

FCC Test Report

Application No.:	DNT2408260266R1182-01728		
Applicant:	DGL Group LTD.		
Address of Applicant:	2045 Lincoln Highway, 3rd Floor, Edison, NJ 08817, United States		
EUT Description:	Light up Karaoke Mic with Built-in Wireless Speaker		
Model No.:	BUR-KRKFLR-ASST, BUR-KRKFLR-XXX		
FCC ID:	2AANZKRKFLR		
Power Supply:	DC 3.7V From Battery; DC 5V From Adapter		
Charging Voltage:	DC 5V		
Trade Mark:	BREAKOUT		
	47 CFR FCC Part 2, Subpart J		
Standards:	47 CFR Part 15, Subpart C		
	ANSI C63.10: 2020		
Date of Receipt:	2024/08/26		
Date of Test:	2024/08/27 to 2024/10/10		
Date of Issue:	2024/10/11		
Test Result:	PASS		

Prepared By: **Reviewed By: Approved By:**

Wayne . Jon (Testing Engineer) mi (Project Engineer) (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Report No.: DNT2408260266R1182-01728 Date: October 11, 2024 Report Revise Record

Page: 2 / 66

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Oct.11, 2024	Valid	Original Report

1

Report No.: DNT2408260266R1182-01728

Date: October 11, 2024

Page: 3 / 66

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS
Radiated Spurious	15.247(d);	ANSI C63.10: 2020	Clause 3.9	PASS
emissions	15.205/15.209	ANSI C03.10. 2020	Clause 5.5	F A00
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	PASS

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: October 11, 2024

Page: 4 / 66

Contents

1 <	Test Su	ummary	
2	Genera	al Information	5
	2.1	Test Location	5
	2.2	General Description of EUT	6
	2.3	Channel List	7
	2.4	Test Environment and Mode	8
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	
	2.7	Test Facility	9
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	
	2.9	Equipment List	11
	2.10	Assistant equipment used for test	12
3	Test res	sults and Measurement Data	
	3.1	Antenna Requirement	13
	3.2	20dB Emission Bandwidth	14
	3.3	Conducted Output Power	15
	3.4	Carrier Frequencies Separationy	16
	3.5	Dwell Time	17
	3.6	Hopping Channel Number	18
	3.7	Band-edge for RF Conducted Emissions	19
	3.8	RF Conducted Spurious Emissions	20
	3.9	Radiated Spurious Emissions	
	3.10	Restricted bands around fundamental frequency	29
	3.11	AC Power Line Conducted Emissions	33
4	Append	dix	
	Append	lix A: 20dB Emission Bandwidth	36
	Append	lix B: Maximum conducted output power	
	Append	lix C: Carrier frequency separation	
	Append	lix D: Dwell Time	46
	Append	lix F: Number of hopping channels	47
	Append	lix F: Band edge measurements	
	Append	lix F: Conducted Spurious Emission	53

Date: October 11, 2024

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd		
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China		
Test engineer:	Wayne Lin		

Date: October 11, 2024

Page: 6 / 66

2.2 General Description of EUT

Manufacturer:	DGL Group LTD.		
Address of Manufacturer:	2045 Lincoln Highway, 3rd Floor, Edison, NJ 08817, United States		
Test EUT Description:	Light up Karaoke Mic with Built-in Wireless Speaker		
Model No.:	BUR-KRKFLR-ASST		
Additional Model(s):	BUR-KRKFLR-XXX	~	
Chip Type:	AC6965E	\sim	5
Serial number:	PR2408230266R1182	\mathcal{Y}^{*}	\sim
Power Supply:	DC 3.7V From Battery; DC 5V From Adapter		
Charging Voltage:	DC 5V	2	
Trade Mark:	BREAKOUT		
Hardware Version:	V1.0	×	
Software Version:	V1.0		
Operation Frequency:	2402 MHz to 2480 MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK		
Sample Type:	☐ Portable Device, ☐ Module, ☐ Mobile Device		
Antenna Type:	□ External, ⊠ Integrated	\mathcal{O}^{*}	\sim
Antenna Ports:	🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3		
Antonno Coin*:	Provided by applicant	~	
Antenna Gain*:	-0.58dBi	5	
	Provided by applicant	V	
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1. 1.8dB(4.4~6GHz);	.5dB(3~4	4GHz);

Remark:

*Only the color of the product is different, everything else is completely consistent.

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: October 11, 2024

Page: 7 / 66

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz)	

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: October 11, 2024 Pa

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Date: October 11, 2024 Page: 9 / 66

2.5 Power Setting of Test Software

U U			
Software Name	\bigcirc \bigcirc \bigcirc	FCC_assist_1.0.2.2	\Diamond , \Diamond , \Diamond ,
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149.

IC#: 30755.

Date: October 11, 2024

Page: 10 / 66

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
$\langle \rangle$		± 4.8dB (Below 1GHz)
0	Dedicted Emission	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
	h h h h h	± 5.02dB (Above 18GHz)

2.9 Equipment List

For Connect EUT Antenna Terminal Test						
Description	Manufacturer	Model	Serial Number	Cal date	Due date	
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24	
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24	
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24	
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24	
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24	
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA	
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA	
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24	
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24	
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24	

	Test Equipment for Conducted Emission							
Description Manufacturer Model Serial Number Cal Date Due D								
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23			
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23			
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23			

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: October 11, 2024

Page: 12 / 66

🕥 Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

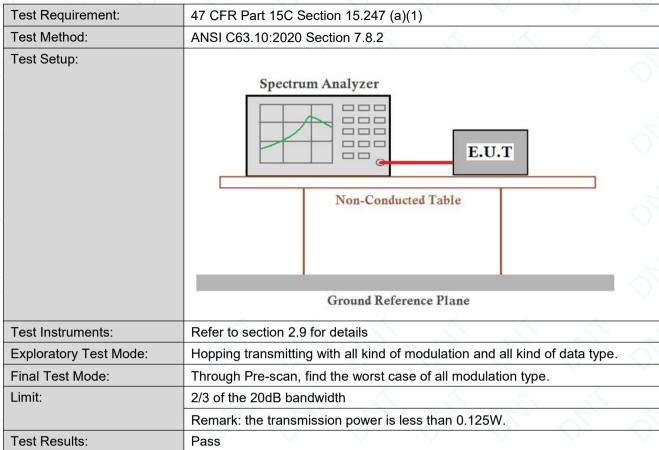
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

3.2 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2020 Section 7.8.7
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	NA
Test Results:	Pass

The detailed test data see: Appendix A


3.3 Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2020 Section 7.8.5
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	\sim	
Test Method:	ANSI C63.10:2020 Section 7.8.4	<u> </u>	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	n m m	0, 0, 0,
	Ground Reference Plane		
Instruments Used:	Refer to section 2.9 for details	\mathbf{O}	0
Test Mode:	Hopping transmitting with all kind of modulation and all kind of	data type.	
Limit:	0.4 Second		
Test Results:	Pass	~	~

The detailed test data see: Appendix D

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2020 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	A A A	0, 0, 0,
	Ground Reference Plane	\sim	
Instruments Used:	Refer to section 2.9 for details		
Test Mode:	Hopping transmitting with all kind of modulation		
Limit:	At least 15 channels	~	
Test Results:	Pass	\sim	

The detailed test data see: Appendix E

3.7 Band-edge for RF Conducted Emissions

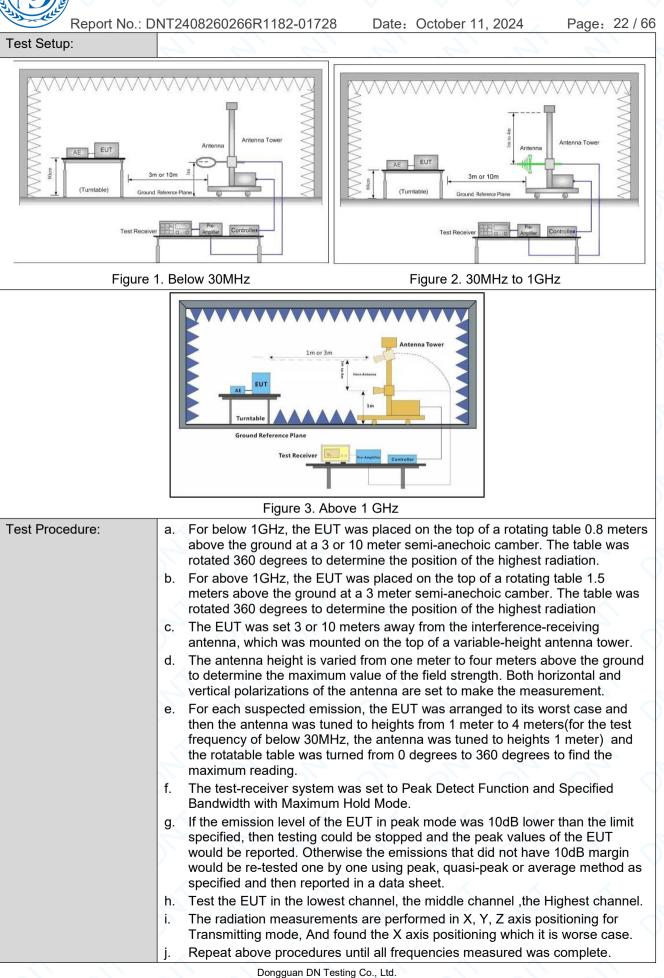
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2020 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2020 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

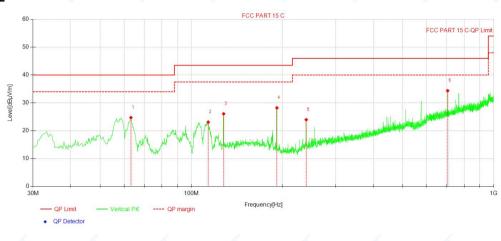
The detailed test data see: Appendix G

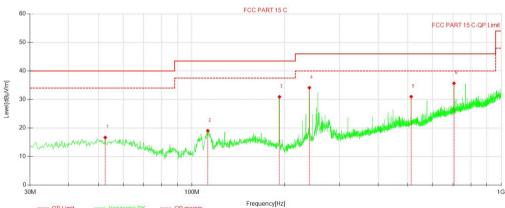

Date: October 11, 2024

Page: 21 / 66

3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20)5	×	<u> </u>		
Test Method:	ANSI C63.10: 2020 Sect	ANSI C63.10: 2020 Section 11.12					
Test Site:	Measurement Distance:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average		
	A &	$\langle \langle \rangle$	~	≥1/T (DC<0.98)	4		
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300		
	0.490MHz-1.705MHz	24000/F(kHz)			30		
	1.705MHz-30MHz	30	\sim	<u> </u>	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit		

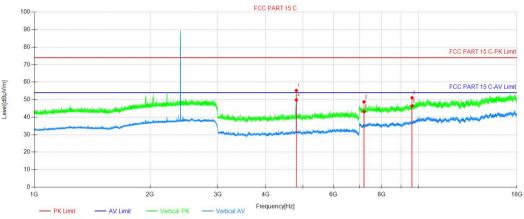



Report No.: D	DNT2408260266R1182-01728 Date: October 11, 2024 Page: 23 / 66
Test Configuration:	Measurements Below 1000MHz $ imes$ RBW = 120 kHz $ imes$ VBW = 300 kHz $ imes$ Detector = Peak $ imes$ Trace mode = max holdPeak Measurements Above 1000 MHz $ imes$ RBW = 1 MHz $ imes$ VBW \geq 3 MHz $ imes$ Detector = Peak $ imes$ Sweep time = auto $ imes$ Trace mode = max holdAverage Measurements Above 1000MHz $ imes$ RBW = 1 MHz $ imes$ VBW \geq 1 MHz $ imes$ VBW = 10 Hz, when duty cycle is no less than 98 percent. $ imes$ VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

Test data For 30-1000MHz

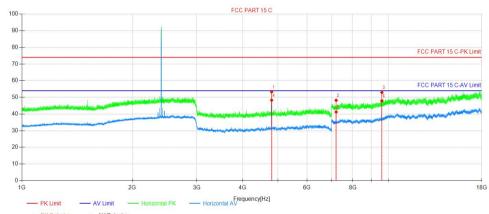
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	63.18	33.82	-9.12	24.70	40.00	15.30	100	171	QP	Vertical
2	113.82	33.89	-10.80	23.09	43.50	20.41	100	266	QP	Vertical
3	127.98	35.68	-9.61	26.07	43.50	17.43	100	45	QP	Vertical
4	192.02	38.90	-10.70	28.20	43.50	15.30	100	75	QP	Vertical
5	239.95	33.23	-9.28	23.95	46.00	22.05	100	360	QP	Vertical
6	704.09	31.92	2.44	34.36	46.00	11.64	100	156	QP	Vertical

---- QP margin


		QP Detector								
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	52.50	24.79	-8.13	16.66	40.00	23.34	200	60	QP	Horizontal
2	112.66	29.95	-10.92	19.03	43.50	24.47	200	358	QP	Horizontal
3	192.02	41.62	-10.70	30.92	43.50	12.58	200	117	QP	Horizontal
4	239.94	43.41	-9.28	34.13	46.00	11.87	100	107	QP	Horizontal
5	511.99	32.50	-1.51	30.99	46.00	15.01	200	114	QP	Horizontal
6	704.09	33.22	2.44	35.66	46.00	10.34	100	135	QP	Horizontal

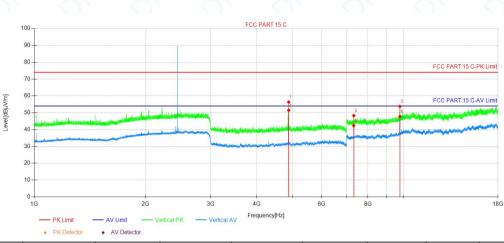
Dongguan DN Testing Co., Ltd.

- QP Limit

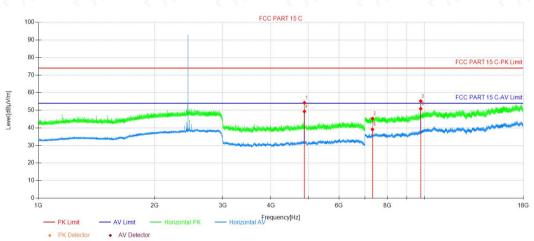


For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	59.81	-4.61	55.20	74.00	18.80	150	324	Peak	Vertical
2	7206.21	50.49	-1.76	48.73	74.00	25.27	150	357	Peak	Vertical
3	9607.83	50.23	0.87	51.10	74.00	22.90	150	50	Peak	Vertical
4	4803.84	54.46	-4.61	49.85	54.00	4.15	150	324	AV	Vertical
5	7206.21	44.83	-1.76	43.07	54.00	10.93	150	0	AV	Vertical
6	9607.83	45.57	0.87	46.44	54.00	7.56	150	50	AV	Vertical


PK Detector
 AV Detector

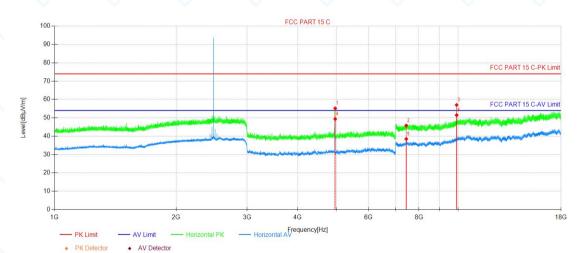
[mi/VulBb]leve.


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4803.84	57.89	-4.61	53.28	74.00	20.72	150	70	Peak	Horizon
2	7206.21	49.98	-1.76	48.22	74.00	25.78	150	70	Peak	Horizon
3	9607.83	52.05	0.87	52.92	74.00	21.08	150	70	Peak	Horizon
4	4803.84	52.90	-4.61	48.29	54.00	5.71	150	70	AV	Horizon
5	7206.21	42.96	-1.76	41.20	54.00	12.80	150	70	AV	Horizon
6	9607.83	47.03	0.87	47.90	54.00	6.10	150	77	AV	Horizon

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	61.03	-4.72	56.31	74.00	17.69	150	328	Peak	Vertical
2	7323.21	49.76	-1.49	48.27	74.00	25.73	150	342	Peak	Vertical
3	9763.83	52.16	1.64	53.80	74.00	20.20	150	53	Peak	Vertical
4	4881.84	56.20	-4.72	51.48	54.00	2.52	150	328	AV	Vertical
5	7323.21	43.79	-1.49	42.30	54.00	11.70	150	359	AV	Vertical
6	9763.83	46.17	1.64	47.81	54.00	6.19	150	53	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	58.97	-4.72	54.25	74.00	19.75	150	124	Peak	Horizon
2	7323.21	46.71	-1.49	45.22	74.00	28.78	150	131	Peak	Horizon
3	9763.83	53.57	1.64	55.21	74.00	18.79	150	66	Peak	Horizon
4	4881.84	54.03	-4.72	49.31	54.00	4.69	150	75	AV	Horizon
5	7323.21	40.60	-1.49	39.11	54.00	14.89	150	90	AV	Horizon
6	9763.83	49.26	1.64	50.90	54.00	3.10	150	71	AV	Horizon


DH5 2480MHz

[dBu/

PK Detector AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	60.88	-4.86	56.02	74.00	17.98	150	334	Peak	Vertical
2	7440.22	49.30	-1.34	47.96	74.00	26.04	150	360	Peak	Vertical
3	9920.59	53.03	2.27	55.30	74.00	18.70	150	50	Peak	Vertical
4	4959.84	56.04	-4.86	51.18	54.00	2.82	150	342	AV	Vertical
5	7440.22	41.69	-1.34	40.35	54.00	13.65	150	360	AV	Vertical
6	9919.84	46.68	2.26	48.94	54.00	5.06	150	82	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	60.04	-4.86	55.18	74.00	18.82	150	131	Peak	Horizon
2	7440.22	47.13	-1.34	45.79	74.00	28.21	150	145	Peak	Horizon
3	9919.84	54.76	2.26	57.02	74.00	16.98	150	79	Peak	Horizon
4	4959.84	54.24	-4.86	49.38	54.00	4.62	150	131	AV	Horizon
5	7440.22	39.84	-1.34	38.50	54.00	15.50	150	15	AV	Horizon
6	9919.84	49.19	2.26	51.45	54.00	2.55	150	72	AV	Horizon

Note:

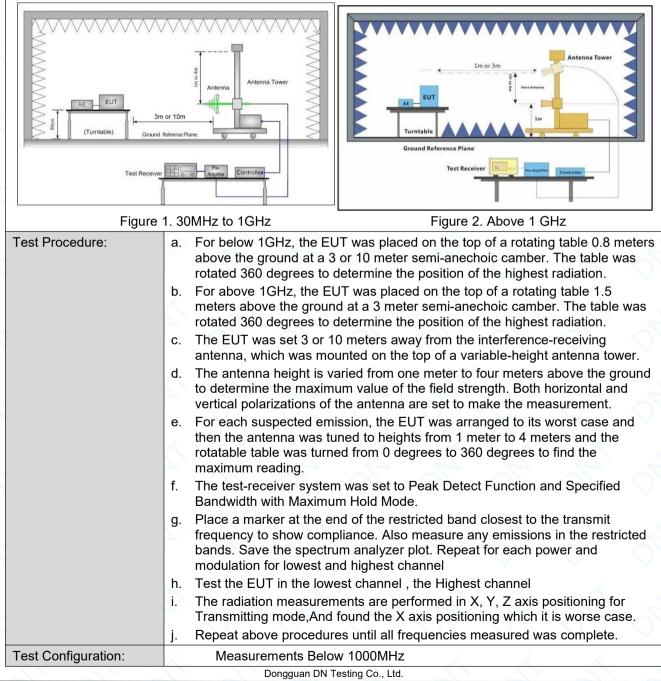
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case, only the worst case was reported.



Report No.: DNT2408260266R1182-01728 Date: October 11, 2024 Page: 29 / 66

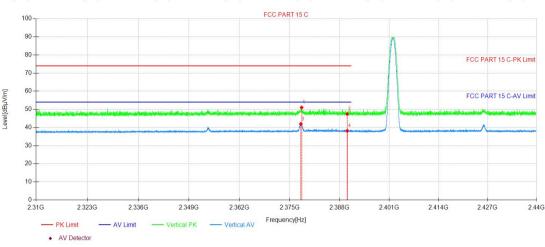
3.10 Restricted bands around fundamental frequency

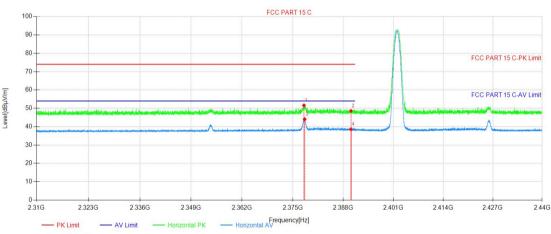
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2020 Section	ANSI C63.10: 2020 Section 11.12							
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	Chamber)						
Limit:	Frequency	Limit (dBuV/m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak						
	88MHz-216MHz	43.5	Quasi-peak						
	216MHz-960MHz	46.0	Quasi-peak						
	960MHz-1GHz	54.0	Quasi-peak						
		54.0	Average Value						
	Above 1GHz	74.0	Peak Value						

Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

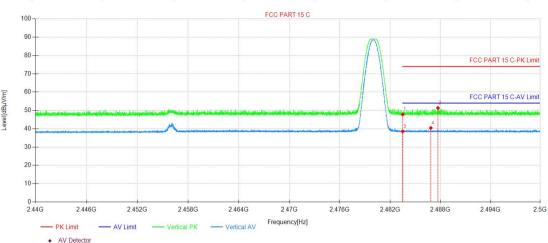
 Web: www.dn-testing.com
 Tel:+86-769-88087383


 E-mail: service@dn-testing.com

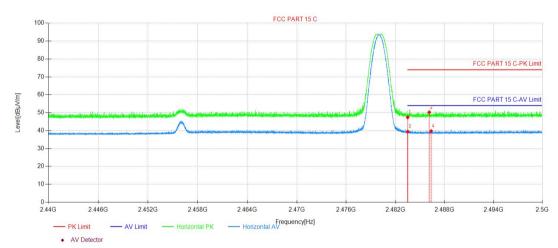

Report N	No.: DNT2408260266R1182-01728 Date: October 11, 2024 Page: 30 / 66
	• RBW = 120 kHz
	• VBW = 300 kHz
	Detector = Peak
	Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW \ge 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	 VBW = 10 Hz, when duty cycle is no less than 98 percent.
	• VBW \ge 1/T, when duty cycle is less than 98 percent where T is the
	minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test	Mode: Transmitting with all kind of modulations, data rates.
	Transmitting mode.
Final Test Mode:	Pretest the EUT Transmitting mode.
	Through Pre-scan, find the DH5 of data type is the worst case of all modulation
	type.
	Only the worst case is recorded in the report.
Instruments Used	d: Refer to section 2.9 for details
Test Results:	Pass

Test Date DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2378.12	51.86	-0.84	51.02	74.00	22.98	150	328	Peak	Vertical
2	2390.01	48.21	-0.80	47.41	74.00	26.59	150	42	Peak	Vertical
3	2377.91	42.78	-0.84	41.94	54.00	12.06	150	323	AV	Vertical
4	2390.01	38.96	-0.80	38.16	54.00	15.84	150	323	AV	Vertical



AV Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2377.87	52.42	-0.84	51.58	74.00	22.42	150	106	Peak	Horizon
2	2390.01	49.39	-0.80	48.59	74.00	25.41	150	2	Peak	Horizon
3	2378.04	44.91	-0.84	44.07	54.00	9.93	150	89	AV	Horizon
4	2390.01	39.41	-0.80	38.61	54.00	15.39	150	84	AV	Horizon

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	48.10	-0.29	47.81	74.00	26.19	150	348	Peak	Vertical
2	2487.72	51.61	-0.26	51.35	74.00	22.65	150	167	Peak	Vertical
3	2483.51	38.82	-0.29	38.53	54.00	15.47	150	19	AV	Vertical
4	2486.87	40.69	-0.26	40.43	54.00	13.57	150	130	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	47.70	-0.29	47.41	74.00	26.59	150	156	Peak	Horizon
2	2486.14	50.52	-0.27	50.25	74.00	23.75	150	0	Peak	Horizon
3	2483.50	39.72	-0.29	39.43	54.00	14.57	150	162	AV	Horizon
4	2486.38	40.01	-0.26	39.75	54.00	14.25	150	156	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Test Requirement:	47 CFR Part 15C Section	15.207				
Test Method:	ANSI C63.10: 2020	x 7 7	7 12			
Test Frequency Range:	150kHz to 30MHz					
_imit:		🗶 🛛 📈 Limit (d	BuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logar	ithm of the frequency.				
	Impedance Stabilization Na impedance. The power call a second LISN 2, which wa plane in the same way as to multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was p ground reference plane. An placed on the horizontal gr 4) The test was performed of the EUT shall be 0.4 m for vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ed In order to find the maximu	with a vertical ground refe from the vertical ground refe plane was bonded to the ho 1 was placed 0.8 m from th to a ground reference plane and reference plane. This d of the LISN 1 and the EUT quipment was at least 0.8 m the emission, the relative pot terface cables must be cha	$D\Omega/50\mu$ H + 5 Ω linear EUT were connected ference g measured. A ble power cables to a kceeded. table 0.8m above the ement, the EUT was rence plane. The real erence plane. The real erence plane. The rizontal ground he boundary of the he for LISNs istance was Ω All other units of h from the LISN 2. sitions of			
Test Setup:	Shielding Room	AE UISN2 + AC Ground Reference Plane	Test Receiver			
	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.					
Exploratory Test Mode:			t lowest, middle and			

3.11 AC Power Line Conducted Emissions

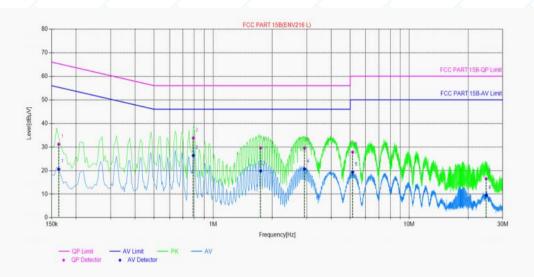
 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

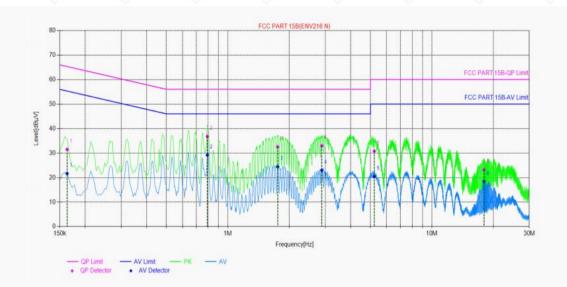
Date: October 11, 2024


Page: 34 / 66

	Final Test Mode:	Through Pre-scan, find the the worst case.
\langle	Instruments Used:	Refer to section 2.9 for details
	Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


Live Line:

Final Data List												
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBμV]	AV Margin [dB]	Verdict			
1	0.1630	9.90	31.18	65.31	34.13	20.57	55.31	34.74	PASS			
2	0.7919	9.75	33.84	56.00	22.16	26.39	46.00	19.61	PASS			
3	1.7463	9.73	29.63	56.00	26.37	19.85	46.00	26.15	PASS			
4	2.9234	9.74	29.60	56.00	26.40	20.66	46.00	25.34	PASS			
5	5.1484	9.80	27.85	60.00	32.15	19.35	50.00	30.65	PASS			
6	24.6847	10.20	16.51	60.00	43.49	9.49	50.00	40.51	PASS			

Neutral Line:

NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1630	9.81	31.53	65.31	33.78	21.67	55.31	33.64	PASS
2	0.7935	9.80	36.79	56.00	19.21	29.21	46.00	16.79	PASS
3	1.7539	9.75	32.56	56.00	23.44	24.43	46.00	21.57	PASS
4	2.8873	9.86	32.99	56.00	23.01	23.00	46.00	23.00	PASS
5	5.2217	9.98	30.82	60.00	29.18	20.49	50.00	29.5 <mark>1</mark>	PASS
6	18.0138	10.01	23.23	60.00	36.77	18.42	50.00	31.58	PASS

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

4 Appendix

Appendix A: 20dB Emission Bandwidth

Test Result	\mathbf{O}	\bigcirc		\cap			
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	~	2402	1.041	2401.508	2402.549	🔨	<
DH5	Ant1	2441	1.044	2440.502	2441.546		
		2480	1.059	2479.487	2480.546		
	\sim	2402	1.323	2401.367	2402.690		
2DH5	Ant1	2441	1.329	2440.367	2441.696		
		2480	1.338	2479.361	2480.699	🔨	
l l'	~	2402	1.311	2401.379	2402.690		
3DH5	Ant1	2441	1.314	2440.373	2441.687		
	\geq	2480	1.311	2479.373	2480.684		

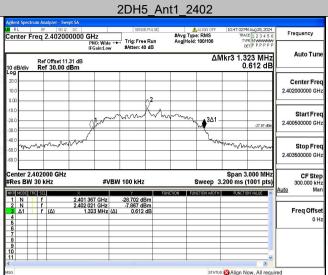
Page: 37 / 66

Test Graphs

nter Fi		Ω DC 100000 GHz	SENSE:PULSE	#Avg Type: RMS AvgIHold: 100/100	10:40:38 PM Aug 28, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
		PNO: Wide IFGain:Low			Akr3 1.041 MHz	Auto Tur
dB/div	Ref Offset 1 Ref 30.00				-0.872 dB	
0 .0 .0			~2			Center Fre 2.402000000 GF
.0 0.		<u>s</u> t	mon	™3∆1	-28.34 dBn	Start Fre 2.400500000 GF
.0 .0 .0	minin				and mark mark	Stop Fre 2.403500000 GF
es BW		#V	BW 100 kHz		Span 3.000 MHz 5.200 ms (1001 pts)	CF Ste 300.000 kl Auto M
NDDE 11 N 1 A1 1	f f f (Δ)	× 2.401 508 GHz 2.401 865 GHz 1.041 MHz	-28.526 dBm -8.338 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offs

DH5_Ant1_2441

gilent Spectrum Analyzer - Swept SA				
RL RF 50Ω DC	SENSE:PULSE	ALIGN OFF	10:43:27 PM Aug 28, 2024	Frequency
enter Freq 2.441000000	PNO: Wide ++ IFGain:Low #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	
Ref Offset 11.31 dB 0 dB/div Ref 30.00 dBm		ΔΜ	kr3 1.044 MHz -0.006 dB	Auto Tun
°g				Center Fre
0.0				2.441000000 GH
0.0				Start Fre
.0	America	₩~~~\$3∆1	-28.31 dBm	2.439500000 GH
	man and a second	"honge		Oton Err
0.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			- And a star and a star and a star	Stop Fre 2.442500000 GH
enter 2.441000 GHz			Span 3.000 MHz	CF Ste
Res BW 30 kHz	#VBW 100 kHz	<u> </u>	200 ms (1001 pts)	300.000 kH Auto Ma
	0 502 GHz -28.726 dBm	ICTION FUNCTION WIDTH	FUNCTION VALUE	
	1.042 GHz -8.312 dBm 1.044 MHz (Δ) -0.006 dB			Freq Offs
5 6 7				0
8				
0			×	
		STATUS	Alian Now, All requir	red


DH5_Ant1_2480

Agilent Spectr	rum Analyzer - Sw	ept SA							
Center F	RF 50 Ω req 2.48000	0000 GHz	SENSE	1	Avg Type		TRAC	Aug 28, 2024 E 1 2 3 4 5 6	Frequency
	Ref Offset 11 Ref 30.00 (PNO: Wide IFGain:Low .31 dB			Avg Hold:		⊓ 1kr3 1.0	59 MHz	Auto Tune
10 dB/div 20.0 10.0				.2					Center Freq 2.480000000 GHz
-10.0				and the second	لمر ا	βΔ1		-27.78 dBm	Start Freq 2.478500000 GHz
-40.0 -50.0		hor was				www	mm	Jone Mr.	Stop Freq 2.481500000 GHz
Center 2. #Res BW		#VI	BW 100 kHz	FUNCTIO		Sweep 3.	.200 ms (.000 MHz 1001 pts)	CF Step 300.000 kHz Auto Man
1 Ν 2 Ν 3 Δ1 4 5	f f f (Δ)	2.479 487 GHz 2.480 018 GHz 1.059 MHz (-27.859 dB -7.777 dB ∆) 0.036 d	m m					Freq Offset 0 Hz
6 7 8 9 10 11			3					v	
MSG					_	STATUS	🛛 🛛 Align N	ow, All requi	red

Date: October 11, 2024

Page: 38 / 66

2DH5_Ant1_2441

2DH5_Ant1_2480

	rum Analyzer - Swe									
Center F	RF 50 Ω Treq 2.48000	0000 GHz]	PULSE	#Avg Typ AvgHold		TRAC	Aug 28, 2024 E 1 2 3 4 5 6 E MWANWAW	Frequency
10 dB/div	Ref Offset 11 Ref 30.00 c	IFGai .31 dB	Wide ↔ n:Low	#Atten: 40		Arginou.		⊓ 1kr3 1.3	38 MHz 693 dB	Auto Tune
20.0 10.0					^ 2					Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0		Jł	, m	ww	Ŵ	www	→ ^{3∆1}		-27.64 oBm	Start Freq 2.478500000 GHz
-40.0 -50.0	www.www	on m					1 An	white	mm	Stop Freq 2.481500000 GHz
#Res BW			#VBW	100 kHz				.200 ms (.000 MHz 1001 pts)	CF Step 300.000 kHz Auto Man
NKF MODE T 1 N 2 N 2 N 4 5 6 - - - 7 - - - 9 - - - - 10 - - - - 11 - - -	FC SL f f f Δ f Δ F Δ C Δ C Δ C Δ C C C C C C C C C C C C C	× 2.479 361 G 2.480 186 G 1.338 M		-28,695 dE -7.644 dE 0.693	8m 8m	FUX	ACTION WIDTH	FUNCTIO		Freq Offset
MSG							STATUS	Align N	ow, All requi	red

Dongguan DN Testing Co., Ltd.

 4
 3

 10
 10

 11
 5

 4
 10

 10
 10

 11
 5

 10
 10

 11
 5

 11
 5

 11
 5

 11
 5

 11
 5

 11
 5

 11
 5

 10
 10

 10
 10

Date: October 11, 2024

Page: 39 / 66

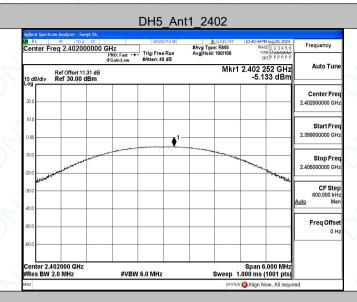
3DH5_Ant1_2441

3DH5_Ant1_2480

	rum Analyzer - S								
Center F		2 DC 100000 GHz	: 	sense:PULSE	#Avg Type AvgHold:		TRAC	Aug 28, 2024 E 1 2 3 4 5 6 E MWWWWW	Frequency
10 dB/div	Indiance #Atten: 40 dB terriPPPPP Indiance #Atten: 40 dB ΔMkr3 1.311 MHz								
20.0 10.0				~2					Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0		2	m	n	um .	4 3∆1 –		-27.88 dBin	Start Freq 2.478500000 GHz
-40.0 -50.0 -60.0	www	manun -					- Andrew	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Stop Freq 2.481500000 GHz
#Res BW	2enter 2.480000 GHz Span 3.000 MHz Res BW 30 kHz #VBW 100 kHz Sweep 3.200 ms (1001 pts)								
NKE MODE T 1 N 2 N 3 Δ1 4 6 6 6 6 7 8 9 10 11 1	FC 501 1 f 1 f 1 f (Δ)	× 2.479 373 2.480 012 1.311		Y EL 594 dBm 0.168 dB	INCTION FUN	ICTION WIDTH	FUNCTIO		Auto Man Freq Offset 0 Hz
MSG						STATUS	Align No	ow, All requi	red

Date: October 11, 2024

Page: 40 / 66


Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	-5.13	≤20.97	PASS
DH5	Ant1	2441	-4.90	≤20.97	PASS
		2480	-4.37	≤20.97	PASS
		2402	-4.28	≤20.97	PASS
2DH5	Ant1	2441	-4.11	≤20.97	PASS
		2480	-3.89	≤20.97	PASS
		2402	-3.95	≤20.97	PASS
3DH5 🔍	Ant1	2441	-3.92	≤20.97	PASS
		2480	-3.44	≤20.97	PASS

Page: 41 / 66

Test Graphs

DH5_Ant1_2441

X RL RF 50Ω DC Center Freq 2.441000000	GHz	SENSE:PULSE	ALIGN OFF #Avg Type: RMS	TRACE 1 2 3 4	5.6 Frequency
•	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Hold: 100/100	DET P P P	
Ref Offset 11.31 dB 10 dB/div Ref 30.00 dBm			Mki	r1 2.441 126 GI -4.897 dB	
20.0					Center Fre 2.441000000 Gł
0.00		1			Start Fre
-10.0				and the state of t	Stop Fro 2.444000000 GI
-40.0					CF Str 600.000 k <u>Auto</u> M
-50.0					Freq Offs
-60.0					-
Center 2.441000 GHz #Res BW 2.0 MHz	#VBW	6.0 MHz	Sweep	Span 6.000 M 1.000 ms (1001 p	

DH5_Ant1_2480

Agilent Spectru	um Analyzer - Swe			SENS	PULSE	4	ALIGN OFF	10:45:028	4 Aug 28, 2024	
Center Freq 2.480000000 GHz				Trig: Free Run		#Avg Type	#Avg Type: RMS AvalHold: 100/100		E 123456	Frequency
10 dB/div	Ref Offset 11. Ref 30.00 d	IFG 31 dB	ain:Low	#Atten: 4	0 dB			2.479 9	04 GHz 73 dBm	Auto Tune
20.0										Center Fre 2.480000000 GH
0.00				•	1					Start Fre 2.477000000 GH
20.0 10.0	all and a start and a start and a start and a start a st							and and and	When the Herry	Stop Fre 2.483000000 GH
10.0									h	CF Ste 600.000 kH <u>Auto</u> Ma
50.0										Freq Offs 0 H
60.0	80000 GHz							Span 6	.000 MHz	
#Res BW			#VBW	6.0 MHz			Sweep 1	.000 ms (
ISG							STATU	🛚 🔀 Align N	ow, All requi	red

Date: October 11, 2024

Page: 42 / 66

gilent Spectrum Analyzer - Swept S RL RF 50 Q DC Center Freq 2.4020000	SENSE:PULS	#Avg Type: RMS Avg Hold: 100/100	10:47:41 PM Aug 28, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P	Frequency
Ref Offset 11.31 o 0 dB/div Ref 30.00 dBm	B	Mkr	1 2.402 252 GHz -4.283 dBm	Auto Tur
20.0				Center Fre 2.402000000 GF
0.0		,1		Start Fre 2.399000000 G
0.0 0.0			and the second s	Stop Fr 2.405000000 G
10.0				CF Ste 600.000 ki Auto M
0.0				Freq Offs 0
50.0				
enter 2.402000 GHz Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	

2DH5_Ant1_2441

XI RL	RF 50 Ω DC		SENSE:PULSE	ALIGN OFF	10:50:21 PM Aug 28, 2024	Frequency
Center Fi	req 2.44100000	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P P	
10 dB/div	Ref Offset 11.31 dB Ref 30.00 dBm			Mkr1	2.441 216 GHz -4.106 dBm	Auto Tune
20.0						Center Free 2.441000000 GHz
10.0						2.44 100000 011
0.00						Start Free 2.438000000 GH
-10.0						Stop Free
-20.0	a shall work the water from the				And a strange and a strange	2.444000000 GH
-30.0						CF Step 600.000 kH Auto Mar
-50.0						Freq Offse
-60.0						
Center 2.4 #Res BW	141000 GHz 2.0 MHz	#VBW	6.0 MHz	Sweep 1	Span 6.000 MHz .000 ms (1001 pts)	
MSG					Alian Now, All require	ed

2DH5_Ant1_2480

	rum Analyzer - Swept S						
Center F	RF 50 9 DC	00 GHz	SENSE:PULSE	#Avg Type:	RMS TF	LPM Aug 28, 2024 RACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div	Ref Offset 11.31 (Ref 30.00 dBn		¹ Trig: Free Run #Atten: 40 dB	Avg Hold: 10	Mkr1 2.479	DETPPPPP	Auto Tune
20.0							Center Freq 2.480000000 GHz
0.00			1				Start Freq 2.477000000 GHz
-10.0	allowed and a second and a second and				the same and the same of the s	non and a stand of the second state	Stop Freq 2.483000000 GHz
-30.0							CF Step 600.000 kHz <u>Auto</u> Man
-50.0							Freq Offset 0 Hz
-60.0	480000 GHz				Snan	6.000 MHz	
#Res BW		#VBW	6.0 MHz	S	veep 1.000 ms		
MSG					STATUS 🐼 Align	Now, All requi	red