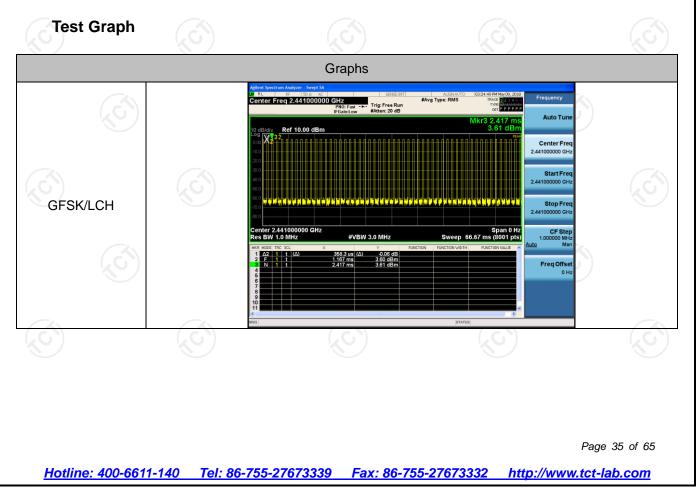

Result Table

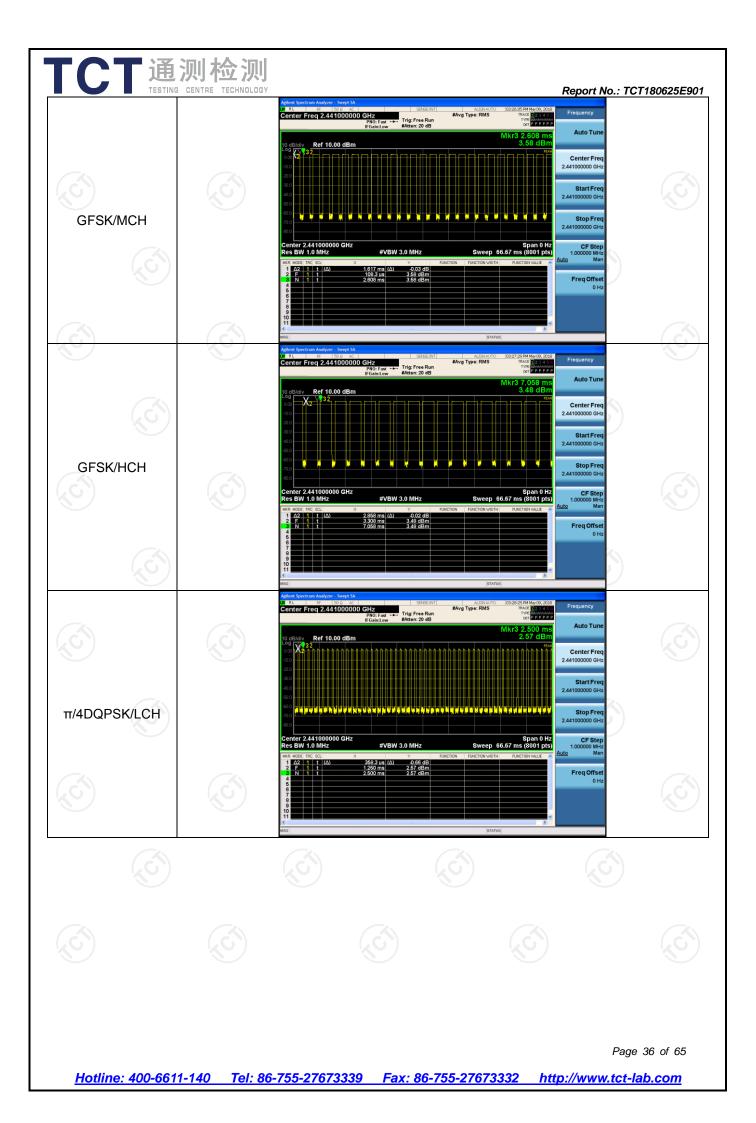

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.001	PASS
GFSK	MCH	0.998	PASS
GFSK	HCH	0.999	PASS
π/4DQPSK	LCH	1.002	PASS
π/4DQPSK	MCH	1.003	PASS
π/4DQPSK	HCH	0.997	PASS

Test Graph

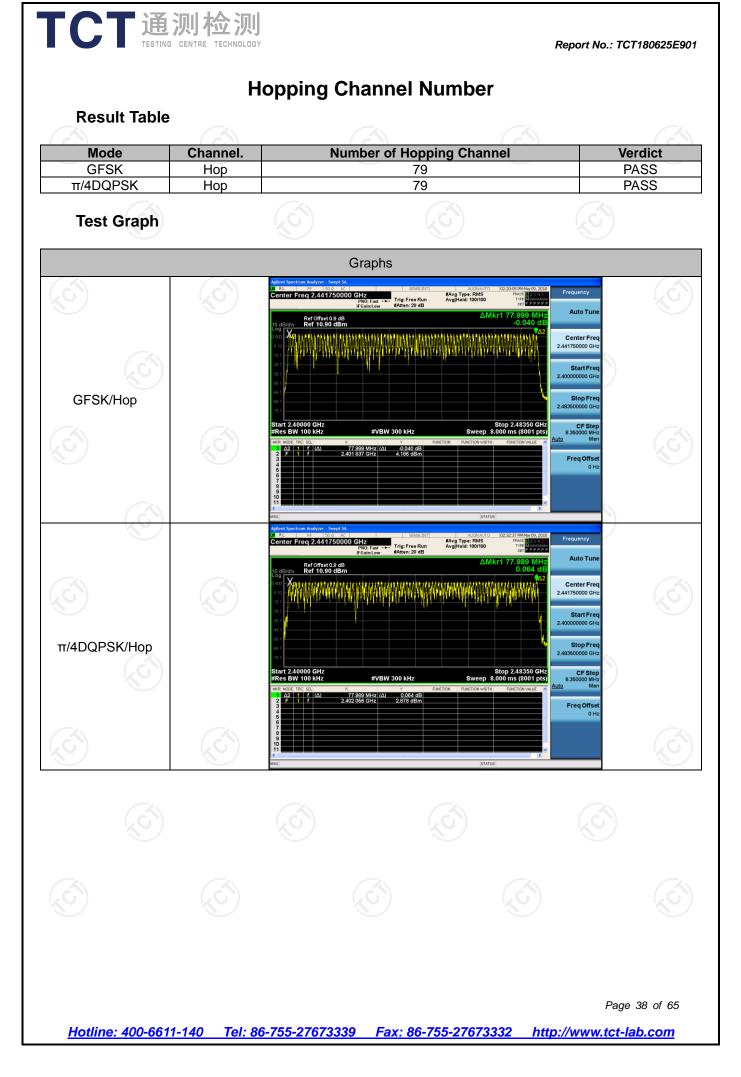
Dwell Time

Mode	Packet	Hops Over Occupancy Time (hops)	Package Transfer Time (ms)	Dwell time (second)	Limit (second)	Result
GFSK	DH1	320	0.358	0.115	0.4	PASS
GFSK	DH3	160	1.617	0.259	0.4	PASS
GFSK	DH5	106.67	2.858	0.305	0.4	PASS
Pi/4 DQPSK	2-DH1	320	0.358	0.115	0.4	PASS
Pi/4 DQPSK	2-DH3	160	1.617	0.259	0.4	PASS
Pi/4 DQPSK	2-DH5	106.67	2.867	0.306	0.4	PASS


Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.

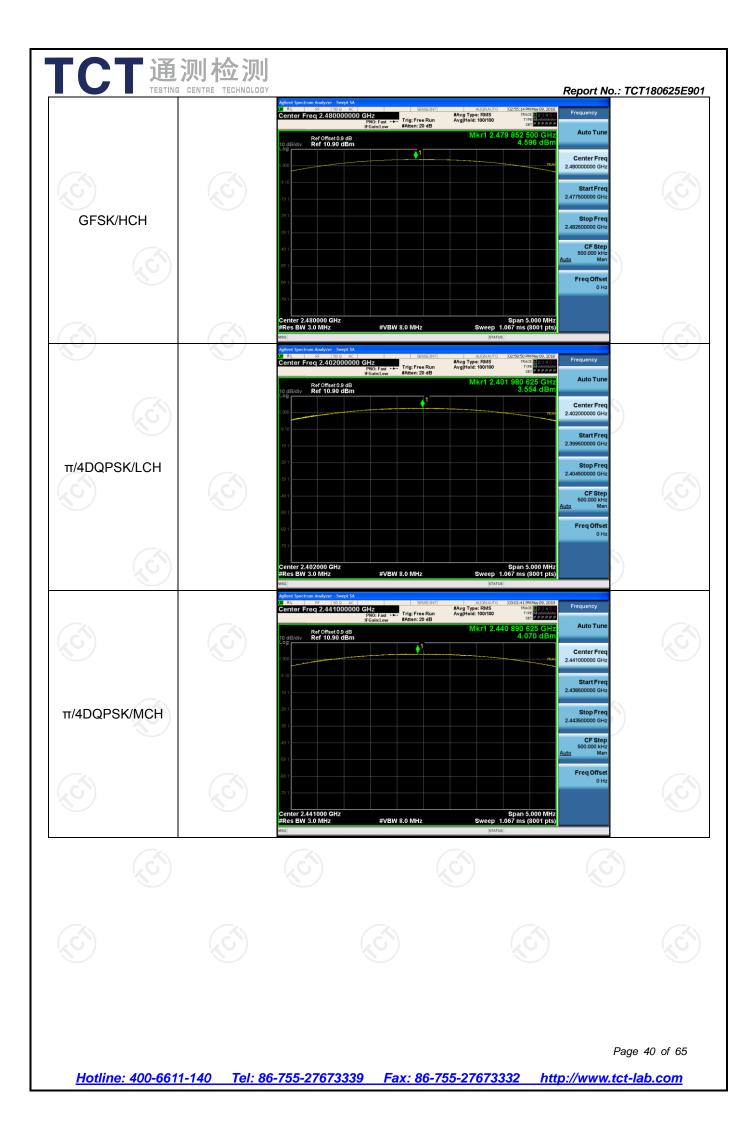

For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops

For DH3, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160$ hops


For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops

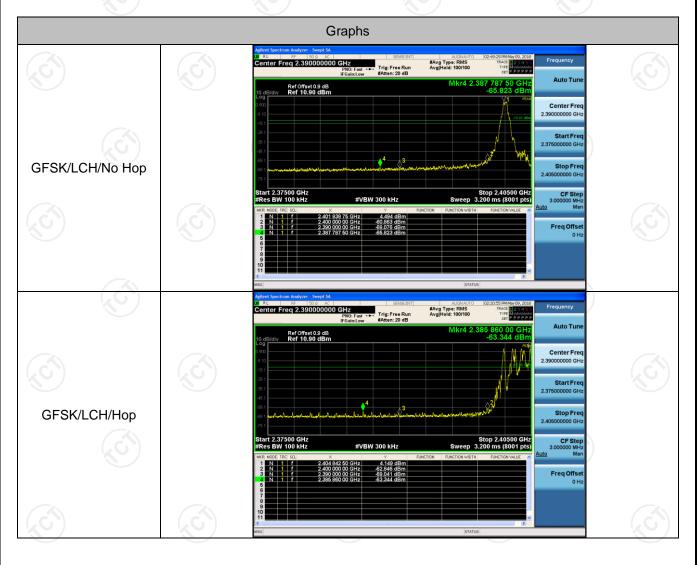
2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Conducted Peak Output Power

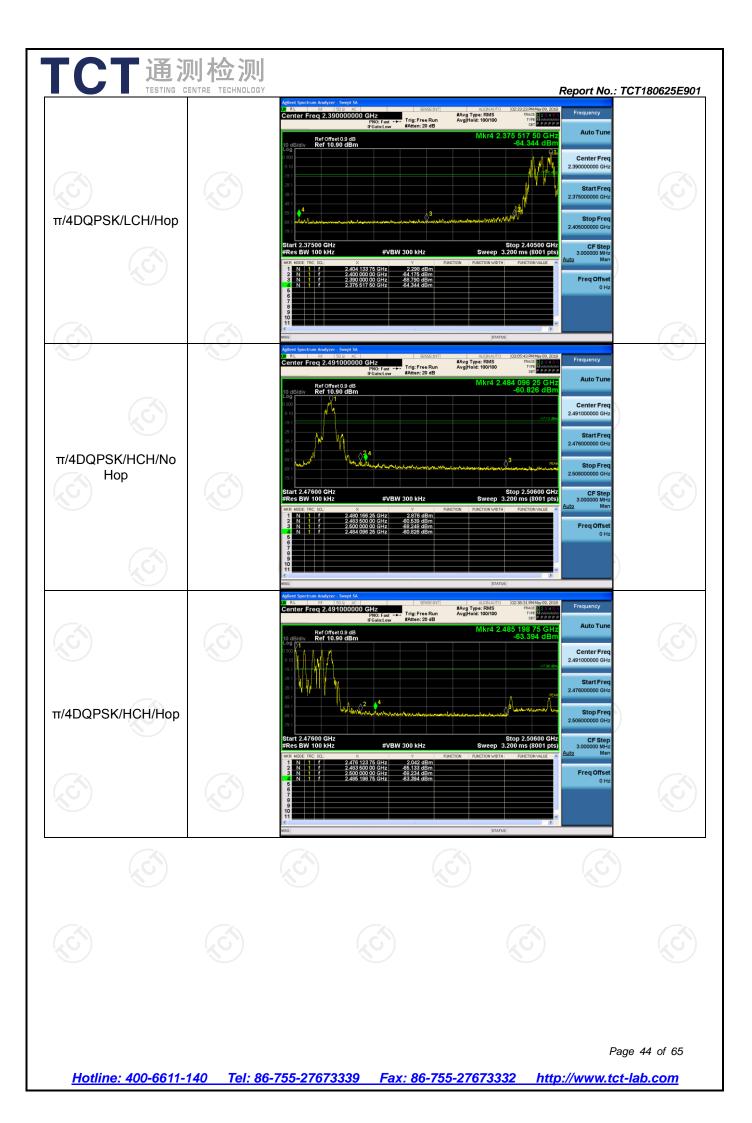

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	4.562	PASS
GFSK	MCH	4.815	PASS
GFSK	HCH	4.596	PASS
π/4DQPSK	LCH	3.554	PASS
π/4DQPSK	MCH	4.070	PASS
π/4DQPSK	HCH	3.507	PASS

Test Graph

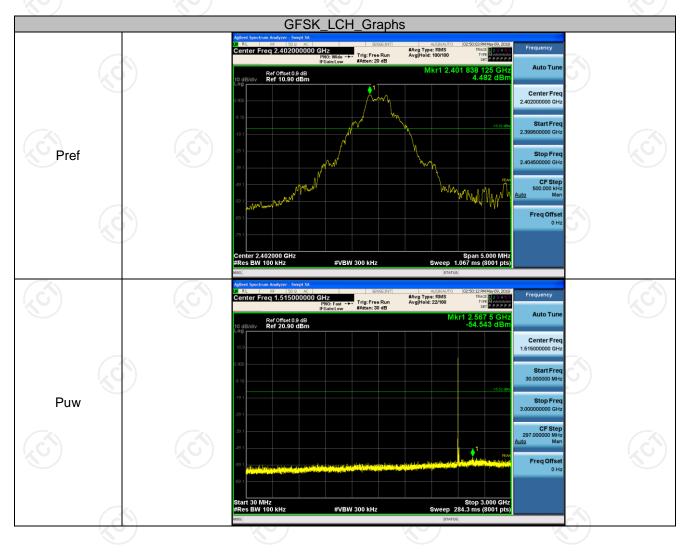

	TESTING	则检测 CENTRE TECHNOLOG					Report No.: TC	T180625E90
			Agtent Sector And/or. So 2 A 12 ESS Center Freq 2.4800 10 dB/dlv Ref 10.90 50 4 to 19 d	DOOOOO GHZ PN0: Fast Trig: F IFGain:Low #Atter	SEREINT AUGUATION AND AND AND AND AND AND AND AND AND AN	10 (02:02:11 PM Nay 09, 2019 TRACE P 33 4 85 10 (02:02) 20 (02:	Frequency Auto Tune Center Freq 2.48000000 GHz Start Freq 2.477500000 GHz	Ś
π/4DQP	SK/HCH			#VBW 8.0 M	Hz Swee		Stop Freq 2.48250000 GHz CF Step 500.000 KHz Man Freq Offset 0 Hz	
(\mathbf{O})		6	MSG					


Result Table


Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict	
GFSK	GFSK LCH	2402	4.494	Off	-65.823	-15.51	PASS	
GFSK	LCH		4.149	On	-63.344	-15.85	PASS	
GFSK	GFSK HCH	2480	4.508	Off	-62.571	-15.49	PASS	
GFSK	псп		4.270	On	-63.497	-15.73	PASS	
π/4DQPSK	LCH	2402	3.077	Off	-65.129	-16.92	PASS	
11/4DQF3K	LCH	2402	2.298	On	-64.344	-17.7	PASS	
π/4DQPSK	НСН	2490	2.876	Off	-60.826	-17.12	PASS	
	ноп	2480	2.042	On	-63.394	-17.96	PASS	

Test Graph

Page 42 of 65



RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw [dBm]	Verdict
GFSK	LCH	4.482	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	4.721	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	4.485	<limit< th=""><th>PASS</th></limit<>	PASS
π/4DQPSK	LCH	2.89	<limit< th=""><th>PASS</th></limit<>	PASS
π/4DQPSK	MCH	3.127	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	HCH	2.926	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

