

Report No.: TB-FCC159991 Page: 1 of 24

FCC Radio Test Report FCC ID: 2AAPF-MKD850

Report No.	•	TB-FCC159991
Applicant	:	Hongkong Meike Digital Technology Co., LTD.
Equipment Under	r To	est (EUT)
EUT Name	:	Battery grip
Model No.	:	MK-D850 PRO
Serial Model No.	2	MK-D850, MK-A9, MK-A9 PRO, MK-6D2, MK-6D2 PRO, MK-XT2, MK-XT2 PRO
Brand Name	:	MEKE
Receipt Date	:	2018-05-15
Test Date	:	2018-05-16 to 2018-06-25
Issue Date	:	2018-06-26
Standards		FCC Part 15, Subpart C (15.249: 2017)
Test Method	:	ANSI C63.10: 2013
Conclusions	•	PASS
		In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

2

Test/Witness Engineer

Engineer Supervisor

lason INRN SU fogstor. Ray Lai

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	5
	1.6 Description of Test Software Setting	6
	1.7 Measurement Uncertainty	
	1.8 Test Facility	7
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	14
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	BANDWIDTH TEST	
	6.1 Test Setup	
	6.2 Test Procedure	
	6.3 EUT Operating Condition	
	6.4 Test Data	
7.	ANTENNA REQUIREMENT	
	7.1 Standard Requirement	
	7.2 Antenna Connected Construction	
	7.3 Result	
ATT	ACHMENT A RADIATED EMISSION TEST DATA	
ATT	ACHMENT BBANDWIDTH TEST DATA	

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	2018-06-26
	and the second	I MOB
	Land Land	E D
	THE FORM	A DODA
	ROBI	De la
	TOB TOB	a la a
TOBL	The state of the s	and I
	The second second	
	a line and	TOUL T
	MOBIL MOBIL	
	1000	U ANT
	TODIS TO BUDS	

1. General Information about EUT

1.1 Client Information

Applicant	:	Hongkong Meike Digital Technology Co., LTD.		
Address : Room 902.9/F., Fu Fai Commercial Centre, 27 Hillier Street , Sheun Wan, Hongkong				
Manufacturer	:	Sky Wise Medical Instrument (Shenzhen) Co., Ltd		
Address		No.17-1 South Pingxi Road, Xinsheng Community, LongGang Street, LongGang District, Shenzhen City, People's Republic Of China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Battery grip			
Models No.		MK-D850 PRO, MK-D850, MK-A9, MK-A9 PRO, MK-6D2, MK-6D2 PRO, MK-XT2, MK-XT2 PRO			
Model Difference	2 · · ·	All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance and color.			
		Operation Frequency: 2450MHz			
Product		Out Power:	102.67dBuV/m@3m Peak 88.82dBuV/m@3m Avg		
Description		Antenna Gain:	3 dBi PCB Antenna		
		Modulation Type:	FSK		
		Data Rate:	0.5Mbps		
Power Rating		DC 2*1.5V by AAA Battery.			
Software Version	¢	N/A			
Hardware Version	:	N/A			
Connecting I/O Port(S)	i	Please refer to the User's Manual			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode		
	EUT	

1.4 Description of Support Units

The EUT has been test as independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	N/A			
	For Radiated Test			
Final Test Mode	Description			
Mode 2	TX Mode(2450MHz)			

Note:

For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

(1)According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.

(2)During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

(3) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF mode.

Test Software Version	N/A
Frequency	2450 MHz
FSK	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	14 CO 4D
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Redicted Emission	Level Accuracy:	14 20 dB
Radiated Emission	Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

FCC Part 15 Subpart C(15.249)					
Standard Section	Test Item	Judgment	Remark		
15.203	Antenna Requirement	PASS	N/A		
15.205	Restricted Bands	PASS	N/A		
15.207	AC Power Conducted Emission	N/A	N/A		
15.249 &15.209	Radiated Spurious Emission	PASS	N/A		
15.215(C)	20dB Bandwidth	PASS	N/A		

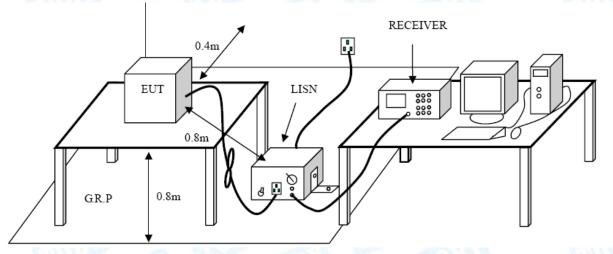
3. Test Equipment

Conducted Emiss	ion Test	-	_		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 20, 2017	Jul. 19, 2018
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 20, 2017	Jul. 19, 2018
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 20, 2017	Jul. 19, 2018
LISN	Rohde & Schwarz	ENV216	101131	Jul. 20, 2017	Jul. 19, 2018
Radiation Emissic	on Test			-	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 20, 2017	Jul. 19, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 03, 2017	Jul. 02, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 20, 2017	Jul. 19, 2018
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 20, 2017	Jul. 19, 2018
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Oct. 26, 2017	Oct. 25, 2018

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN is at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

The EUT is powered by AAA battery, no requirement for this test item.

5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

Radiated Emission Limit (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

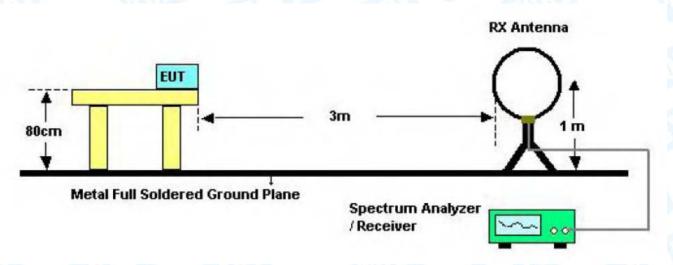
Frequency	Distance Mete	rs (at 3m)
(MHz)	Peak	Average
Above 1000	74	54

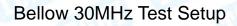
Note:

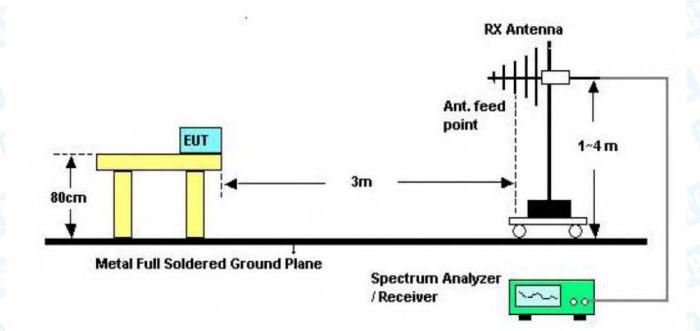
(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(Uv/m)

Limits of radiated emission measurement (15.249)

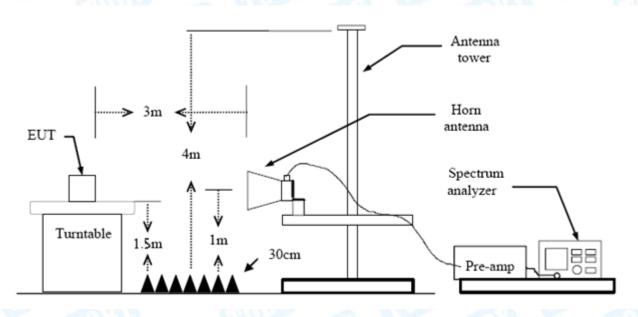

FCC Part 15 (15.249), Subpart C				
Limit	Frequency Range (MHz)			
Field strength of fundamental	2400~2483.5			
50000 μV/m (94 dBμV/m) @ 3 m	2400~2465.5			
Field strength of fundamental	Above 2492 5			
500 μV/m (94 dBμV/m) @ 3 m	Above 2483.5			


Restricted bands requirement for equipment operating in 2400MHz to 2483.5 MHz (15.249)



Restricted Frequency Band (MHz)	(dBuV/m)(at 3 M)
2310~2390	Attenuated by at least 50 dB below the level of the fundamental or to the general radiated
2483.5~2500	emission limits in 15.209, whichever is the lesser attenuation

5.2 Test Setup



Bellow 1000MHz Test Setup

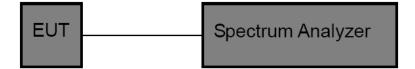
Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The EUT was set to Continual Transmitting in maximum power, and new batteries are used during testing.


5.5 Test Data

Please refer to the Attachment A.

6. Bandwidth Test

6.1 Test Setup

6.2 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 - Bandwidth: RBW=100 kHz, VBW=300kHz.
- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- 6.3 EUT Operating Condition

The EUT was set to continuously transmitting for the Bandwidth Test.

6.4 Test Data

Please refer to the Attachment B.

7. Antenna Requirement

- 7.1 Standard Requirement
 - 7.1.1 Standard
 - FCC Part 15.203
 - 7.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 3dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

7.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

COMP.	
	Antenna Type
no al	Permanent attached antenna
LIG-	□ Unique connector antenna
and l	Professional installation antenna

Attachment A-- Radiated Emission Test Data

Field Strength of the Fundamental

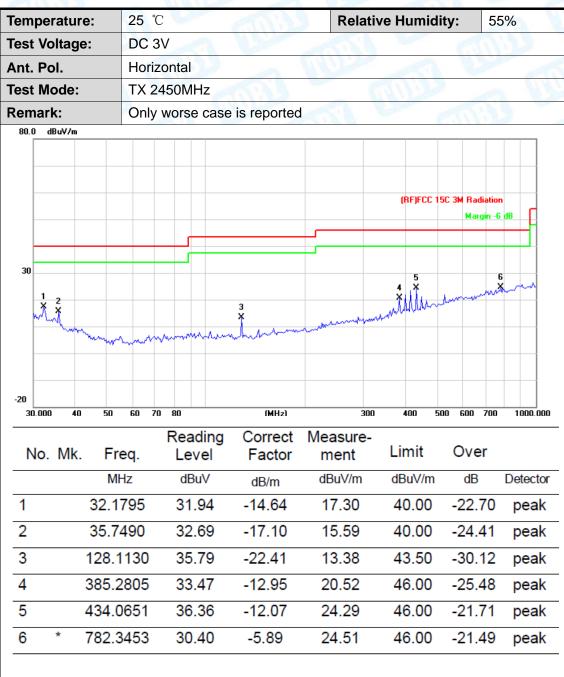
Temperature:	25 ℃		Relative Humidity	: 55%
Test Voltage:	DC 3V		132	aur
Ant. Pol.	Horizontal			
Fest Mode:	TX 2450MHz	100		
Remark:	100		33 - 6	1000
110.0 dBuV/m				
		3 X		
		4		
			(05) 500 0407 15	0.05483
			(RF) FCC PART 15	C (PEAK)
60			(RF) FCC PART 1	5C (AVG)
	1 ×		5 X	
	2	Ama	6	
		-will like	×	
10.0	2200.00 2410.00	2420.00 2450.00 2470.0	00 2400 00 2510 00	2550.00 M
2350.000 2370.00	2390.00 2410.00	2430.00 2450.00 2470.0	00 2490.00 2510.00	2550.00

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	43.77	2.82	46.59	74.00	-27.41	peak
2		2390.000	31.95	2.82	34.77	54.00	-19.23	AVG
3	Х	2450.000	98.68	3.18	101.86	114.00	-12.14	peak
4	*	2450.000	84.80	3.18	87.98	94.00	-6.02	AVG
5		2483.500	43.59	3.41	47.00	74.00	-27.00	peak
6		2483.500	31.50	3.41	34.91	54.00	-19.09	AVG

Temperature:	25 ℃		Relative Humi	dity: 55%
Test Voltage:	DC 3V	132	MUL	AV
Ant. Pol.	Vertical		no.	3.9
Test Mode:	TX 2450MHz			
Remark:		8 - 6	MILES	1 Bar
120.0 dBuV/m				
		3 X		
		4		
		Ň		
			(RF) FCC PAF	RT 15C (PEAK)
70				
	1	/ \		ART 15C (AVG)
	2	M		
			××	
20.0				

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	49.58	2.82	52.40	74.00	-21.60	peak
2		2390.000	38.65	2.82	41.47	54.00	-12.53	AVG
3	Х	2450.000	99.49	3.18	102.67	114.00	-11.33	peak
4	*	2450.000	85.64	3.18	88.82	94.00	-5.18	AVG
5		2483.500	49.37	3.41	52.78	74.00	-21.22	peak
6		2483.500	38.10	3.41	41.51	54.00	-12.49	AVG

Emission Level= Read Level+ Correct Factor



Radiated Spurious Emission (9 KHz~30 MHz)

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Radiated Spurious Emission (Below 1 GHz)

Temperature:	25 ℃		Relative Humidity:	55%			
Fest Voltage:	DC 3 V	1	AULUS A	N.V.			
Ant. Pol.	Vertical	1 Section	Comps				
Fest Mode:	TX 2450MHz	(NU)					
Remark:	Only worse case	Only worse case is reported					
80.0 dBuV/m							
			(RF)FCC 15C 3M Rad	liation			
				gin -6 dB			
		r—					
30			6				
			X	mann			
M	3	4	5 With Market Market				
and My man	mound	And when the second					
20							
30.000 40 50	60 70 80	(MHz)	300 400 500 600	700 1000.00			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		32.1795	34.81	-14.64	20.17	40.00	-19.83	peak
2	*	35.7490	39.08	-17.10	21.98	40.00	-18.02	peak
3		92.1388	31.83	-22.00	9.83	43.50	-33.67	peak
4		128.1130	32.75	-22.41	10.34	43.50	-33.16	peak
5		284.9767	30.46	-16.49	13.97	46.00	-32.03	peak
6		416.1791	33.96	-12.18	21.78	46.00	-24.22	peak

Radiated Spurious Emission (Above 1 GHz)

Tem	perature:	25 ℃	N.S.		<u></u>	Relative	e Humi	dity:	55%	
Tes	t Voltage:	DC 3V		19	J. P.			1	200	
Ant	. Pol.	Horizonta	al		6	2019	>	~	UN R	
Tes	t Mode:	TX 2450	TX 2450MHz							
Ren	nark:		No report for the emission which more than 10 dB below the prescribed limit.							
90.	D dBu¥/m									
							(RF) FCC	PART 15C (F	'EAK)	
	2 X									
							(RF) FC	C PART 15C	AVG)	
40	X									
-10										

1000.000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 MHz

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1	*	4910.170	35.35	15.08	50.43	54.00	-3.57	AVG
2	2		4910.320	48.45	15.09	63.54	74.00	-10.46	peak

Tempe	rature:	25 ℃			1	Relative	Humidity:	55%		
Test Voltage:		DC 3V	Call	2		RUP				
Ant. Po	ol.	Vertical	1200	1	120		antis			
Test M	ode:	TX 2450	MHz	11				199		
Remar	k:		No report for the emission which more than 10 dB below the prescribed limit.							
90.0 d	Bu¥/m									
						(RF) FCC PART 15C	(PEAK)		
	1 X									
							(RF) FCC PART 15	C (AVG)		
	2 X									
40										
-10										
1000.0	00 3550.00	6100.00 865	0.00 1120	0.00 137	50.00 1630	0.00 18850.00	21400.00	26500.00 M		

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4910.000	47.75	15.08	62.83	74.00	-11.17	peak
2	*	4910.560	35.08	15.09	50.17	54.00	-3.83	AVG

Attachment B--Bandwidth Test Data

Channel Frequency (MHz)	20dB Bandwidth (KHz)				
2450	903.177				

2450 MHz

-----END OF REPORT----