

FCC TEST REPORT FCC PART 15 SUBPART C 15.235

Test report On Behalf of DGL Group LTD. For Remote Control

Model No.: NFL-FLP-DAL, NFL-FLP-PIT, NFL-FLP-NE, NFL-FLP-SEA, NFL-FLP-GBY, NFL-FLP-PHI, NFL-FLP-OAK, NFL-FLP-DEN, NFL-FLP-NYG, NFL-FLP-CHI, NFL-FLP-SF, NFL-FLP-HOU FCC ID: 2AANZFLP

Prepared for :	DGL Group LTD.
	195 Raritan Center Parkway Edison, New Jersey United States 08837

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

 Date of Test:
 Sep. 18, 2018 ~ Sep. 27, 2018

 Date of Report:
 Sep. 27, 2018

 Report Number:
 HK1809271172E

TEST RESULT CERTIFICATION

Applicant's name:	DGL Group LTD.
Address:	195 Raritan Center Parkway Edison, New Jersey United States 08837
Manufacture's Name:	DGL Group LTD.
Address:	195 Raritan Center Parkway Edison, New Jersey United States 08837
Product description	
Trade Mark:	NFL
Product name:	Remote Control
Model and/or type reference:	NFL-FLP-DAL
Series Modele	NFL-FLP-PIT, NFL-FLP-NE, NFL-FLP-SEA, NFL-FLP-GBY, NFL-FLP-PHI, NFL-FLP-OAK, NFL-FLP-DEN, NFL-FLP-NYG, NFL-FLP-CHI, NFL-FLP-SF, NFL-FLP-HOU
Declaration of Difference	All the same except for the model name and front appearance.
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.235 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	Sep
Date of Issue	Sep
Test Result	Pas

o. 18, 2018 ~ Sep. 27, 2018 o. 27, 2018 SS

Testing Engineer

Gary Qian)

Technical Manager

:

Edon Hu

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

Table of Contents	Page
1. TEST SUMMARY	4
2 . GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF EUT	5
2.2 OPERATION OF EUT DURING TESTING	6
2.3 DESCRIPTION OF TEST SETUP	6
2.4 MEASUREMENT INSTRUMENTS LIST	7
3. RADIATED EMISSION	8
3.1. MEASUREMENT PROCEDURE	8
3.2. TEST SETUP	10
3.3. TEST RESULT	11
4. BANDWIDTH	15
4.1. MEASUREMENT PROCEDURE	15
4.2. TEST SETUP	15
4.3. TEST RESULT	16
5. PHOTOGRAPH OF TEST	17
6. PHOTOGRAPH OF EUT	18

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.235&15.209	Radiated Emission and Band Edges	Compliant
§15.215	20dB bandwidth	Compliant
§15.207	Conducted Emission	N/A

1.2 TEST FACILITY

Test Firm	:	Shenzhen HUAK Testing Technology Co., Ltd.
Address	:	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China
Designation Number:	:	CN1229
Test Firm Registration	Nu	mber : 616276

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Operation Frequency	49.860MHZ
Field Strength(3m)	73.49dBuV/m(Peak)@3m
Modulation	АМ
Number of channels	1
Hardware Version	JH-4116T
Software Version	NC
Antenna Designation	Fixed antenna
Antenna Gain	0dBi
Power Supply	DC 9V by Battery

2.2 OPERATION OF EUT DURING TESTING

NO.	TEST MODE DESCRIPTION	
1	Transmitting mode	
Note: 1. Only the data of the worst case recorded in the test report. 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.		

2.3 DESCRIPTION OF TEST SETUP

Operation of EUT during Radiation:

EUT

2.4 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
2.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
3.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
4.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
6.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
7.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
8.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year

3. RADIATED EMISSION

3.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP

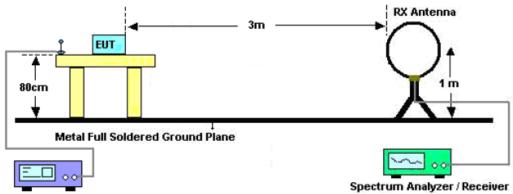
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP

Test limit for Standard FCC15.235

The field strength of any emission within this band shall not exceed 10,000 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

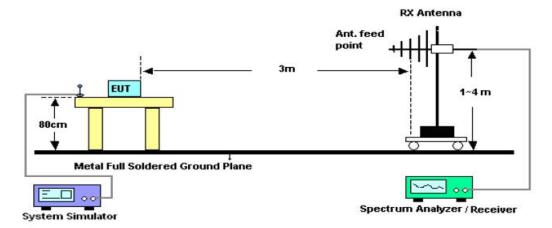
The field strength of any emissions appearing between the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 26 dB below the level of the unmodulated carrier or to the general limits in §15.209, whichever permits the higher emission levels. The field strength of any emissions removed by more than 10 kHz from the band edges shall not exceed the general radiated emission limits in §15.209.

Frequency	Distance	Field S	Strengths Limit					
(MHz)	Meters	μ V/m	dB(µV)/m					
0.009 ~ 0.490	300	2400/F(kHz)						
0.490 ~ 1.705	30	24000/F(kHz)						
1.705 ~ 30	30	30						
30 ~ 88	3	100	40.0					
88 ~ 216	3	150	43.5					
216 ~ 960	3	200	46.0					
960 ~ 1000	3	500	54.0					
Above 1000	3	Other:74.0 dB(µV)/r	m (Peak) 54.0 dB(µV)/m					
		(Average)						
Remark: (1) Emission level dB μ V = 20 log Emission level μ V/m								


Test limit for Standard FCC 15.209

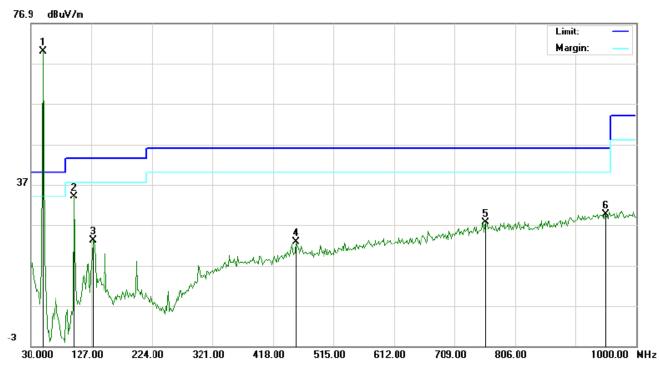
(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.



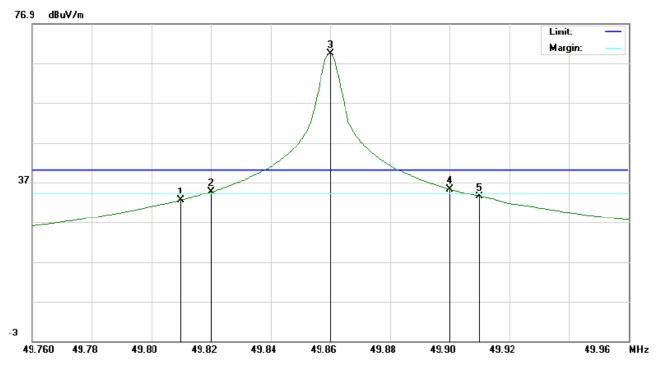
Radiated Emission Test-Setup Frequency Below 30MHz

System Simulator


RADIATED EMISSION TEST SETUP 30MHz-1000MHz

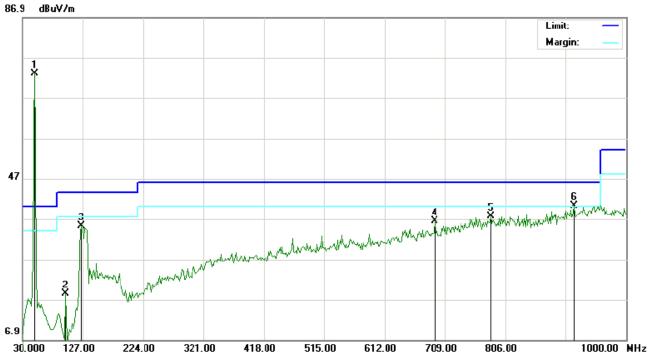
RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

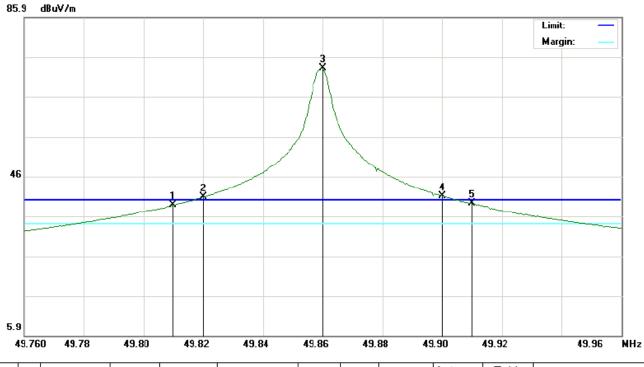


RADIATED EMISSION BELOW 1GHZ-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	49.6800	58.68	11.28	69.96	80.00	-10.04	peak			
2		99.5167	24.03	10.00	34.03	43.50	-9.47	peak			
3		130.2332	12.54	10.64	23.18	43.50	-20.32	peak			
4		455.1832	2.12	20.65	22.77	46.00	-23.23	peak			
5		759.1167	0.77	26.76	27.53	46.00	-18.47	peak			
6		951.5000	-0.31	29.99	29.68	46.00	-16.32	peak			


BAND EDGE EMISSION-Horizontal

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		49.8100	21.18	11.25	32.43	40.00	-7.57	peak			
2	İ	49.8200	23.30	11.25	34.55	43.38	-8.83	peak			
3	*	49.8600	58.13	11.25	69.38			peak			
4	İ	49.9000	24.02	11.25	35.27	43.38	-8.11	peak			
5		49.9100	22.18	11.25	33.43	40.00	-6.57	peak			


RADIATED EMISSION BELOW 1GHZ-Vertical

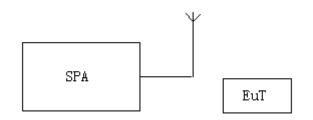
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	49.6800	65.21	8.28	73.49	80.00	-6.51	peak			
2		99.5167	21.18	-2.69	18.49	43.50	-25.01	peak			
3		125.3833	26.11	9.10	35.21	43.50	-8.29	peak			
4		692.8333	11.34	25.00	36.34	46.00	-9.66	peak			
5		783.3667	10.44	27.09	37.53	46.00	-8.47	peak			
6	İ	915.9333	11.15	29.05	40.20	46.00	-5.80	peak			

BAND EDGE EMISSION-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	Ţ	49.8100	30.47	8.25	38.72	40.00	-1.28	peak			
2	Х	49.8200	32.49	8.25	40.74	47.16	-6.42	peak			
3	*	49.8600	64.91	8.25	73.16			peak			
4	Х	49.9000	32.77	8.25	41.02	47.16	-6.14	peak			
5	Ţ	49.9100	30.57	8.25	38.82	40.00	-1.18	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.


2. The "Factor" value can be calculated automatically by software of measurement system.

4.1. MEASUREMENT PROCEDURE

- 1. Set the parameters of SPA as below: Centre frequency = Operation Frequency RBW=3KHz VBW=10KHz Span: 60kHz Sweep time: Auto
- 2. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 3. Record the plots and Reported.

4.2. TEST SETUP

4.3. TEST RESULT

TEST ITEM	20DB BANDWIDTH
TEST MODULATION	АМ

Test Data (kHz)	Criteria	
Operate Channel	15.64	PASS

TEST PLOT OF BANDWIDTH

🊺 Keysight Spectr	rum Analyzer - Occupied BW	1						
Center Fre	RF 50 Ω AC Q 49.860000 M	Hz Cent	SENSE:INT er Freg: 49.860000 MHz	ALIGN AUTO	Radio Std: N	lone	Freq	uency
Center rie	Trig: Free Run Avg Hold:>10/10							
		#IFGain:Low #Atte	en: 10 dB		Radio Devic	e: B15		
10 dB/div Log	Ref -10.00 dBr	n						
-20.0							Ce	nter Freq
-30.0							49.86	50000 MHz
-40.0								
-50.0								
-60.0								
-70.0								
-80.0								
-90.0								
-100								
						CO 1-11-		
Center 49.3 #Res BW 3			#VBW 10 kHz		Sweep 6	160 kHz 333 ms		CF Step
					encop e		Auto	6.000 kHz Man
Occupi	ied Bandwidt	h	Total Power	-24.6	dBm			
	2	7.492 kHz					Fr	eq Offset
Transmi	it Freq Error	-23 Hz	OBW Power	99	.00 %			0 Hz
x dB Ba	dB Bandwidth 15.64 kHz		x dB	-20.0	00 dB			
MSG				STATUS				

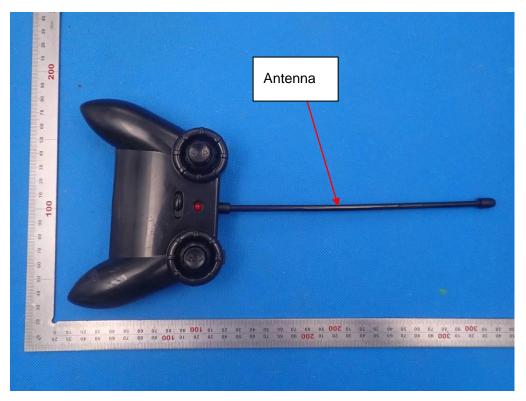
5. PHOTOGRAPH OF TEST

Radiated Emission

6. PHOTOGRAPH OF EUT

ALL VEIW OF EUT

TOP VIEW OF EUT



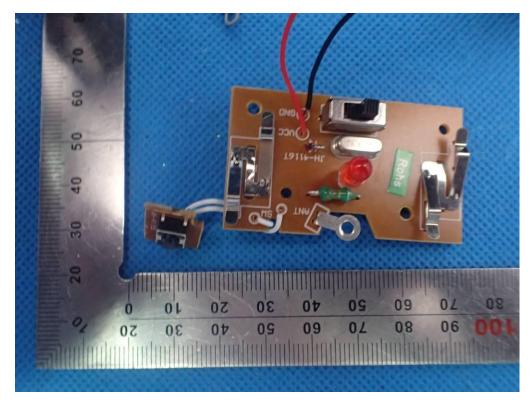
BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

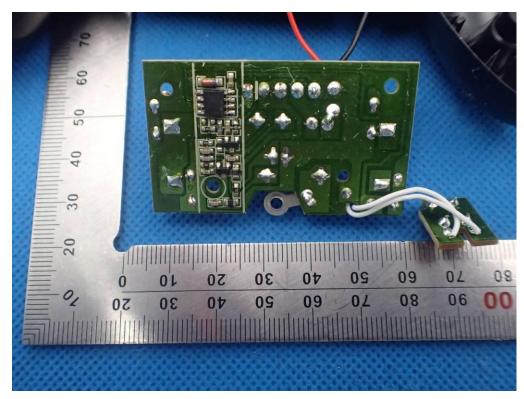
BACK VIEW OF EUT

LEFT VIEW OF EUT

RIGHT VIEW OF EUT



OPEN VIEW OF EUT



INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2

----END OF REPORT----