

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

6.9.2. Test Instruments

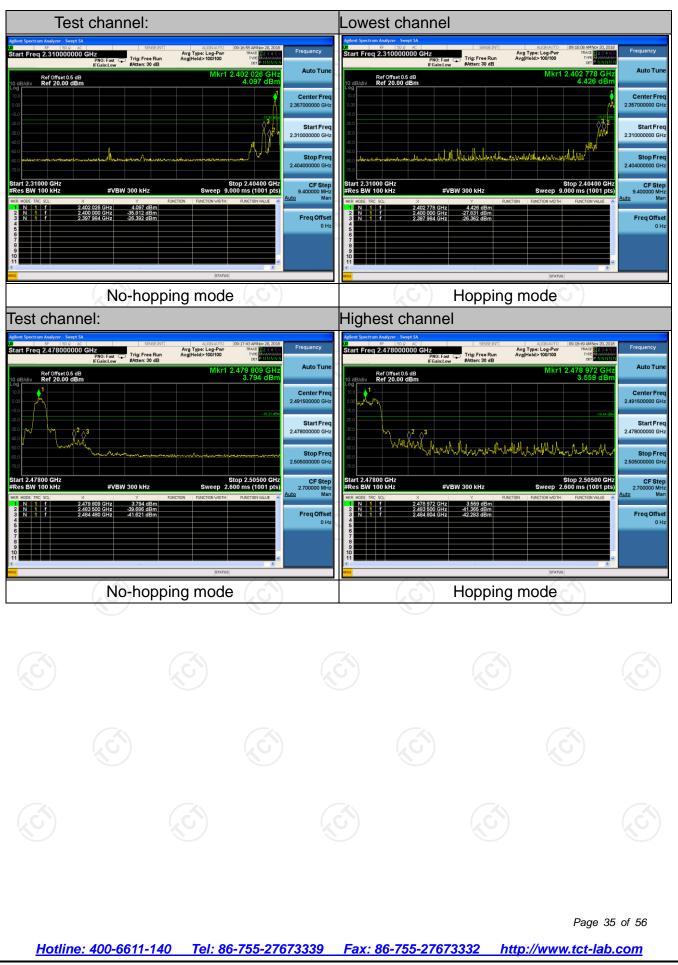
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 33 of 56

6.9.3. Test Data

GFSK Modulation



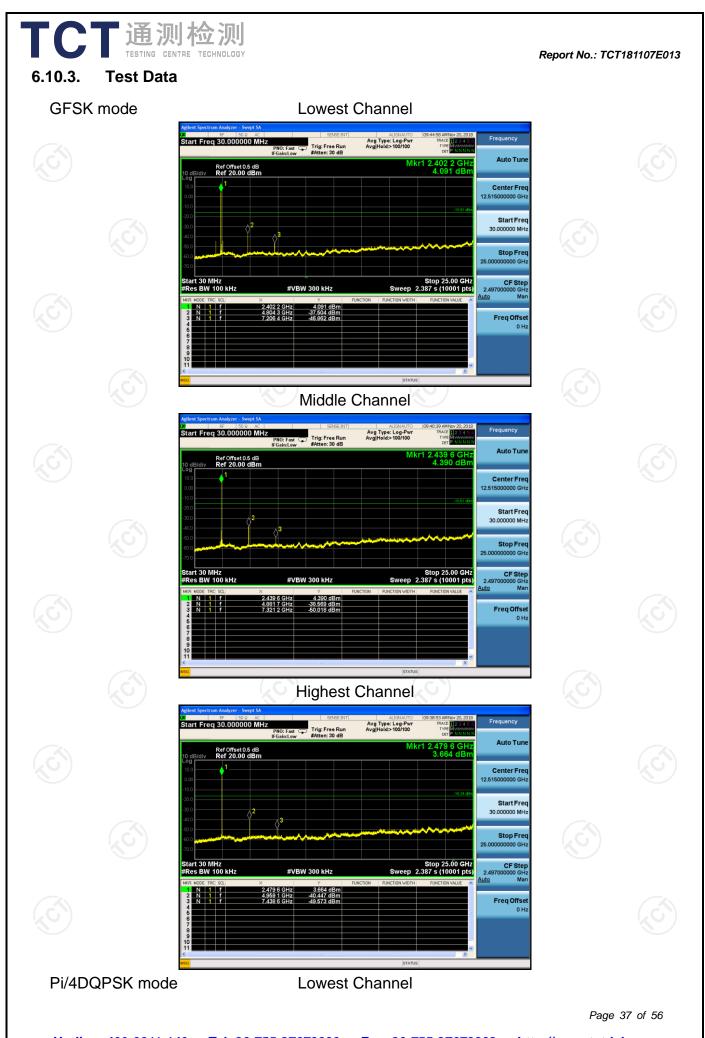
Report No.: TCT181107E013

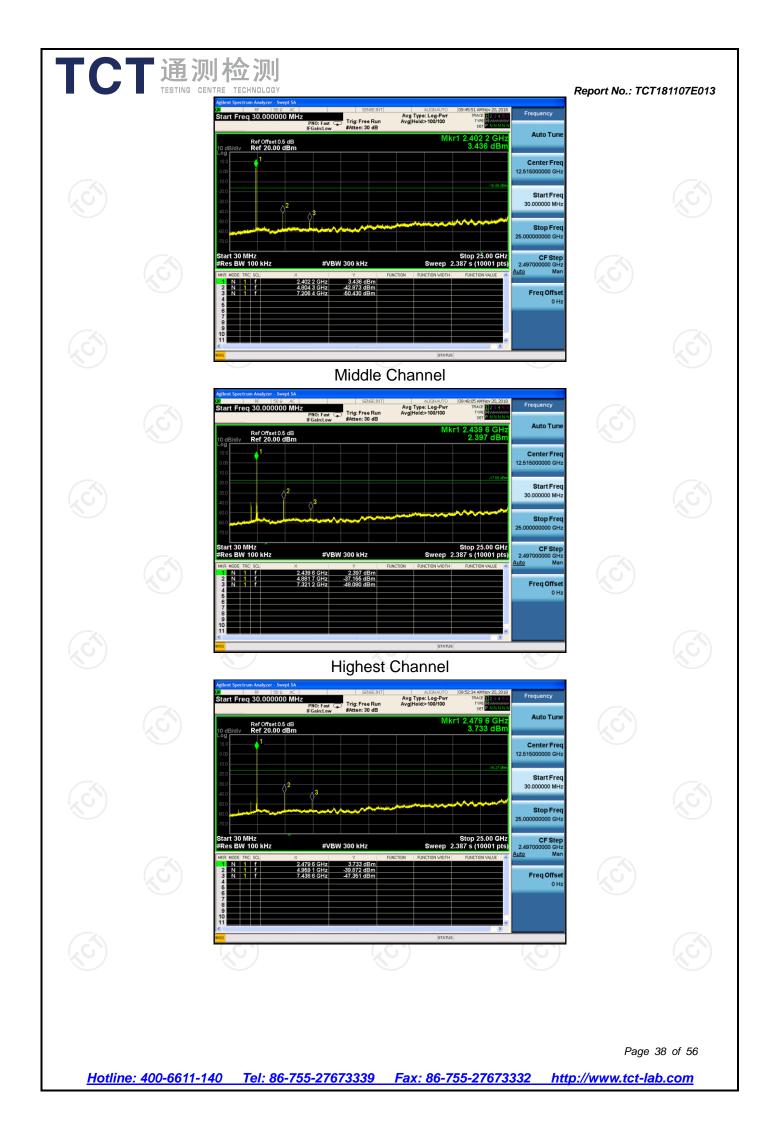
Report No.: TCT181107E013

Pi/4DQPSK Modulation

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS


6.10.2. Test Instruments

. <u>C.</u> `) ((C_1)			
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 36 of 56

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209	$\langle \mathcal{O} \rangle$				
Test Method:	ANSI C63.10):2013						
Frequency Range:	9 kHz to 25 (GHz	-			2		
Measurement Distance:	3 m		<u>c)</u>					
Antenna Polarization:	Horizontal &	Vertical						
	Frequency	Detector	RBW	VBW		Remark		
	9kHz- 150kHz	Quasi-peak		1kHz	-	si-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peak		30kHz		si-peak Value		
	30MHz-1GHz	Quasi-peal	100KHz	300KHz	Quas	i-peak Value		
	Above 1GHz	Peak	1MHz	3MHz		eak Value		
		Peak	1MHz	10Hz	Ave	erage Value		
			Field Str	enath	Me	asurement		
	Frequen	су	(microvolts	-		nce (meters)		
	0.009-0.4	190	2400/F(I			300		
	0.490-1.7	705	24000/F	(KHz)		30		
	1.705-3		30			30		
	30-88		100			3		
	88-216		150			3		
Limit:	216-96		200		K	3		
	Above 9	60	500	1		3		
	Frequency	(micro	d Strength ovolts/meter) 500	Measure Distar (mete 3	nce	Detector Average		
	Above 1GHz	2	5000	3		Peak		
Test setup:	EUT	stance = 3m			Compu Amplifier			
ý) (ý)			(,	Ś				
Hotline: 400-6611-140 Tel: 86	-755-27673339		55-2767333			Page 39 of a		

FCT 通测检测	
	Report No.: TCT181107E0
	EUT 4m Search Antenna Tum 0.8m 1m Table 0.8m 1m
	Ground Plane
	Above 1GHz
	AE EUT Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Mode: Test Procedure:	 Transmitting mode with modulation The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10:2013 Measurement Guidelines. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission

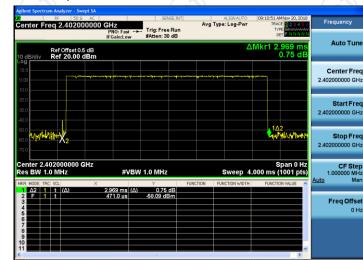
	recei meas maxii anter restri abov 3. Set EUT 4. Use (1) \$ (2) \$	mizes the nna elevati icted to a ra- e the groun to the max- transmit c the followi Span shall emission b Set RBW= for f>1GHz Sweep = a = max hol For avera	aximum signatenna ele emissions. on for max ange of he nd or refere kimum pov continuousl ng spectru wide enou eing meas 100 kHz fo ; VBW≥R auto; Dete ld for peak	emission s gnal. The evation sha The meas timum emi ights of fro ence grou ver setting y. m analyze ugh to fully sured; or f < 1 GH BW; ctor function	final all be that v surement ssions sha om 1 m to 4 nd plane. and enat ar settings: capture th lz, RBW=1 on = peak; e duty cycl	which all be 4 m ole the ne MHz Trace
	3	Where N1 length of t Average E Level + 20 Corrected	N1*L1+N2* I is numbe type 1 puls Emission L D*log(Duty Reading: A	L2++Nn r of type 1 es, etc. evel = Pea cycle) antenna Fa	100 millise -1*LNn-1+ pulses, L1 ak Emissio actor + Cat actor = Lev	Nn*Ln I is n ole
Test results:	3	On time =N Where N1 length of t Average E Level + 20 Corrected	N1*L1+N2* I is numbe type 1 puls Emission L D*log(Duty Reading: A	L2++Nn r of type 1 es, etc. evel = Pea cycle) antenna Fa	-1*LNn-1+ pulses, L1 ak Emissio actor + Cat	Nn*Ln I is n ole
Test results:	3	On time =N Where N1 length of t Average E Level + 20 Corrected	N1*L1+N2* I is numbe type 1 puls Emission L D*log(Duty Reading: A	L2++Nn r of type 1 es, etc. evel = Pea cycle) antenna Fa	-1*LNn-1+ pulses, L1 ak Emissio actor + Cat	Nn*Ln I is n ole
Test results:	3	On time =N Where N1 length of t Average E Level + 20 Corrected	N1*L1+N2* I is numbe type 1 puls Emission L D*log(Duty Reading: A	L2++Nn r of type 1 es, etc. evel = Pea cycle) antenna Fa	-1*LNn-1+ pulses, L1 ak Emissio actor + Cat	Nn*Ln I is n ole
Test results:	3	On time =N Where N1 length of t Average E Level + 20 Corrected	N1*L1+N2* I is numbe type 1 puls Emission L D*log(Duty Reading: A	L2++Nn r of type 1 es, etc. evel = Pea cycle) antenna Fa	-1*LNn-1+ pulses, L1 ak Emissio actor + Cat	Nn*Ln I is n ole

Report No.: TCT181107E013

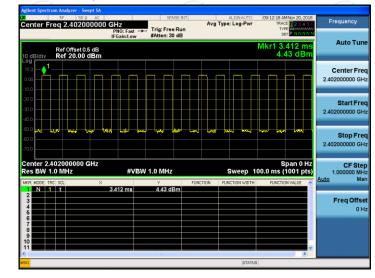
6.11.2. Test Instruments

	Radiated Em	ission Test Si	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 17, 2019
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 20, 2019
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 16, 2019
Pre-amplifier	HP	8447D	2727A05017	Sep. 16, 2019
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 20, 2019
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 02, 2019
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Oct. 20, 2019
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 16, 2019
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 16, 2019
Coax cable (9KHz-1GHz)	🕥 тст	RE-low-03	N/A	Sep. 16, 2019
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 16, 2019
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

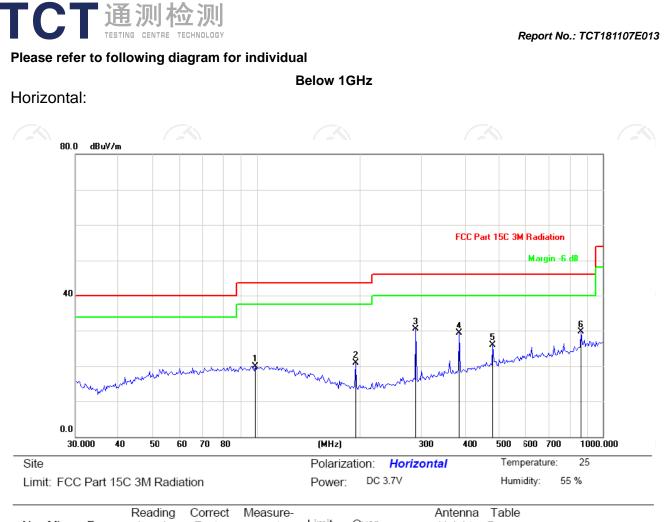

Page 42 of 56

CT通测检测 6.11.3. Test Data


I^C

Duty cycle correction factor for average measurement

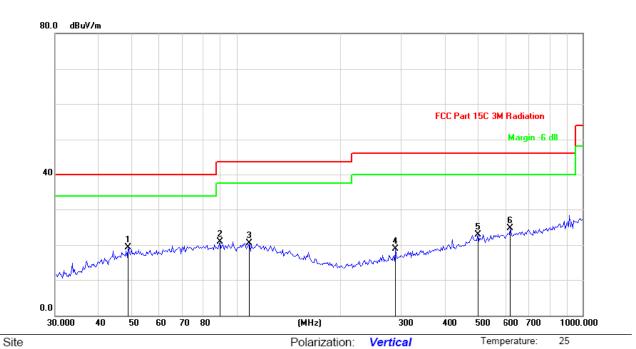
2DH5 on time (One Pulse) Plot on Channel 00


2DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = (2.969*16+3.412)/100=0.5092
- 2. Worst case Duty cycle correction factor = $20*\log (Duty cycle) = -5.86dB$
- 3. 2DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-5.86dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Report No.: TCT181107E013



No.	Mk	. Freq.	Level	Factor	ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		99.0690	28.20	-8.22	19.98	43.50	-23.52	peak			
2		193.1365	35.19	-14.33	20.86	43.50	-22.64	peak			
3	*	288.2840	41.85	-11.31	30.54	46.00	-15.46	peak			
4		384.5446	38.44	-9.18	29.26	46.00	-16.74	peak			
5		481.5111	33.71	-7.74	25.97	46.00	-20.03	peak			
6		868.8859	33.24	-3.61	29.63	46.00	-16.37	peak			

Page 44 of 56

Vertical:

T

Limit: FCC Part 15C 3M Radiation

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*	48.7191	29.36	-10.15	19.21	40.00	-20.79	peak			
2		89.7866	31.37	-10.53	20.84	43.50	-22.66	peak			
3		109.3110	29.35	-8.81	20.54	43.50	-22.96	peak			
4		288.2840	30.19	-11.31	18.88	46.00	-27.12	peak			
5		498.7303	30.37	-7.42	22.95	46.00	-23.05	peak			
6		620.1167	30.36	-5.71	24.65	46.00	-21.35	peak			

Power:

DC 3.7V

Humidity:

55 %

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4DQPSK) and the worst case Mode (lowest channel and Pi/4DQPSK) was submitted only.

Report No.: TCT181107E013

Above 1GHz

Report No.: TCT181107E013

	M	lodu	lation	Type:	: Pi/4DQPSK	
--	---	------	--------	-------	-------------	--

Ant. Pol. H/V	Peak	AV	Compation					
F 1/ V	reading (dBµV)	reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
Н	47.85		-8.27	39.58		74	54	-14.42
Н	44.43		0.66	45.09		74	54	-8.91
Н	36.69		9.50	46.19		74	54	-7.81
Н								
			í l					
V	44.17	<u> </u>	-8.27	35.9	<u>o</u> t	74	54	-18.1
V	45.52		0.66	46.18		74	54	-7.82
V	35.94		9.50	45.44		74	54	-8.56
V	H.							
	H H H V V V	(ОВЦV) H 47.85 H 44.43 H 36.69 H V 44.17 V 45.52 V 35.94	(dBµV) (dBµV) H 47.85 H 44.43 H 36.69 H V 44.17 V 45.52 V 35.94	(dBµV) (dBuV) (dB/m) H 47.85 -8.27 H 44.43 0.66 H 36.69 9.50 H V 44.17 -8.27 V 445.52 0.66 V 35.94 9.50	(dBµV) (dBuV) (dBµV/m) H 47.85 -8.27 39.58 H 44.43 0.66 45.09 H 36.69 9.50 46.19 H V 44.17 -8.27 35.9 V 45.52 0.66 46.18 V 35.94 9.50 45.44	(dBµV) (dBuV) (dBµV/m) (dBµV/m) (dBµV/m) H 47.85 -8.27 39.58 H 44.43 0.66 45.09 H 36.69 9.50 46.19 H H V 44.17 -8.27 35.9 V 45.52 0.66 46.18 V 35.94 9.50 45.44	H 47.85 -8.27 39.58 74 H 44.43 0.66 45.09 74 H 36.69 9.50 46.19 74 H 9.50 46.19 74 H 74 H 9.50 46.19 74 H 74 V 44.17 74 V 45.52 0.66 46.18 74 V 35.94 9.50 45.44 74	H 47.85 -8.27 39.58 74 54 H 44.43 0.66 45.09 74 54 H 36.69 9.50 46.19 74 54 H 9.50 46.19 74 54 H 74 54 H 9.50 46.19 74 54 H V 44.17 35.9 74 54 V 45.52 0.66 46.18 74 54 V 35.94 9.50 45.44 74 54

Middle channel: 2441 MHz

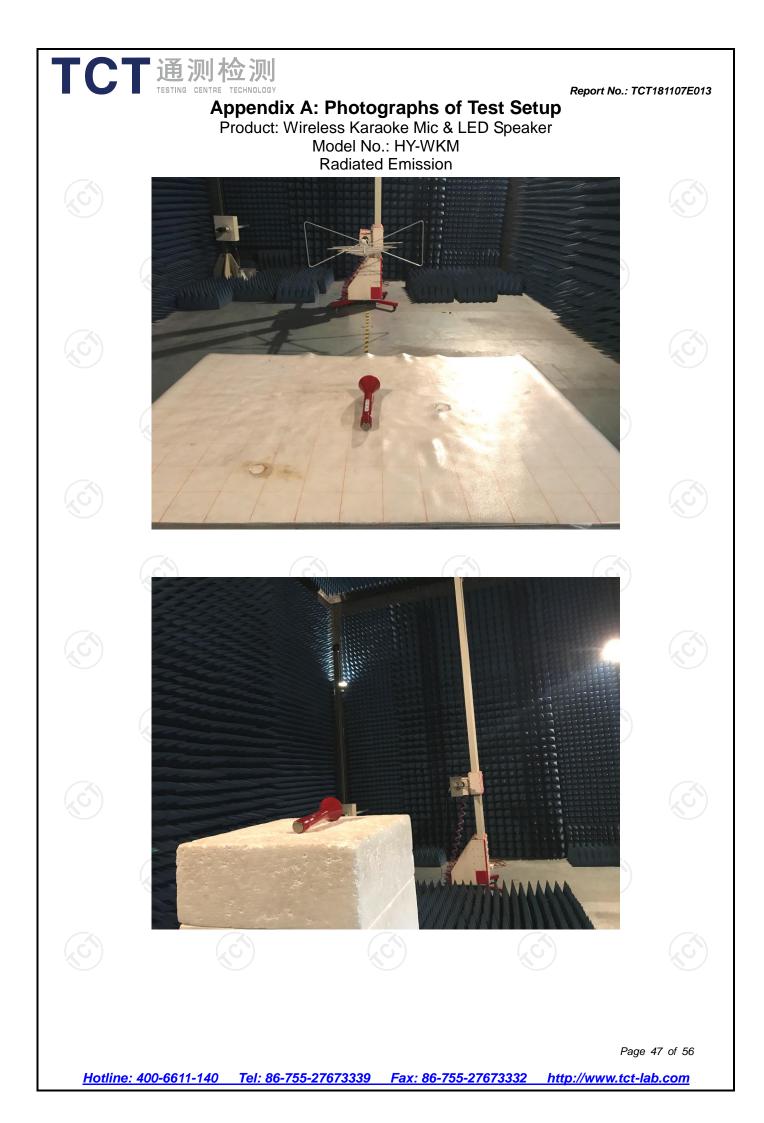
iniuule cha									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit	AV limit	Margin
					Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)
4882	Н	44.36		0.99	45.35	<u> </u>	74	54	-8.65
7323	H	38.71		9.87	48.58	<u> </u>	74	54	-5.42
	Н								
4882	V	43.60		0.99	44.59		74	54	-9.41
7323	V	39.28		9.87	49.15		74	54	-4.85 🔇
	V			0	/				

High channel: 2480 MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit	AV limit	Margin
					Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)
2483.5	Н	46.17		-7.83	38.34		74	54	-15.66
4960	H	45.81		1.33	47.14		74	54	-6.86
7440	Н	40.52		10.22	50.74		74	54	-3.26
Ú)	H	Ą		X)				
				C.					2
2483.5	V	45.95		-7.83	38.12		74	54	-15.88
4960	V	44.68	(1.33	46.01		74	54	-7.99
7440	V	38.24		10.22	48.46		74	54	-5.54
	V			/		<u> </u>			

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all two modulation (GFSK, Pi/4DQPSK), and the worst case Mode (Pi/4DQPSK) was submitted only.

