

FCC Test Report

Application No.: DNT2407150101-0209-00145

Applicant: DGL Group LTD.

Address of

2045 Lincoln Highway, 3rd Floor, Edison, NJ 08817, United States

Applicant:

EUT Description: True Wireless Earbuds

DG-EBTW-ASST,DG-EBTW-WHT,DE-EBTW-BLK,DG-EBTW, Model No.:

DG-EBTW-XXX

FCC ID: 2AANZEBTW

Power Supply: DC 3.7V From Battery

Charging Voltage: DC 5V

Trade Mark: VIBE

47 CFR FCC Part 2, Subpart J

Standards: 47 CFR Part 15, Subpart C

ANSI C63.10: 2020

Date of Receipt: 2024/7/16

Date of Test: 2024/7/16 to 2024/7/24

Date of Issue: 2024/7/25

Test Result: PASS

Prepared By: Wayne Jon (Testing Engineer)

Reviewed By: _____ (Project Engineer)

Approved By: Mense (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Date: July 25, 2024

Page: 2/65

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jul.25, 2024	Valid	Original Report

Date: July 25, 2024

Page: 3/65

1 Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10: 2020	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10: 2020	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10: 2020	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10: 2020	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10: 2020	Clause 3.11	N/A

Note:

1. "N/A" denotes test is not applicable in this test report.

Contents

1 Test 9	Summary	3
2 Gene	eral Information	5
2.1	Test Location	5
2.2	General Description of EUT	6
2.3	Channel List	7
2.4	Test Environment and Mode	8
2.5	Power Setting of Test Software	9
2.6	Description of Support Units	9
2.7	Test Facility	9
2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
2.9	Equipment List	11
2.10	Assistant equipment used for test	12
3 Test r	results and Measurement Data	13
3.1	Antenna Requirement	13
3.2	20dB Emission Bandwidth	14
3.3	Conducted Output Power	15
3.4	Carrier Frequencies Separationy	16
3.5	Dwell Time	17
3.6	Hopping Channel Number	18
3.7	Band-edge for RF Conducted Emissions	19
3.8	RF Conducted Spurious Emissions	20
3.9	Radiated Spurious Emissions	21
3.10	Restricted bands around fundamental frequency	29
3.11	AC Power Line Conducted Emissions	33
4 Appe	endix	35
Apper	ndix A: 20dB Emission Bandwidth	35
Apper	ndix B: Maximum conducted output power	39
	ndix C: Carrier frequency separation	
	ndix D: Dwell Time	
Apper	ndix F: Number of hopping channels	46
Apper	ndix F: Band edge measurements	51
	ndix F: Conducted Spurious Emission	

Date: July 25, 2024

Page: 5/65

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: July 25, 2024

Page: 6 / 65

2.2 General Description of EUT

Manufacturer:	DGL Group LTD.
Address of Manufacturer:	2045 Lincoln Highway, 3rd Floor, Edison, NJ 08817, United States
Test EUT Description:	True Wireless Earbuds
Model No.:	DG-EBTW-ASST
Additional Model(s):	DG-EBTW-WHT,DE-EBTW-BLK,DG-EBTW,DG-EBTW-XXX
Chip Type:	AB5656T3
Serial number:	PR2407150101-0209
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark:	VIBE
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK
Sample Type:	
Antenna Type:	☐ External, ☑ Integrated
Antenna Ports:	
Antenna Gain*:	⊠ Provided by applicant
Antenna Gain .	1.9dBi
	⊠ Provided by applicant
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);

Remark:

^{*}Only the color of the product is different, everything else is completely consistent.

^{*}Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: July 25, 2024

Page: 7/65

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
_ 3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: July 25, 2024

Page: 8/65

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Date: July 25, 2024

Page: 9/65

2.5 Power Setting of Test Software

Software Name	\bigcirc , \bigcirc ,	bt_tool_v1.1.2	O, O , O ,
Frequency(MHz)	2402	2441	2480
GFSK Setting	7	7	7
π/4-DQPSK Setting	7	7	7
8DPSK	7	7	7

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

· FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

• Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Date: July 25, 2024

Page: 10 / 65

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	4 0 14 1950 4 5 14	9KHz-1GHz:±0.746dB
	Conducted RF Spurious Emission	1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty	
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)	
	0, 0, 0, 0,	± 4.8dB (Below 1GHz)	
2	Dadiated Emission	± 4.8dB (1GHz to 6GHz)	
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)	
	0 0 0 0 0 0 0	± 5.02dB (Above 18GHz)	

Date: July 25, 2024

Page: 11/65

2.9 Equipment List

	VI OI COIIIIE	ct EUT Anteni	ia i C ilililiai	1650	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission									
Description	Description Manufacturer Model Serial Number Cal Date Due Date									
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23					
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23					
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23					

Test Ed	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA NA		NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: July 25, 2024

Page: 12 / 65

Test E	quipment for I	Radiated Emi	ssion(Above	1000MHz	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TiLE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

Date: July 25, 2024 Page: 13 / 65

3 Test results and Measurement Data

3.1 Antenna Requirement

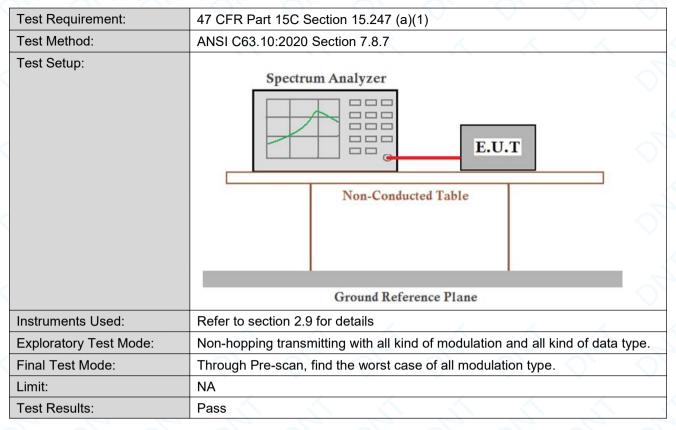
Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

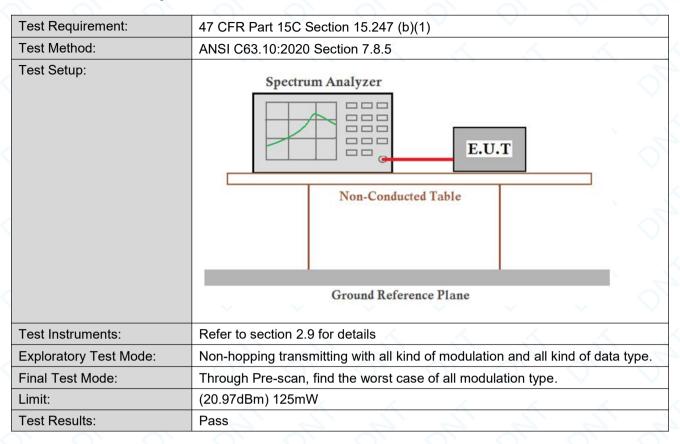
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.9dBi.

Date: July 25, 2024

Page: 14 / 65

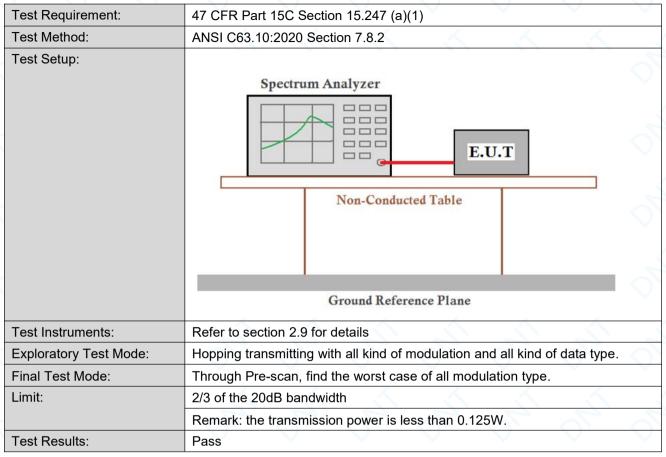
3.2 20dB Emission Bandwidth


The detailed test data see: Appendix A

Date: July 25, 2024

Page: 15 / 65

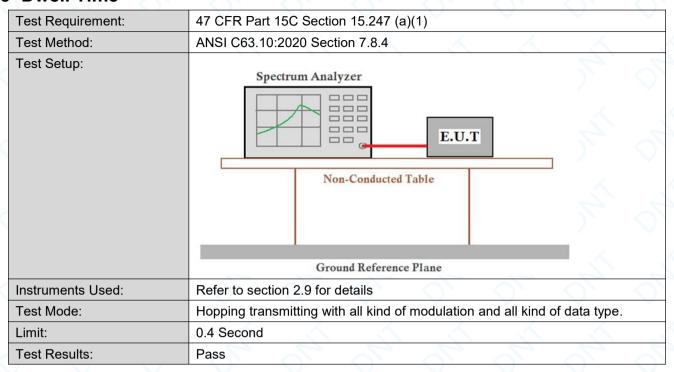
3.3 Conducted Output Power


The detailed test data see: Appendix B

Date: July 25, 2024

Page: 16 / 65

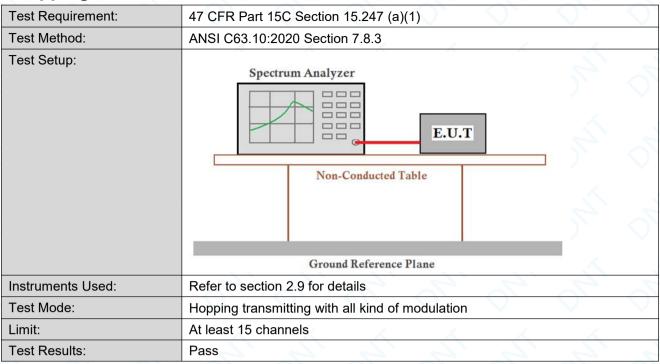
3.4 Carrier Frequencies Separationy


The detailed test data see: Appendix C

Date: July 25, 2024

Page: 17 / 65

3.5 Dwell Time


The detailed test data see: Appendix D

Date: July 25, 2024

Page: 18 / 65

3.6 Hopping Channel Number

The detailed test data see: Appendix E

Date: July 25, 2024

Page: 19 / 65

3.7 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2020 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix F

Date: July 25, 2024

024 Page: 20 / 65

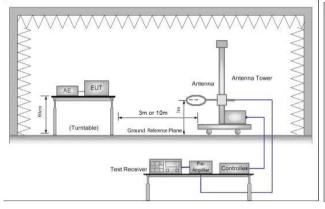
3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2020 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix G

Date: July 25, 2024

Page: 21/65


3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15.209 and 15.20	05		V V					
Test Method:	ANSI C63.10: 2020 Sect	ANSI C63.10: 2020 Section 11.12								
Test Site:	Measurement Distance:	3m or 10m (Semi-	Anechoic Ch	amber)	6					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak					
		Peak	1MHz	3MHz	Peak					
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average					
				(DC<0.98)						
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	- <	-<	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	6-7	30					
	1.705MHz-30MHz	30		<u> </u>	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit					

Date: July 25, 2024

Page: 22 / 65

Test Setup:

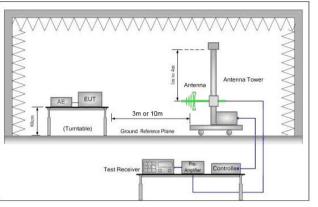


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

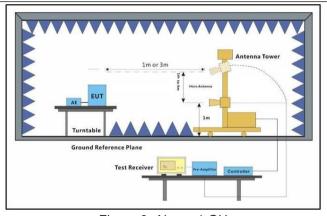


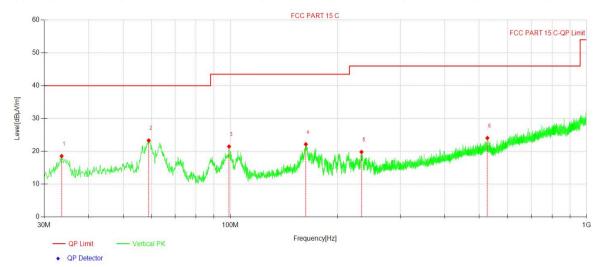
Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel ,the Highest channel.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Dongguan DN Testing Co., Ltd.

Report No.	DNT2407150101-0209-00145 Date: July 25, 2024 Page: 23 / 65
Test Configuration:	 Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above 1000 MHz RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above 1000MHz RBW = 1 MHz VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass



Date: July 25, 2024

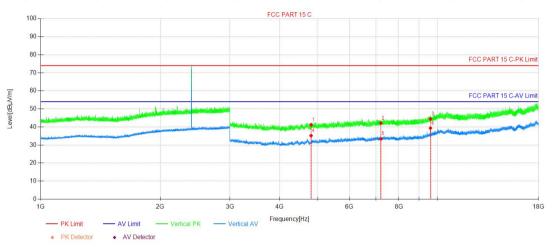

Page: 24 / 65

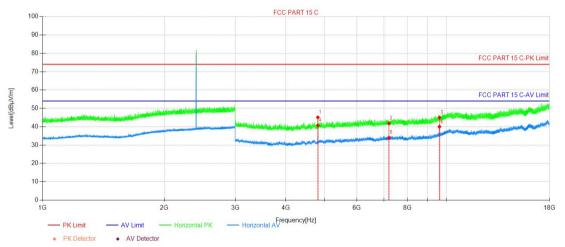
Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	33.58	28.02	-9.47	18.55	40.00	21.45	100	25	QP	Vertical
2	59.00	31.98	-8.66	23.32	40.00	16.68	100	226	QP	Vertical
3	99.16	34.24	-12.77	21.47	43.50	22.03	100	187	QP	Vertical
4	162.90	30.02	-7.87	22.15	43.50	21.35	100	360	QP	Vertical
5	233.42	29.73	-9.94	19.79	46.00	26.21	100	76	QP	Vertical
6	526.98	25.19	-1.14	24.05	46.00	21.95	100	358	QP	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	45.81	24.05	-8.21	15.84	40.00	24.16	100	23	QP	Horizontal
2	91.11	28.89	-13.78	15.11	43.50	28.39	200	46	QP	Horizontal
3	164.06	29.19	-7.91	21.28	43.50	22.22	200	294	QP	Horizontal
4	185.21	30.62	-10.00	20.62	43.50	22.88	200	75	QP	Horizontal
5	331.50	24.64	-5.98	18.66	46.00	27.34	100	158	QP	Horizontal
6	527.46	24.38	-1.14	23.24	46.00	22.76	100	255	QP	Horizontal


Dongguan DN Testing Co., Ltd.

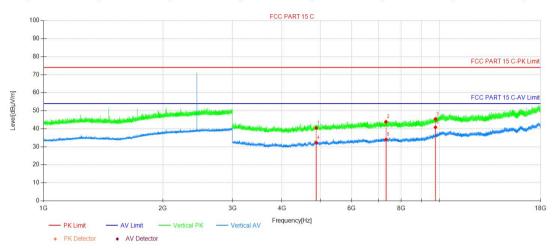

Date: July 25, 2024

Page: 25 / 65

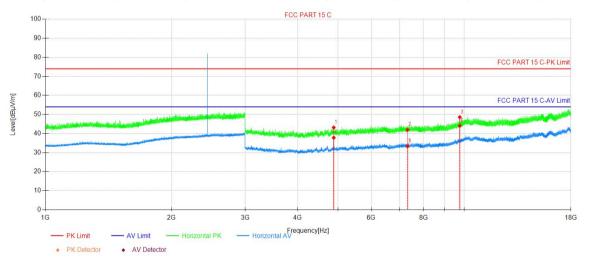
For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4804.59	45.84	-4.61	41.23	74.00	32.77	150	307	Peak	Vertical
2	7206.21	43.92	-1.76	42.16	74.00	31.84	150	100	Peak	Vertical
3	9608.58	43.59	0.88	44.47	74.00	29.53	150	142	Peak	Vertical
4	4804.59	39.80	-4.61	35.19	54.00	18.81	150	307	AV	Vertical
5	7206.21	35.18	-1.76	33.42	54.00	20.58	150	185	AV	Vertical
6	9608.58	38.50	0.88	39.38	54.00	14.62	150	220	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4803.84	49.71	-4.61	45.10	74.00	28.90	150	301	Peak	Horizon
2	7206.21	43.52	-1.76	41.76	74.00	32.24	150	342	Peak	Horizon
3	9608.58	44.11	0.88	44.99	74.00	29.01	150	3	Peak	Horizon
4	4804.59	45.34	-4.61	40.73	54.00	13.27	150	288	AV	Horizon
5	7206.21	35.82	-1.76	34.06	54.00	19.94	150	360	AV	Horizon
6	9608.58	39.11	0.88	39.99	54.00	14.01	150	178	AV	Horizon



Date: July 25, 2024

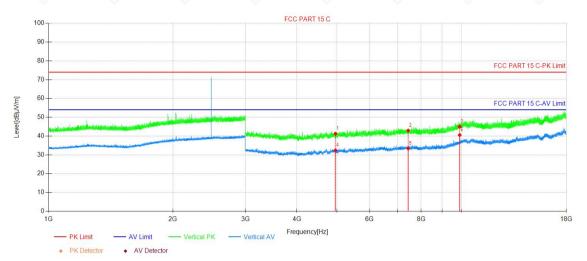

Page: 26 / 65

DH5 2441MHz

Vertical:

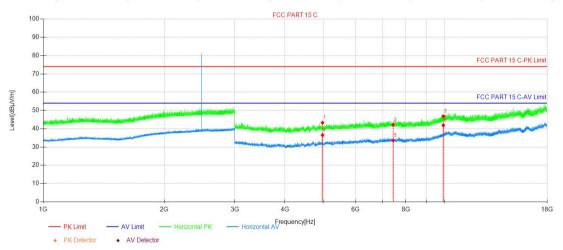
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4882.59	45.10	-4.72	40.38	74.00	33.62	150	204	Peak	Vertical
2	7323.21	45.37	-1.49	43.88	74.00	30.12	150	360	Peak	Vertical
3	9764.58	43.72	1.64	45.36	74.00	28.64	150	311	Peak	Vertical
4	4882.59	36.95	-4.72	32.23	54.00	21.77	150	58	AV	Vertical
5	7323.21	35.52	-1.49	34.03	54.00	19.97	150	343	AV	Vertical
6	9764.58	39.13	1.64	40.77	54.00	13.23	150	238	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	47.88	-4.72	43.16	74.00	30.84	150	110	Peak	Horizon
2	7323.21	43.47	-1.49	41.98	74.00	32.02	150	122	Peak	Horizon
3	9763.83	46.95	1.64	48.59	74.00	25.41	150	96	Peak	Horizon
4	4882.59	42.54	-4.72	37.82	54.00	16.18	150	96	AV	Horizon
5	7323.21	34.83	-1.49	33.34	54.00	20.66	150	96	AV	Horizon
6	9764.58	42.39	1.64	44.03	54.00	9.97	150	96	AV	Horizon



Date: July 25, 2024

Page: 27 / 65


DH5 2480MHz

Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	4960.59	46.13	-4.86	41.27	74.00	32.73	150	345	Peak	Vertical
	2	7440.22	44.27	-1.34	42.93	74.00	31.07	150	152	Peak	Vertical
	3	9920.59	42.73	2.27	45.00	74.00	29.00	150	121	Peak	Vertical
	4	4960.59	37.25	-4.86	32.39	54.00	21.61	150	312	AV	Vertical
	5	7440.22	34.72	-1.34	33.38	54.00	20.62	150	35	AV	Vertical
Ī	6	9920.59	38.27	2.27	40.54	54.00	13.46	150	184	AV	Vertical

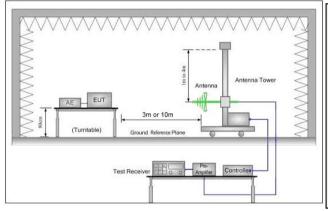
Horizontal:

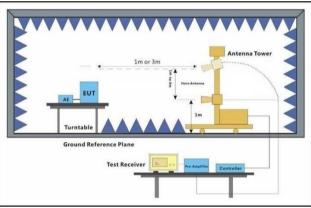
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	48.13	-4.86	43.27	74.00	30.73	150	82	Peak	Horizon
2	7440.22	43.47	-1.34	42.13	74.00	31.87	150	160	Peak	Horizon
3	9920.59	44.54	2.27	46.81	74.00	27.19	150	106	Peak	Horizon
4	4960.59	41.36	-4.86	36.50	54.00	17.50	150	128	AV	Horizon
5	7440.22	34.95	-1.34	33.61	54.00	20.39	150	171	AV	Horizon
6	9920.59	39.61	2.27	41.88	54.00	12.12	150	196	AV	Horizon

Date: July 25, 2024

Page: 28 / 65

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.



Date: July 25, 2024

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205						
Test Method:	ANSI C63.10: 2020 Section	11.12	, ,					
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)							
Limit:	Frequency	Limit (dBuV/m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak					
	88MHz-216MHz	43.5	Quasi-peak					
	216MHz-960MHz	46.0	Quasi-peak					
	960MHz-1GHz	54.0	Quasi-peak					
	Above 4011=	54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								

Page: 29 / 65

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

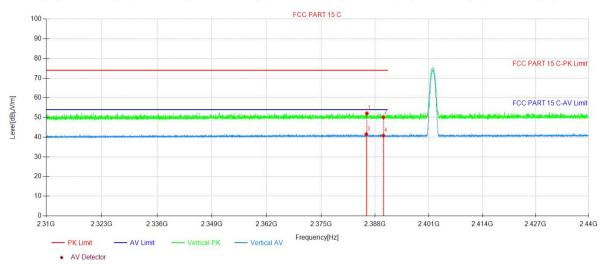
Test Procedure:

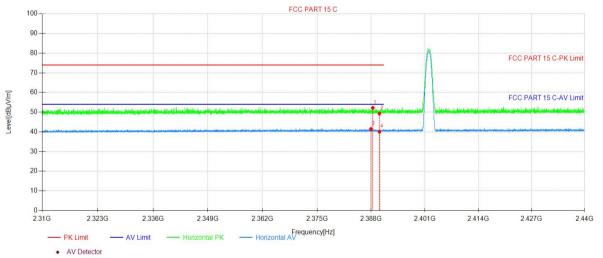
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz

Dongguan DN Testing Co., Ltd.

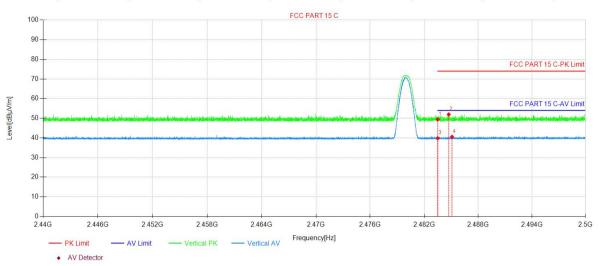

Re	port No.DNT2	407150101-0209-00145	Date: July 25, 2024	Page: 30 / 65
	tr	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max h Peak Measurements A RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max h Average Measuremen RBW = 1 MHz VBW = 10 Hz, when VBW ≥ 1/T, when d minimum 	nold Above 1000 MHz nold	8 percent. The cent where T is the
Exploratory Te		ransmitting with all kind of m ransmitting mode.	odulations, data rates.	(O, O, O)
Final Test Mo	T ty	retest the EUT Transmitting hrough Pre-scan, find the D /pe. only the worst case is record	H5 of data type is the worst	case of all modulation
Instruments U	lsed: F	efer to section 2.9 for details	s	
Test Results:	F	ass		P P T

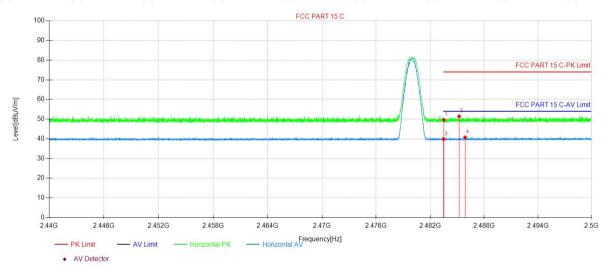

Date: July 25, 2024

Page: 31 / 65

DH5 2402MHz

١	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	2386.01	52.90	-0.81	52.09	74.00	21.91	150	240	Peak	Vertical
	2	2390.01	50.88	-0.80	50.08	74.00	23.92	150	96	Peak	Vertical
	3	2385.88	42.32	-0.81	41.51	54.00	12.49	150	314	AV	Vertical
	4	2390.01	41.59	-0.80	40.79	54.00	13.21	150	181	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2388.41	53.02	-0.80	52.22	74.00	21.78	150	350	Peak	Horizon
2	2390.01	50.10	-0.80	49.30	74.00	24.70	150	59	Peak	Horizon
3	2387.96	42.30	-0.80	41.50	54.00	12.50	150	152	AV	Horizon
4	2390.01	40.86	-0.80	40.06	54.00	13.94	150	68	AV	Horizon


Date: July 25, 2024

Page: 32 / 65

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	49.74	-0.29	49.45	74.00	24.55	150	20	Peak	Vertical
2	2484.73	52.21	-0.27	51.94	74.00	22.06	150	174	Peak	Vertical
3	2483.50	40.16	-0.29	39.87	54.00	14.13	150	96	AV	Vertical
4	2485.10	40.81	-0.27	40.54	54.00	13.46	150	192	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	49.92	-0.29	49.63	74.00	24.37	150	299	Peak	Horizon
2	2485.22	51.71	-0.27	51.44	74.00	22.56	150	290	Peak	Horizon
3	2483.50	40.12	-0.29	39.83	54.00	14.17	150	325	AV	Horizon
4	2485.89	40.98	-0.27	40.71	54.00	13.29	150	182	AV	Horizon

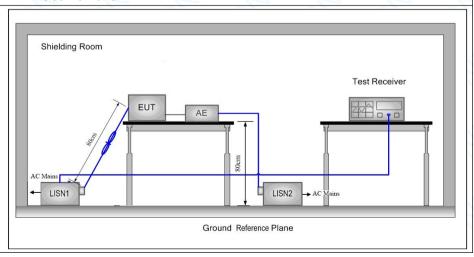
Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Date: July 25, 2024


Page: 33 / 65

3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 1	5.207					
Test Method:	ANSI C63.10: 2020						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Crossiana (MIII-)	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of the frequency.						
Test Procedure:	The mains terminal disturbance voltage test was conducted in a shielded room. The FLIT was connected to AC power source through a LISN 1 (Line).						

- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H}+5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 2013 on conducted measurement.

Test Setup:

Dongguan DN Testing Co., Ltd.

Report No.DNT2407150101-0209-00145 Date: July 25, 2024 Page: 34 / 65

Exploratory Test Mode: Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Charge + Transmitting mode.

Final Test Mode: Through Pre-scan, find the the worst case.

Instruments Used: Refer to section 2.9 for details

Test Results: N/a

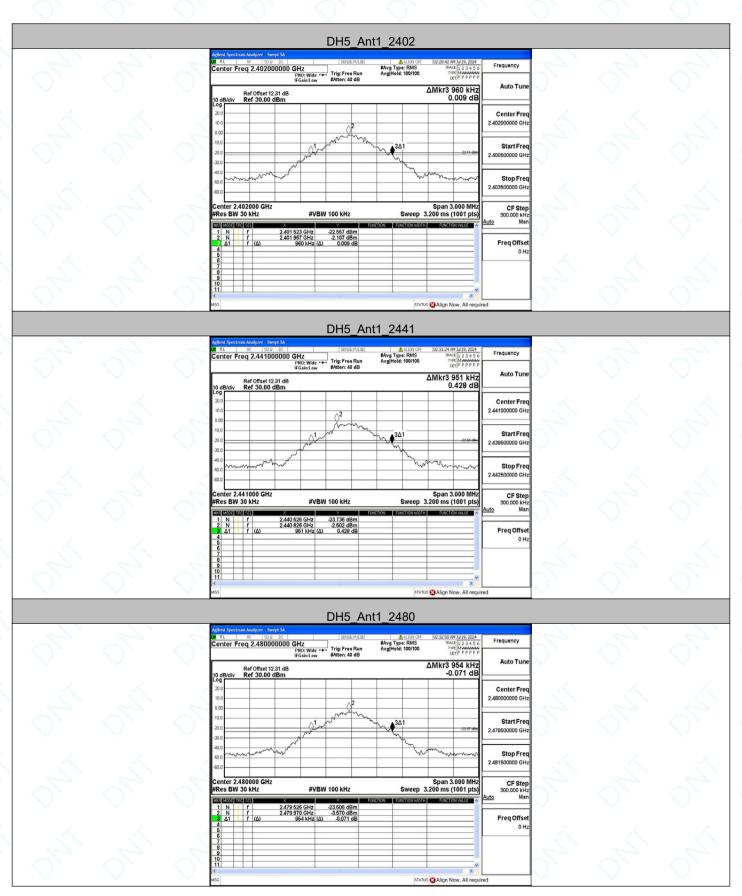
Note: The wireless function does not work while the prototype is charging

Date: July 25, 2024 Page: 35 / 65

4 Appendix

Appendix A: 20dB Emission Bandwidth

Test Result


Test Nesult							
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.960	2401.523	2402.483		
DH5	Ant1	2441	0.951	2440.526	2441.477		
		2480	0.954	2479.526	2480.480		
		2402	1.278	2401.364	2402.642		
2DH5	Ant1	2441	1.335	2440.322	2441.657		
		2480	1.287	2479.361	2480.648		
		2402	1.293	2401.346	2402.639		
3DH5	Ant1	2441	1.302	2440.346	2441.648		
		2480	1.296	2479.352	2480.648		

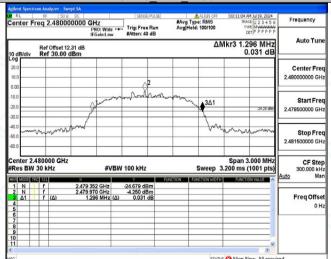
Date: July 25, 2024

Page: 36 / 65


Test Graphs

Report No.DNT2407150101-0209-00145 Page: 37 / 65 Date: July 25, 2024 2DH5_Ant1_2402 #Avg Type: RMS AvaiHold: 100/100 Auto Tun Ref Offset 12.31 dB Ref 30.00 dBm Center Fre Start Free Span 3.000 MHz Sweep 3.200 ms (1001 pts) Freq Offse STATUS Align Now, All re

2DH5 Ant1 2441



2DH5_Ant1_2480

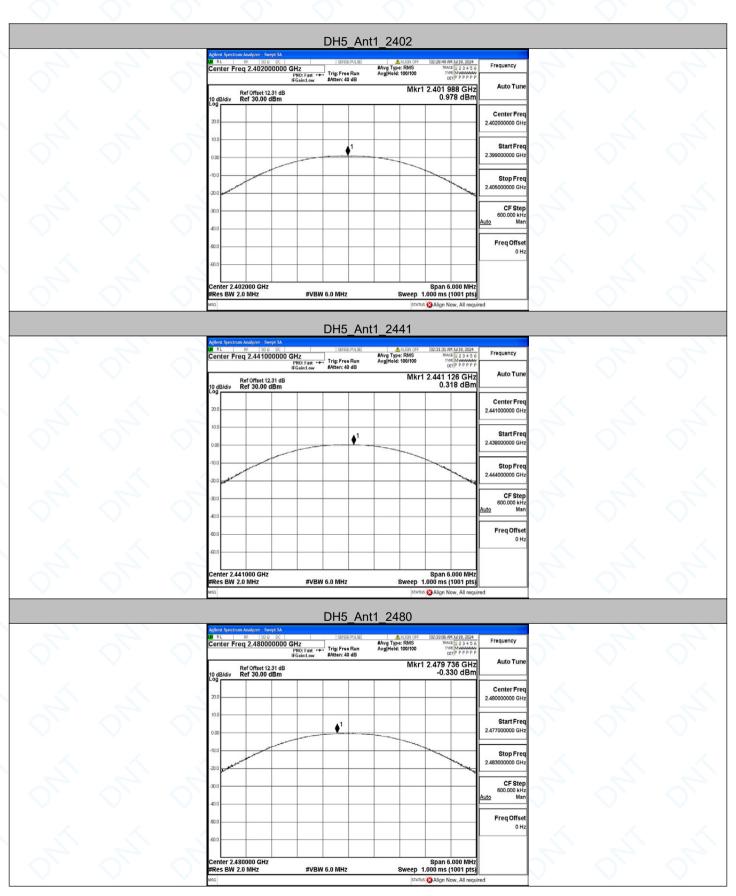
Page: 38 / 65 Report No.DNT2407150101-0209-00145 Date: July 25, 2024 3DH5_Ant1_2402 #Avg Type: RMS AvaiHold: 100/100 Auto Tun Ref Offset 12.31 dB Ref 30.00 dBm Center Fre Start Free enter 2.402000 GHz Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) Freq Offse STATUS Align Now, All re 3DH5 Ant1 2441 RL 8F 500 DC enter Freq 2.441000000 GHz
PNO: Wide Freak Free Purisher Fr #Avg Type: RMS Avg|Hold: 100/100 Center Free 2.441000000 GH: Start Free STATUS Align Now, All requ 3DH5_Ant1_2480 Frequency

Date: July 25, 2024

Page: 39 / 65

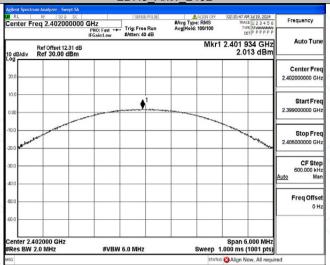
Appendix B: Maximum conducted output power

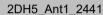
Test Result

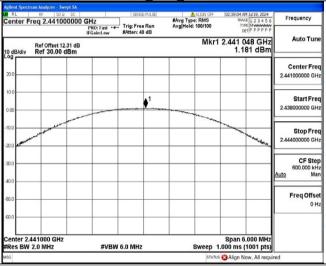

1 Oot 1 toodit						
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict	
9, 9	Ant1	2402	0.98	≤20.97	PASS	
DH5		2441	0.32	≤20.97	PASS	
		2480	-0.33	≤20.97	PASS	
2DH5	Ant1	2402	2.01	≤20.97	PASS	
		2441	1.18	≤20.97	PASS	
		2480	0.71	≤20.97	PASS	
3DH5	Ant1	2402	2.91	≤20.97	PASS	
		2441	2.22	≤20.97	PASS	
		2480	1.20	≤20.97	PASS	

Date: July 25, 2024

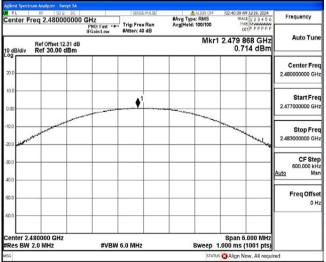
Page: 40 / 65

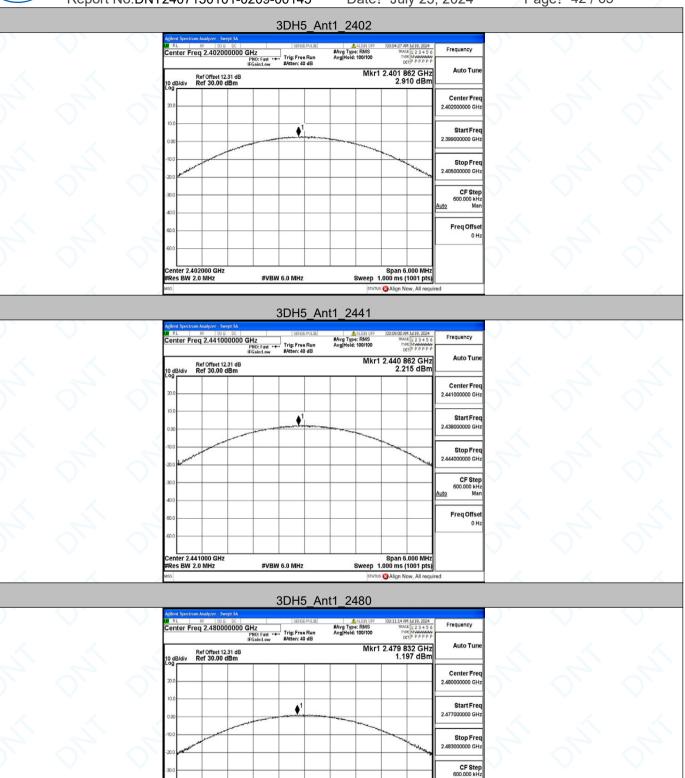

Test Graphs





Report No.DNT2407150101-0209-00145 Date: July 25, 2024 Page: 41 / 65


2DH5_Ant1_2402



2DH5_Ant1_2480

Page: 42/65 Report No.DNT2407150101-0209-00145 Date: July 25, 2024

#VBW 6.0 MHz

nter 2.480000 GHz es BW 2.0 MHz

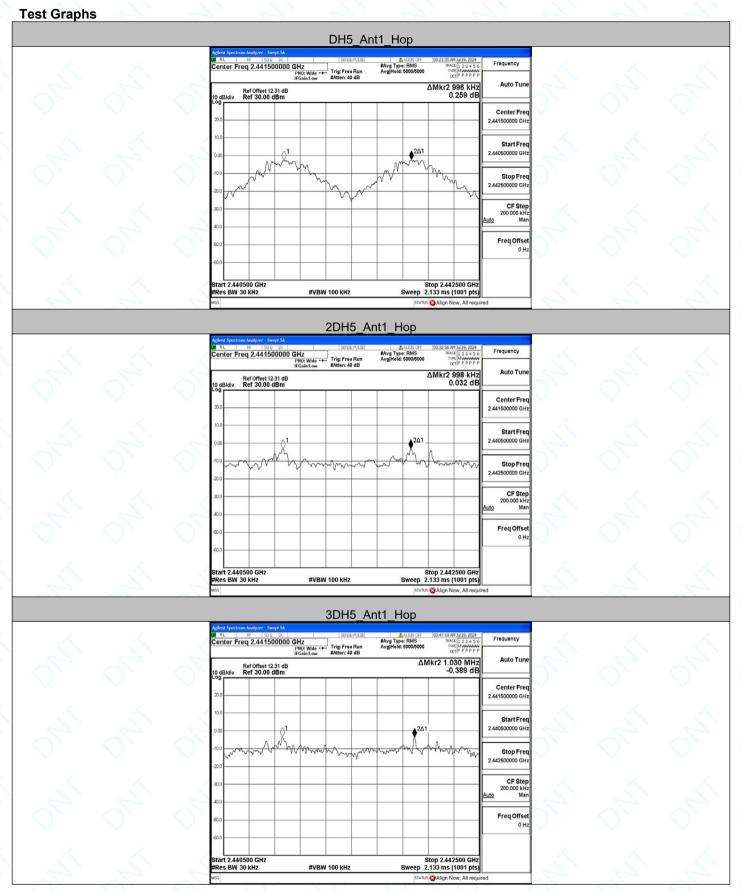
Freq Offse

Span 6.000 MHz Sweep 1.000 ms (1001 pts)

Date: July 25, 2024

Page: 43 / 65

Appendix C: Carrier frequency separation


Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	0.996	≥0.960	PASS
2DH5	Ant1	Нор	0.998	≥0.890	PASS
3DH5	Ant1	Нор	1.03	≥0.868	PASS

Date: July 25, 2024

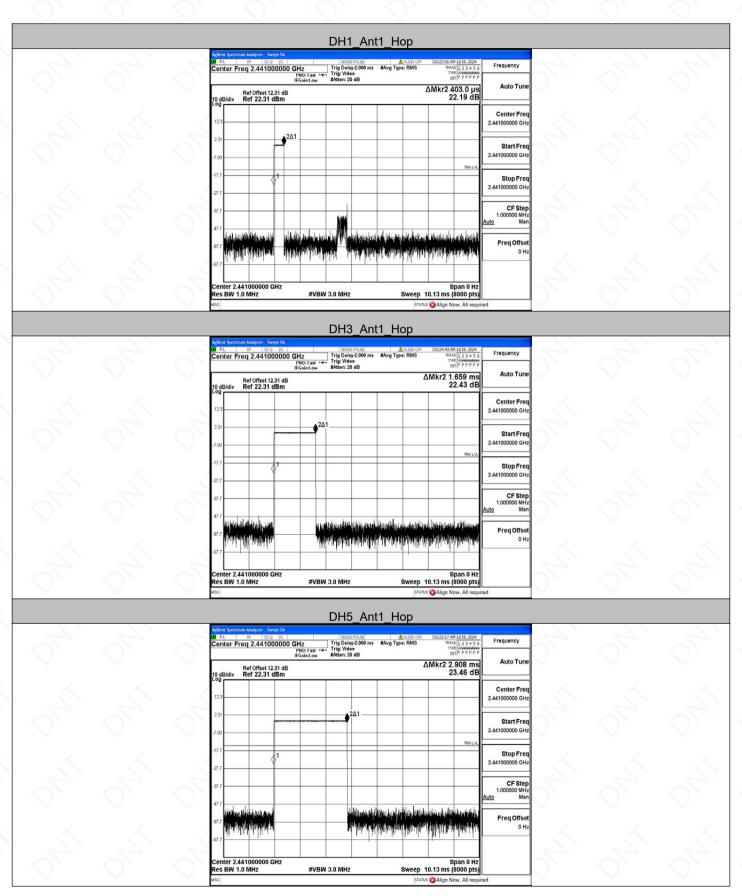
Page: 44 / 65

Date: July 25, 2024

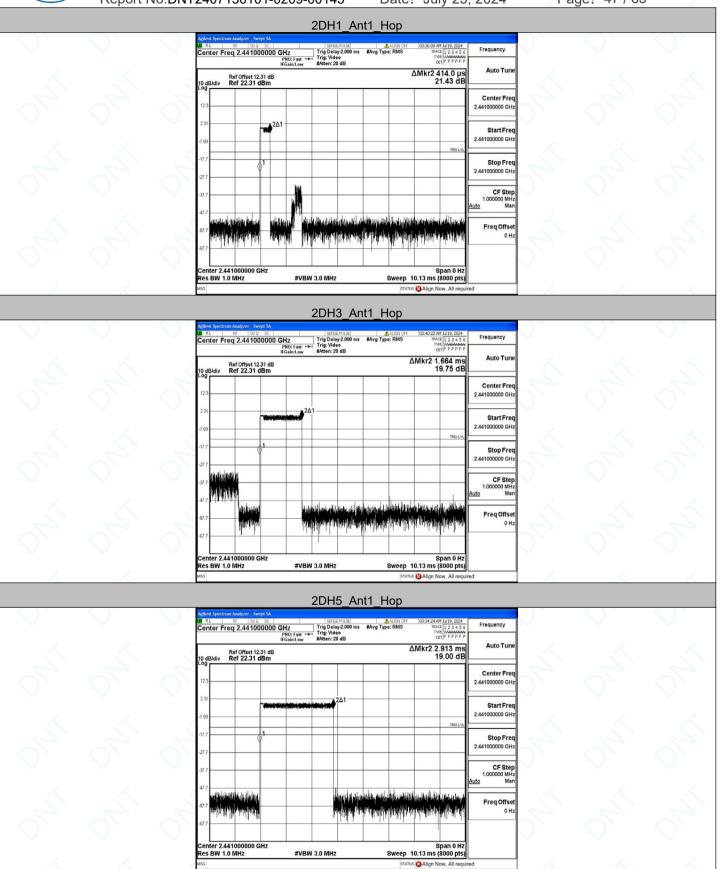
Page: 45 / 65

Appendix D: Dwell Time

Test Result


Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.403	320	0.129	≤0.4	PASS
DH3	Ant1	Нор	1.659	160	0.265	≤0.4	PASS
DH5	Ant1	Hop	2.908	106.67	0.31	≤0.4	PASS
2DH1	Ant1	Нор	0.414	320	0.132	≤0.4	PASS
2DH3	Ant1	Нор	1.664	160	0.266	≤0.4	PASS
2DH5	Ant1	Нор	2.913	106.67	0.311	≤0.4	PASS
3DH1	Ant1	Нор	0.415	320	0.133	≤0.4	PASS
3DH3	Ant1	Hop	1.666	160	0.267	≤0.4	PASS
3DH5	Ant1	Нор	2.916	106.67	0.311	≤0.4	PASS

Date: July 25, 2024


Page: 46 / 65

Test Graphs

Report No.DNT2407150101-0209-00145 Date: July 25, 2024 Page: 47 / 65

