

FCC Test Report

Application No.: DNT241573R1998-5093

Applicant: DGL Group LTD.

Address of

2045 Lincoln Highway, 3rd Floor, Edison, NJ 08817, United States

Applicant:

EUT Description: TWIST BASS LED WIRELESS SPEAKER

Model No.: DG-WARP-BLK, DG-WARP, DG-WARP-XXX

FCC ID: 2AANZWARP-2

Power Supply: DC 3.7V From Battery; DC 5V From Adapter

Charging Voltage: DC 5V

Trade Mark: VIBE

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/7/5

Date of Test: 2024/7/6 to 2024/7/14

Date of Issue: 2024/7/15

Test Result: PASS

Prepared By: Wayne Jin (Testing Engineer)

Reviewed By: ______ (Project Engineer)

Approved By: _____ (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date: July 15, 2024

Page: 2/66

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jul.15, 2024	Valid	Original Report

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 3 / 66

1 Test Summary

1 Cot Gaillinary				
Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)	<u> </u>	Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS
Radiated Spurious	15.247(d);	ANSI C63.10: 2020	Clause 3.9	PASS
emissions	15.205/15.209	ANSI C03.10. 2020	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	PASS

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: July 15, 2024

Page: 4/66

Contents

1 Test S	Summary	3
2 Gene	eral Information	5
2.1	Test Location	5
2.2	General Description of EUT	6
2.3	Channel List	7
2.4	Test Environment and Mode	8
2.5	Power Setting of Test Software	9
2.6	Description of Support Units	9
2.7	Test Facility	9
2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
2.9	Equipment List	11
2.10	Assistant equipment used for test	12
3 Test r	results and Measurement Data	13
3.1	Antenna Requirement	13
3.2	20dB Emission Bandwidth	14
3.3	Conducted Output Power	15
3.4	Carrier Frequencies Separationy	16
3.5	Dwell Time	17
3.6	Hopping Channel Number	18
3.7	Band-edge for RF Conducted Emissions	19
3.8	RF Conducted Spurious Emissions	20
3.9	Radiated Spurious Emissions	21
3.10	Restricted bands around fundamental frequency	29
3.11	AC Power Line Conducted Emissions	33
4 Apper	endix	36
Apper	ndix A: 20dB Emission Bandwidth	
Apper	ndix B: Maximum conducted output power	40
Apper	ndix C: Carrier frequency separation	44
Apper	ndix D: Dwell Time	46
Apper	ndix F: Number of hopping channels	50
	ndix F: Band edge measurements	
Apper	ndix F: Conducted Spurious Emission	

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 5 / 66

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 6 / 66

2.2 General Description of EUT

Manufacturer:	DGL Group LTD.
Address of Manufacturer:	2045 Lincoln Highway, 3rd Floor, Edison, NJ 08817, United States
Test EUT Description:	TWIST BASS LED WIRELESS SPEAKER
Model No.:	DG-WARP-BLK
Additional Model(s):	DG-WARP, DG-WARP-XXX
Chip Type:	AC6965E
Serial number:	PR241573R1998
Power Supply:	DC 3.7V From Battery; DC 5V From Adapter
Charging Voltage:	DC 5V
Trade Mark:	VIBE
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK
Sample Type:	
Antenna Type:	☐ External, ☑ Integrated
Antenna Ports:	
Antonno Coint.	⊠ Provided by applicant
Antenna Gain*:	-0.58dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

*All models are just color differences, motherboard, PCB circuit board, chip, electronic components, appearance is all the same.

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 7 / 66

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: July 15, 2024

Page: 8/66

2.4 5Test Environment and Mode

Operating Environment:	
Temperature:	20~25.0 °C
Humidity:	45~56 % RH
Atmospheric Pressure:	101.0~101.30 KPa
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Date: July 15, 2024 Page: 9 / 66

2.5 Power Setting of Test Software

Software Name FCC_assist_1.0.2.2			\bigcirc , \bigcirc , \bigcirc ,
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 10 / 66

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	014.1050.45	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty		
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)		
	0, 0, 0, 0, 0,	± 4.8dB (Below 1GHz)		
2	Dedicted Emission	± 4.8dB (1GHz to 6GHz)		
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)		
	0 0 0 0 0 0 0	± 5.02dB (Above 18GHz)		

Date: July 15, 2024

Page: 11 / 66

2.9 Equipment List

For Connect EUT Antenna Terminal Test							
Description	Manufacturer	Model	Serial Number	Cal date	Due date		
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24		
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24		
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24		
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24		
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24		
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA		
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA		
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24		
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24		
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24		

	Test Equipment for Conducted Emission								
Description Manufacturer Model Serial Number Cal Date Due									
Receiver	Receiver R&S		101152	2023-10-24	2024-10-23				
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23				
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23				

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	LE-FULL NA		NA	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23	
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23	

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 12 / 66

Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz	z)	
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date	
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23	
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23	
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23	
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23	
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA	
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23	
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23	

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 13 / 66

3 Test results and Measurement Data

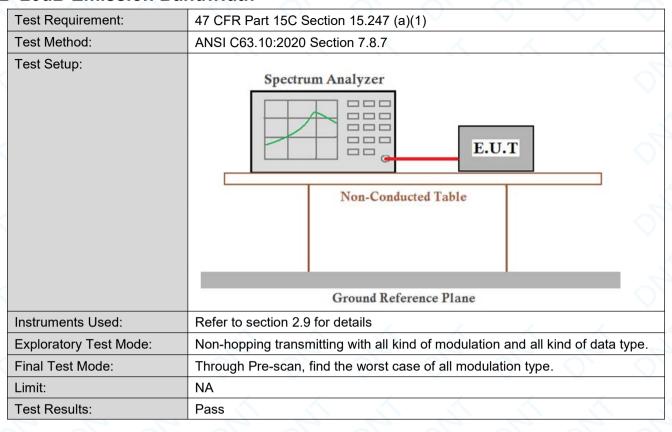
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 14 / 66

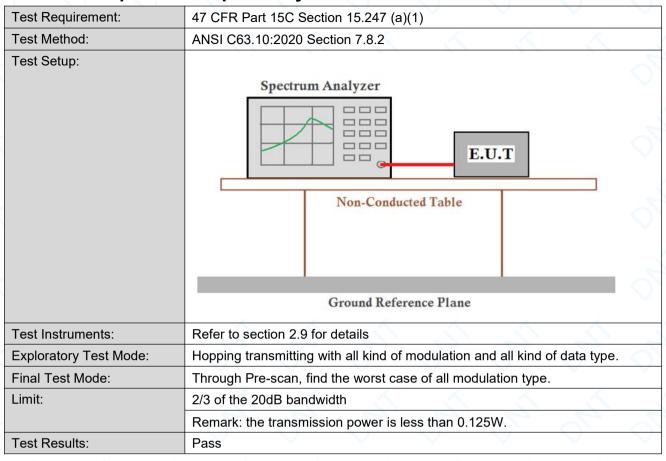
3.2 20dB Emission Bandwidth

The detailed test data see: Appendix A

Date: July 15, 2024

Page: 15 / 66

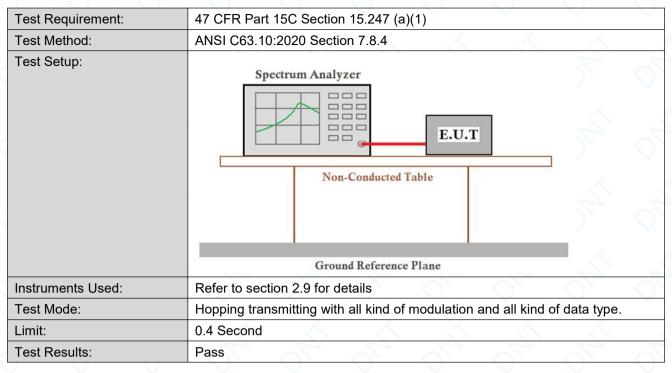
3.3 Conducted Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2020 Section 7.8.5
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 16 / 66

3.4 Carrier Frequencies Separationy



The detailed test data see: Appendix C

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 17 / 66

3.5 Dwell Time

The detailed test data see: Appendix D

Date: July 15, 2024

Page: 18 / 66

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2020 Section 7.8.3	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	9, 9, 9,
	Ground Reference Plane	
Instruments Used:	Refer to section 2.9 for details	
Test Mode:	Hopping transmitting with all kind of modulation	
Limit:	At least 15 channels	
Test Results:	Pass	-

The detailed test data see: Appendix E

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 19 / 66

3.7 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2020 Section 7.8.6					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Instruments Used:	Refer to section 2.9 for details					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.					
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test Results:	Pass					

The detailed test data see: Appendix F

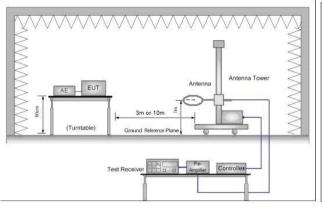
Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 20 / 66

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10: 2020 Section 11.11					
Test Setup:	Spectrum Analyzer Non-Conducted Table					
Instruments Used:	Refer to section 2.9 for details					
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates					
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test Results:	Pass					

The detailed test data see: Appendix G

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 21 / 66


3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2020 Sect	ion 11.12							
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	6 1				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
		Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average				
				(DC<0.98)					
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	- <	-<	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	<u></u>	<u> </u>	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated by	e the maximum per ent under test. This	mitted avera	ge emission lir	nit				

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 22 / 66

Test Setup:

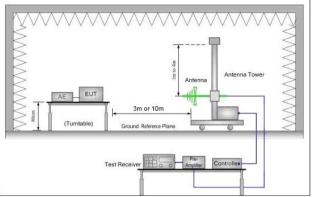


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

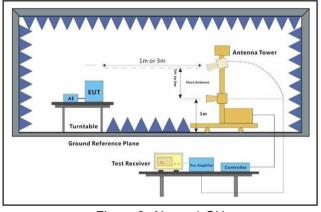
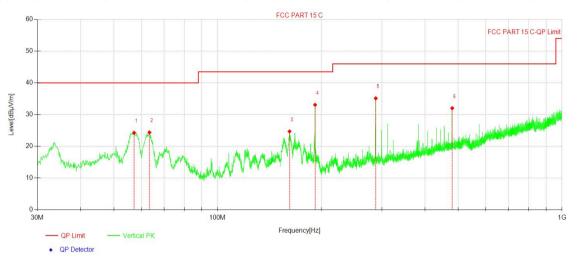
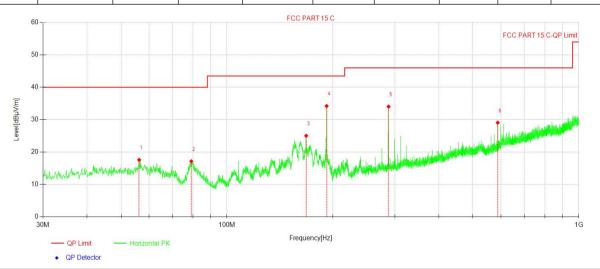


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

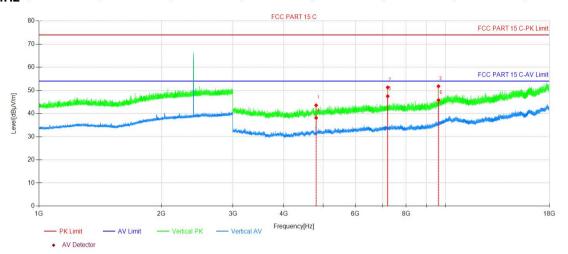

Report No.:	DNT241573R1998-5093	Date: July 15, 2024	Page: 23 / 66
Test Configuration:	Measurements Below 1000M	Hz	
	• RBW = 120 kHz		
	• VBW = 300 kHz		
	Detector = Peak		<i>X X</i>
	Trace mode = max hold		
	Peak Measurements Above 1	000 MHz	
	• RBW = 1 MHz		V V
	• VBW ≥ 3 MHz		X X
	Detector = Peak		9, 9,
	Sweep time = auto		\bigcirc
	Trace mode = max hold		· · · · · · · · · · · · · · · · · · ·
	Average Measurements Abov	e 1000MHz	
	• RBW = 1 MHz		
	VBW = 10 Hz, when duty cy	cle is no less than 98 perc	ent.
	VBW ≥ 1/T, when duty cycle	le is less than 98 percent v	where T is the minimum
	transmission duration over wh maximum power control level		_
Exploratory Test Mode:	Transmitting with all kind of me	odulations, data rates.	\bigcirc , \bigcirc , \langle
	Charge+Transmitting mode.		
Final Test Mode:	Pretest the EUT at Transmittir	ng mode.	
	Through Pre-scan, find the DF type.	H5 of data type is the worst	case of All modulation
Instruments Used:	Refer to section 2.9 for details		,
Test Results:	Pass		


Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 24 / 66

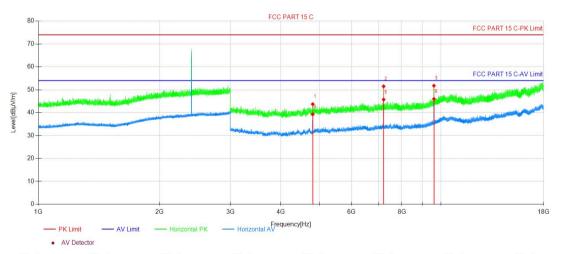
Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	57.2597	32.75	-8.49	24.26	40.00	15.74	100	343	QP	Vertical
2	63.4683	33.52	-9.16	24.36	40.00	15.64	100	279	QP	Vertical
3	161.8362	32.53	-7.84	24.69	43.50	18.81	100	54	QP	Vertical
4	192.0062	43.77	-10.70	33.07	43.50	10.43	100	160	QP	Vertical
5	287.9488	42.43	-7.30	35.13	46.00	10.87	200	316	QP	Vertical
6	480.028	34.26	-2.24	32.02	46.00	13.98	100	251	QP	Vertical



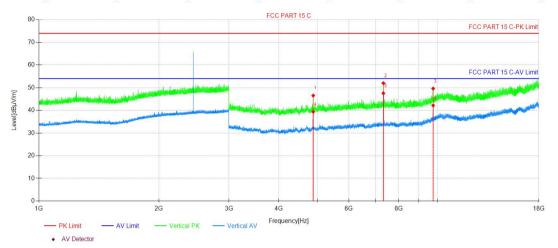
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	56.2896	25.97	-8.38	17.59	40.00	22.41	100	306	QP	Horizontal
2	79.1839	29.47	-12.33	17.14	40.00	22.86	200	0	QP	Horizontal
3	167.9478	33.17	-8.15	25.02	43.50	18.48	200	117	QP	Horizontal
4	192.0062	44.92	-10.70	34.22	43.50	9.28	100	332	QP	Horizontal
5	287.9488	41.34	-7.30	34.04	46.00	11.96	100	36	QP	Horizontal
6	587.9998	29.57	-0.49	29.08	46.00	16.92	100	136	QP	Horizontal


Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 25 / 66

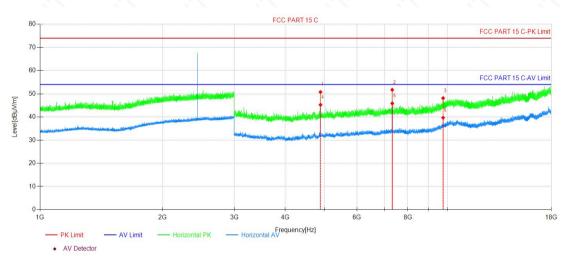
For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	48.16	-4.61	43.55	74.00	30.45	150	166	Peak	Vertical
2	7206.21	53.05	-1.76	51.29	74.00	22.71	150	133	Peak	Vertical
3	9607.83	50.92	0.87	51.79	74.00	22.21	150	204	Peak	Vertical
4	4804.59	42.74	-4.61	38.13	54.00	15.87	150	166	AV	Vertical
5	7206.96	49.25	-1.76	47.49	54.00	6.51	150	144	AV	Vertical
6	9609.33	44.92	0.88	45.80	54.00	8.20	150	204	AV	Vertical

Horizontal:


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4803.84	48.32	-4.61	43.71	74.00	30.29	150	154	Peak	Horizon
2	7206.21	53.25	-1.76	51.49	74.00	22.51	150	314	Peak	Horizon
3	9608.58	50.89	0.88	51.77	74.00	22.23	150	186	Peak	Horizon
4	4804.59	43.87	-4.61	39.26	54.00	14.74	150	144	AV	Horizon
5	7206.96	47.48	-1.76	45.72	54.00	8.28	150	175	AV	Horizon
6	9608.58	45.11	0.88	45.99	54.00	8.01	150	197	AV	Horizon

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 26 / 66

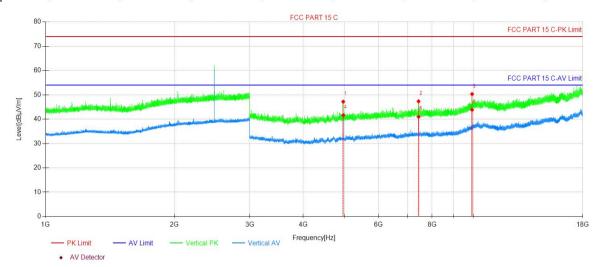

DH5 2441MHz

Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	51.23	-4.72	46.51	74.00	27.49	150	258	Peak	Vertical
2	7322.46	53.50	-1.49	52.01	74.00	21.99	150	174	Peak	Vertical
3	9763.83	47.99	1.64	49.63	74.00	24.37	150	174	Peak	Vertical
4	4882.59	44.10	-4.72	39.38	54.00	14.62	150	347	AV	Vertical
5	7323.96	49.02	-1.49	47.53	54.00	6.47	150	183	AV	Vertical
6	9764.58	40.55	1.64	42.19	54.00	11.81	150	183	AV	Vertical

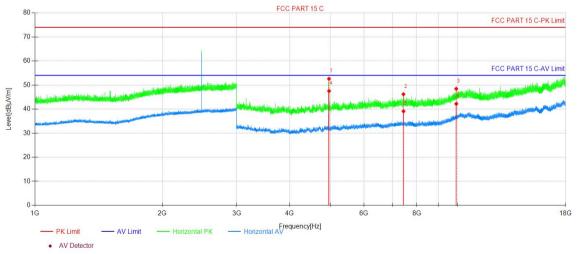
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	55.47	-4.72	50.75	74.00	23.25	150	161	Peak	Horizon
2	7322.46	53.20	-1.49	51.71	74.00	22.29	150	172	Peak	Horizon
3	9764.58	46.47	1.64	48.11	74.00	25.89	150	118	Peak	Horizon
4	4882.59	49.96	-4.72	45.24	54.00	8.76	150	150	AV	Horizon
5	7323.96	44.83	2.47	47.30	54.00	6.70	150	47	AV	Horizon
6	9764.58	39.97	6.42	46.39	54.00	7.61	150	28	AV	Horizon



Date: July 15, 2024

Page: 27 / 66


DH5 2480MHz

Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
•	1	4959.84	52.07	-4.86	47.21	74.00	26.79	150	250	Peak	Vertical
	2	7439.47	48.70	-1.34	47.36	74.00	26.64	150	165	Peak	Vertical
Ī	3	9920.59	48.07	2.27	50.34	74.00	23.66	150	197	Peak	Vertical
Ī	4	4960.59	46.51	-4.86	41.65	54.00	12.35	150	250	AV	Vertical
	5	7440.97	42.35	-1.34	41.01	54.00	12.99	150	165	AV	Vertical
Ī	6	9920.59	41.57	2.27	43.84	54.00	10.16	150	197	AV	Vertical

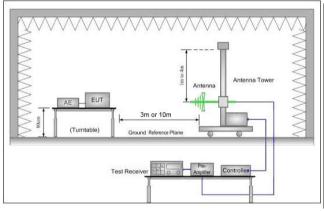
Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	57.46	-4.86	52.60	74.00	21.40	150	162	Peak	Horizon
2	7439.47	47.51	-1.34	46.17	74.00	27.83	150	315	Peak	Horizon
3	9919.09	46.19	2.26	48.45	74.00	25.55	150	184	Peak	Horizon
4	4960.59	52.38	-4.86	47.52	54.00	6.48	150	172	AV	Horizon
5	7440.97	40.43	-1.34	39.09	54.00	14.91	150	131	AV	Horizon
6	9920.59	39.93	2.27	42.20	54.00	11.80	150	184	AV	Horizon

Report No.: DNT241573R1998-5093 Date: July 15, 2024

Page: 28 / 66

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 29 / 66

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	
Test Method:	ANSI C63.10: 2020 Section	11.12	, ,
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Ab 4011-	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Test Setup:			0, 0, (

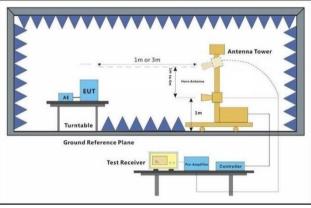


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

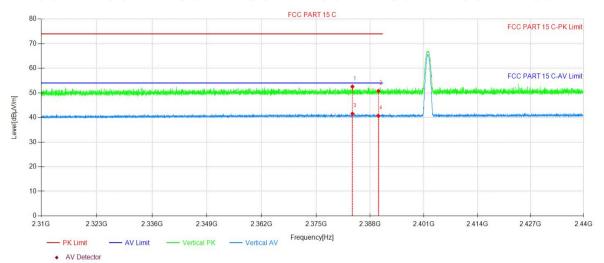
Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

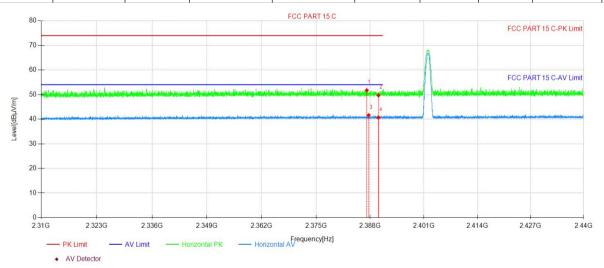
Test Configuration:

Measurements Below 1000MHz

Report No.: DI	NT241573R1998-5093 Date: July 15, 2024 Page: 30 / 66
Neport No Dr	• RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above 1000MHz • RBW = 1 MHz • VBW ≥ 3 MHz • VBW = 1 MHz • VBW = 10 Hz, when duty cycle is no less than 98 percent. • VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the
	minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of all modulation type. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



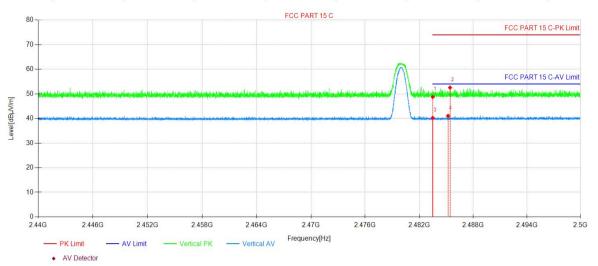
Report No.: DNT241573R1998-5093
Test Date

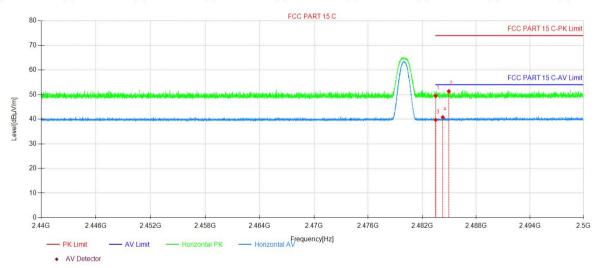

Date: July 15, 2024

Page: 31 / 66

DH5 2402MHz

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dΒμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	2383.74	53.37	-0.82	52.55	74.00	21.45	150	93	Peak	Vertical
	2	2390.01	51.57	-0.80	50.77	74.00	23.23	150	29	Peak	Vertical
	3	2383.74	42.35	-0.82	41.53	54.00	12.47	150	0	AV	Vertical
Ţ	4	2390.01	41.47	-0.80	40.67	54.00	13.33	150	111	AV	Vertical


	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
ſ	1	2387.20	52.54	-0.80	51.74	74.00	22.26	150	54	Peak	Horizon
	2	2390.01	50.48	-0.80	49.68	74.00	24.32	150	249	Peak	Horizon
	3	2387.65	42.40	-0.80	41.60	54.00	12.40	150	360	AV	Horizon
	4	2390.01	41.47	-0.80	40.67	54.00	13.33	150	290	AV	Horizon


Date: July 15, 2024

Page: 32 / 66

DH5 2480MHz

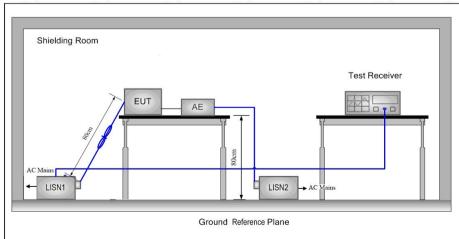
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	49.07	-0.29	48.78	74.00	25.22	150	0	Peak	Vertical
2	2485.43	52.82	-0.27	52.55	74.00	21.45	150	157	Peak	Vertical
3	2483.50	40.49	-0.29	40.20	54.00	13.80	150	181	AV	Vertical
4	2485.21	41.32	-0.27	41.05	54.00	12.95	150	173	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	49.75	-0.29	49.46	74.00	24.54	150	18	Peak	Horizon
2	2484.96	51.59	-0.27	51.32	74.00	22.68	150	118	Peak	Horizon
3	2483.50	39.99	-0.29	39.70	54.00	14.30	150	135	AV	Horizon
4	2484.29	41.07	-0.28	40.79	54.00	13.21	150	354	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.


2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Page: 33 / 66 Report No.: DNT241573R1998-5093 Date: July 15, 2024

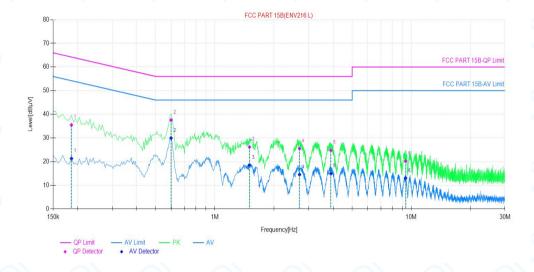
3.11 AC Power Line Conducted Emissions

	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2020						
Test Frequency Range:	150kHz to 30MHz						
Limit:	- (411)	Limit (d	IBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarit	hm of the frequency.					
Test Procedure:	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Ne impedance. The power caba a second LISN 2, which was plane in the same way as the multiple socket outlet strip was ingle LISN provided the ration of the tabletop EUT was performed of the EUT shall be 0.4 m from the test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the interest in the control	I to AC power source thro twork) which provides a 5 es of all other units of the s bonded to the ground re the LISN 1 for the unit bein was used to connect multip ting of the LISN was not e laced upon a non-metallic d for floor-standing arrang bund reference plane, with a vertical ground reference was bonded to the ho 1 was placed 0.8 m from the to a ground reference plane and reference plane. This could find the LISN 1 and the EUT uipment was at least 0.8 m m emission, the relative por	ugh a LISN 1 (Line 0Ω/50μH + 5Ω linear EUT were connected to ference g measured. A pole power cables to a exceeded. It is table 0.8m above the gement, the EUT was become plane. The rear ference plane. The porizontal ground the boundary of the ne for LISNs distance was Γ. All other units of the form the LISN 2. positions of				

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

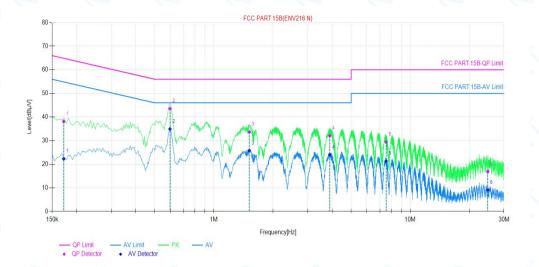

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 34 / 66

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:


	NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dΒμV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dΒμV]	AV Result Level [dBµV]	AV Limit [dΒμV]	AV Margin [dB]
	1	0.18	9.92	25.57	35.49	64.22	28.73	11.39	21.31	54.22	32.91
Y	2	0.59	9.82	27.75	37.57	56.00	18.43	20.13	29.95	46.00	16.05
	3	1.50	9.73	16.44	26.17	56.00	29.83	8.83	18.56	46.00	27.44
Ī	4	2.70	9.74	15.82	25.56	56.00	30.44	4.77	14.51	46.00	31.49
	5	3.89	9.75	15.02	24.77	56.00	31.23	7.18	16.93	46.00	29.07
1	6	9.36	9.86	10.38	20.24	60.00	39.76	3.17	13.03	50.00	36.97

Date: July 15, 2024

Page: 35 / 66

Neutral Line:

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dΒμV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dΒμV]	AV Result Level [dBµV]	AV Limit [dΒμV]	AV Margin [dB]
1	0.17	9.82	28.32	38.14	64.87	26.73	12.5	22.32	54.87	32.55
2	0.59	9.78	33.76	43.54	56.00	12.46	25.14	34.92	46.00	11.08
3	1.51	9.73	23.93	33.66	56.00	22.34	16.03	25.76	46.00	20.24
4	3.89	9.95	22.12	32.07	56.00	23.93	14.06	24.01	46.00	21.99
5	7.53	9.96	19.47	29.43	60.00	30.57	11.33	21.29	50.00	28.71
6	24.82	10.14	6.79	16.93	60.00	43.07	-1.01	9.13	50.00	40.87

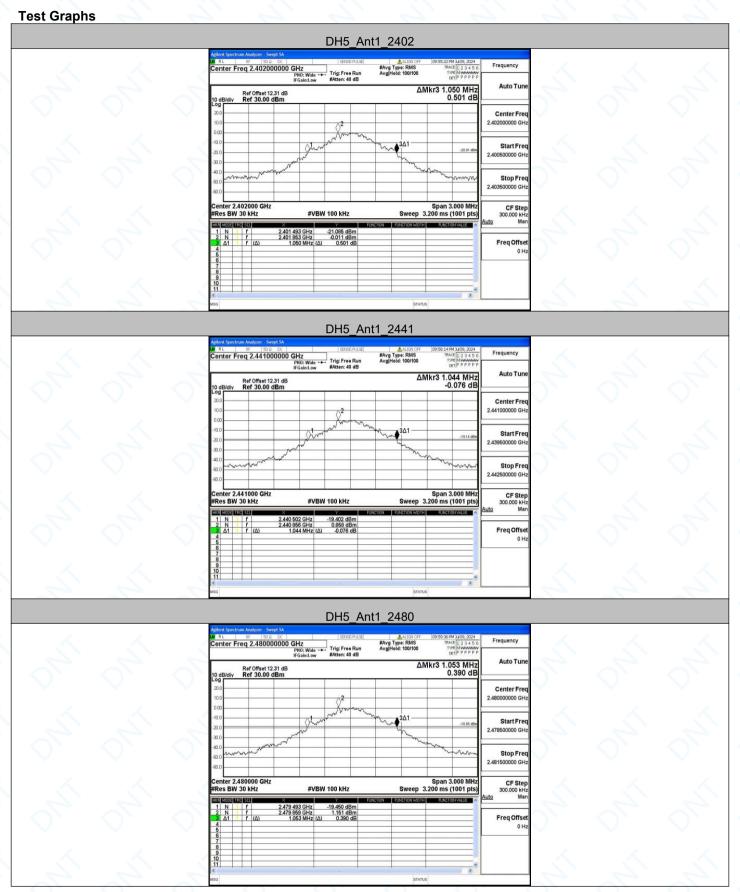
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

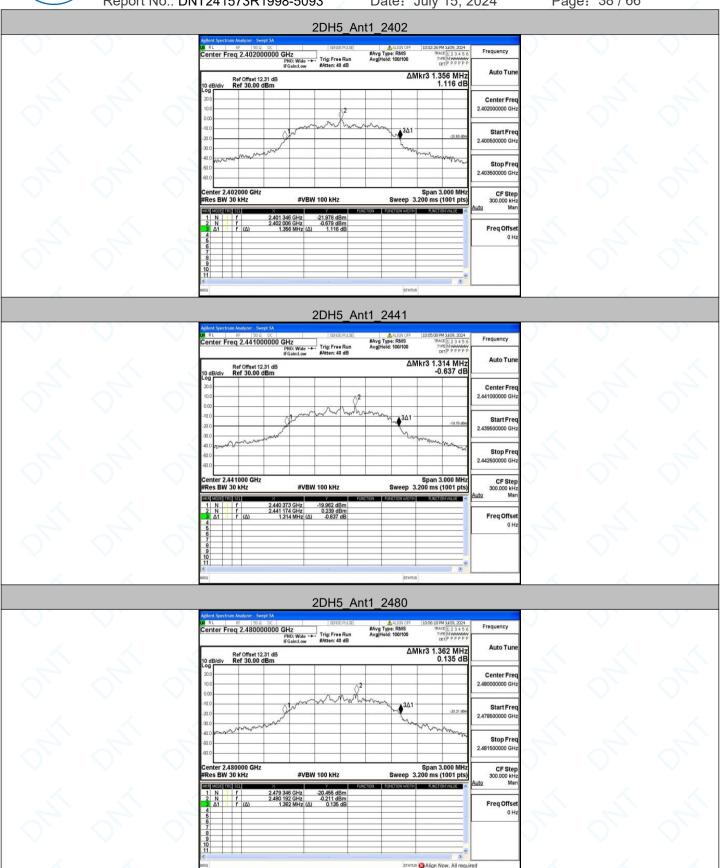
Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 36 / 66

4 Appendix

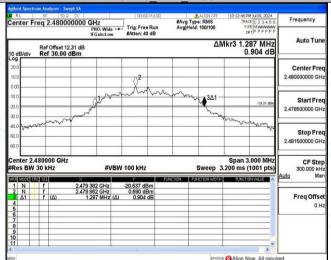

Appendix A: 20dB Emission Bandwidth

Test Result

1 CSt IXCSuit							
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.050	2401.493	2402.543		
DH5	Ant1	2441	1.044	2440.502	2441.546		
		2480	1.053	2479.493	2480.546		
		2402	1.356	2401.346	2402.702	-2-	
2DH5	H5 Ant1	2441	1.314	2440.373	2441.687		
		2480	1.362	2479.346	2480.708		
		2402	1.314	2401.364	2402.678		
3DH5	Ant1	2441	1.311	2440.364	2441.675		
		2480	1.287	2479.382	2480.669	-2-	



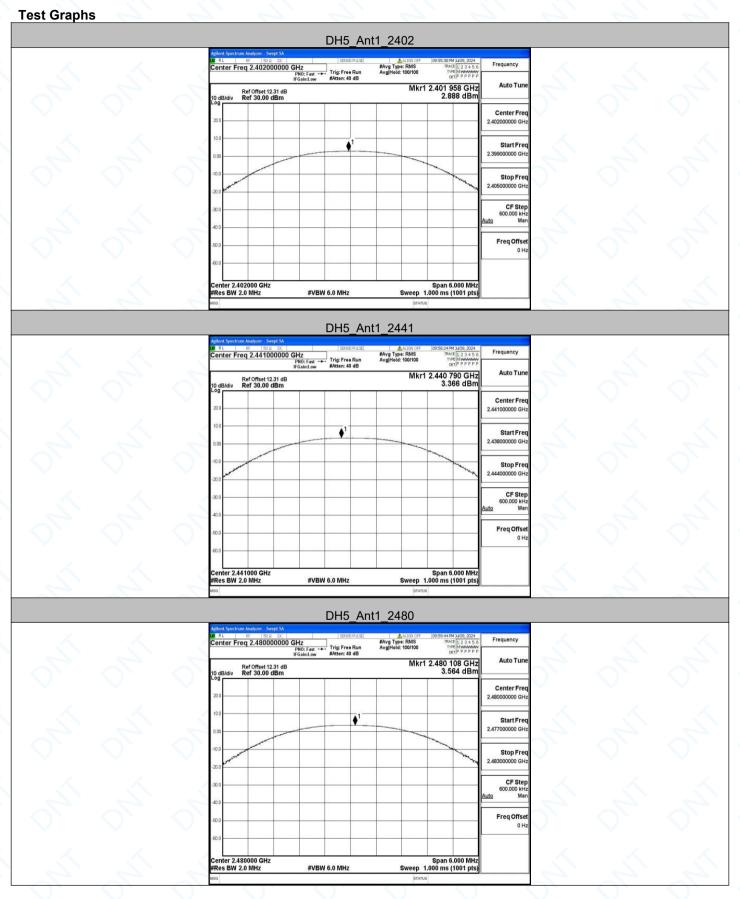
Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 37 / 66


Report No.: DNT241573R1998-5093 Page: 38 / 66 Date: July 15, 2024

Report No.: DNT241573R1998-5093 Page: 39 / 66 Date: July 15, 2024 3DH5_Ant1_2402 #Avg Type: RMS AvgiHold: 100/100 Auto Tur Ref Offset 12.31 dB Ref 30.00 dBm Center Fre Start Fre Stop Fre Freq Offs 3DH5 Ant1 2441 RL RF 500 DC | #Avg Type: RMS Avg|Hold: 100/100 Center Fre 2.441000000 GH Stop Fre 2.442500000 GH Span 3.000 MHz Sweep 3.200 ms (1001 pts) CF Stej 300.000 kH #VBW 100 kHz

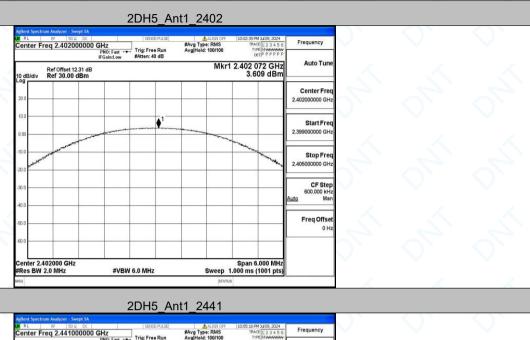
3DH5_Ant1_2480

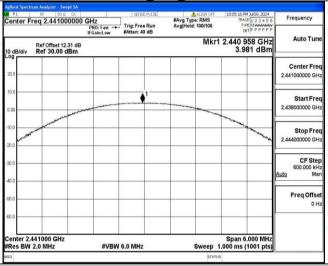
Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 40 / 66

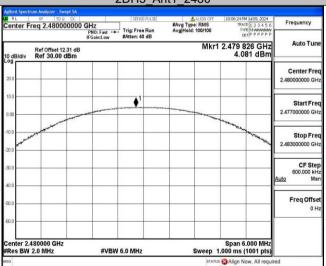

Appendix B: Maximum conducted output power

Test Result

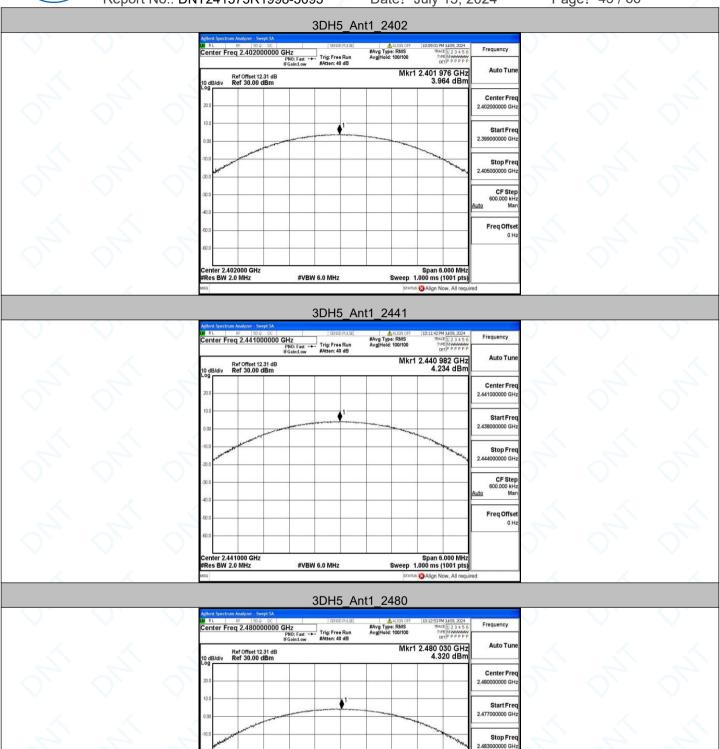
1 Oot 1 toodit					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	2.89	≤20.97	PASS
DH5	Ant1	2441	3.37	≤20.97	PASS
		2480	3.56	≤20.97	PASS
		2402	3.61	≤20.97	PASS
2DH5	Ant1	2441	3.98	≤20.97	PASS
6		2480	4.08	≤20.97	PASS
		2402	3.96	≤20.97	PASS
3DH5	Ant1	2441	4.23	≤20.97	PASS
		2480	4.32	≤20.97	PASS




Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 41 / 66



Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 42 / 66



2DH5_Ant1_2480

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 43 / 66

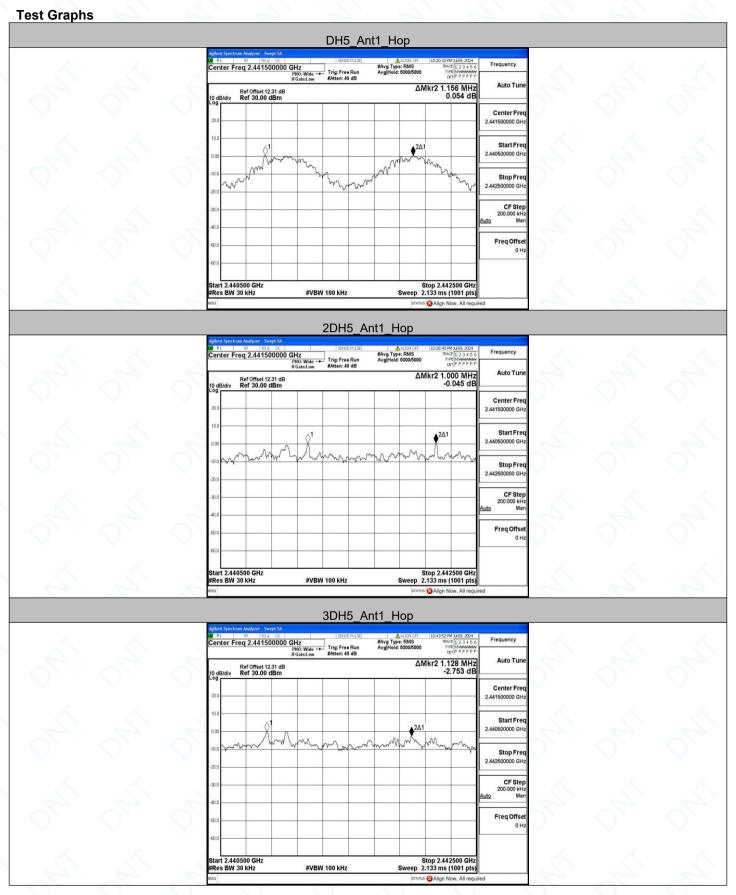
#VBW 6.0 MHz

enter 2.480000 GHz tes BW 2.0 MHz CF Stej 600.000 kH

Freq Offse

Span 6.000 MHz Sweep 1.000 ms (1001 pts)

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 44 / 66


Appendix C: Carrier frequency separation

Test Result

Test Mode Antenna		Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.156	≥1.053	PASS
2DH5	Ant1	Нор	1	≥0.908	PASS
3DH5	Ant1	Нор	1.128	≥0.876	PASS

Report No.: DNT241573R1998-5093 Date: July 15, 2024 Page: 45 / 66

