ISED Certification Test Report

BEIJING INHAND NETWORKS TECHNOLOGY CO., LTD. INDUSTRIAL CELLULAR ROUTER MODEL: IR601-S, IR611-S, IR691-S IC: 11594A-IR611S

REPORT# 17WB1024358I Rev. 0 Mar. 13, 2018

Prepared for:

Beijing Inhand Networks Technology Co., Ltd. 101, West Wing, 11th Floor, No.101 Lize central Park, Wangjing Chaoyang District, Beijing 100102 China

Prepared By:

Washington International Technology Limited

ISED Certification Test Report

For the

BEIJING INHAND NETWORKS TECHNOLOGY CO., LTD. INDUSTRIAL CELLULAR ROUTER MODEL: IR601-S, IR611-S, IR691-S IC: 11594A-IR611S

WLL REPORT# 17WB1024358I Rev. 0 Mar. 13, 2018

Prepared by:

Tom wang

Tom Wang

Reviewed by:

Steven Jang

Steven yang

Abstract

This report has been prepared on behalf of Beijing Inhand Networks Technology Co., Ltd. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Spread Spectrum Transceiver under RSS-Gen Issue 4 & RSS-247 Issue 2 of the ISED Rules and Regulations. This Innovation, Science and Economic Development Canada (ISED) Certification Test Report documents the test configuration and test results for a Beijing Inhand Networks Technology Co., Ltd. Industrial Cellular Router.

And Testing was performed by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accepted by the A2LA, the A2LA-Lab Certificate Number is 4312.01, the FCC Accredited Lab. Designation Number: CN1194, the ISED-Registration No.: 21600-1.

The Industrial Cellular Router is an IEEE 802.11b/802.11g/802.11n compliant device and complies with the limits for a Direct Sequence Spread Spectrum Transmitter device under RSS-247 of the ISED Rules and Regulations.

Revision History	Reason	Date
Rev. 0	Initial Release	Mar. 13, 2018

WLL Report #17WB1024358I Rev. 0

Table of Contents

A	bstra	ct	. ii
1		Introduction	1
	1.1	Compliance Statement	1
	1.2	Test Scope Summary	1
	1.3	Contract Information	
	1.4	Test and Support Personnel	2
	1.5	Abbreviations	3
2		Equipment Under Test	4
	2.1	EUT Identification	4
	2.2	EUT Description	5
	2.3	Test Configuration	5
	2.4	Equipment Configuration	6
	2.5	Interface Cables	6
	2.6	Support Equipment	7
	2.7	EUT Modifications	7
	2.8	Testing Algorithm	7
	2.9	Test Location	7
	2.10	Measurements	7
	2.11	Measurement Uncertainty	7
3		Test Equipment	9
4		System Test Configuration	11
5		Duty Cycle of Test Signal and Measurement Methods	.12
	5.1	Duty Cycle	12
	5.2	Measurement Methods	
6		Test Results	.15
	6.1	RF Power Output	
	6.2	RF Power Spectral Density	20
	6.3	Occupied Bandwidth	
	6.4	Radiated Spurious Emissions	
	6.5	Conducted Out of Band Emission	94
	6.6	Band Edge Measurements (Radiated)1	
	6.7	Conducted Emissions – AC Mains Port Interface1	32

List of Tables

Table 1: Overview of Industrial Cellular Router, Equipment Under Test	4
Table 2: Equipment Configuration	6
Table 3: Interface Cables	6
Table 4: Expanded Uncertainty List	8
Table 5: Test Equipment List	
Table 6: RF Output Peak Power	
Table 7: RF Power Spectral Density	
Table 8: Occupied Bandwidth Results	35
Table 9: Radiated Emission Test Data	49
Table 10: Conducted Out of Band Emission	95
Table 11: Band Edge Measurements (Radiated)	.120
Table 12: Conducted Emission Test Data AC Mains	.133

List of Figures

Figure 1: 7	Test Configurati	on	б
-------------	------------------	----	---

1 Introduction

1.1 Compliance Statement

After the modifications listed in Section 2.7 were installed:

The Beijing Inhand Networks Technology Co., Ltd. Industrial Cellular Router complies with the limits for a Spread Spectrum Transceiver device under RSS-Gen Issue 4 & RSS-247 Issue 2 of the ISED Rules and Regulations.

1.2 Test Scope Summary

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2013 version of ANSI C63.10

Specific Description	Result	Modifications (Y/N)	Test Location
Conducted Emissions – AC Power Ports	Complied	N	Shenzhen UnionTrust Quality and Technology Co., Ltd.
RF Output Power	Complied	Ν	Shenzhen UnionTrust Quality and Technology Co., Ltd.
RF Power Spectral Density	Complied	N	Shenzhen UnionTrust Quality and Technology Co., Ltd.
Conducted Out of Band Emission	Complied	Ν	Shenzhen UnionTrust Quality and Technology Co., Ltd.
Radiated spurious emissions	Complied	Ν	Shenzhen UnionTrust Quality and Technology Co., Ltd.
Occupied Bandwidth	Complied	N	Shenzhen UnionTrust Quality and Technology Co., Ltd.
Band Edge Measurements (Radiated)	Complied	N	Shenzhen UnionTrust Quality and Technology Co., Ltd.
	Conducted Emissions – AC Power Ports RF Output Power RF Power Spectral Density Conducted Out of Band Emission Radiated spurious emissions Occupied Bandwidth Band Edge Measurements	IIConducted Emissions – AC Power PortsCompliedRF Output PowerCompliedRF Power Spectral DensityCompliedConducted Out of Band EmissionCompliedRadiated spurious emissionsCompliedOccupied BandwidthCompliedBand Edge MeasurementsComplied	Specific DescriptionResult(Y/N)Conducted Emissions – AC Power PortsCompliedNRF Output PowerCompliedNRF Power Spectral DensityCompliedNConducted Out of Band EmissionCompliedNRadiated spurious emissionsCompliedNOccupied BandwidthCompliedNBand Edge MeasurementsCompliedN

to comply with the requirements of ISED Regulation ICES-003 Issue 6 Class A(Verification) the test report has been issued by Washington Technology International Limited.

1.3 Contract Information

1.4

	Customer:	Beijing Inhand Networks Technology Co., Ltd.	
	101, West Wing, 11th Floor, No.101 Lize ce Wangjing Chaoyang District, Beijing 10010		
ļ	Test and Support Personnel		
	Warlen Song	Shenzhen UnionTrust Quality and Technology Co., Ltd.	
		Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109	
		Senior Test Engineer	

1.5 Abbreviations

Α	Ampere
ac	alternating current
AM	Amplitude Modulation
Amps	Amperes
b/s	bits per second
BW	BandWidth
CE	Conducted Emission
cm	Centimeter
CW	Continuous Wave
dB	decibel
dc	direct current
EMI	Electromagnetic Interference
EUT	Equipment Under Test
FM	Frequency Modulation
G	g iga - prefix for 10 ⁹ multiplier
Hz	Hertz
IF	Intermediate Frequency
k	kilo - prefix for 10 ³ multiplier
LISN	Line Impedance Stabilization Network
Μ	Mega - prefix for 10^6 multiplier
m	Meter
μ	m icro - prefix for 10 ⁻⁶ multiplier
NB	Narrowband
QP	Quasi-Peak
RE	Radiated Emissions
RF	Radio Frequency
rms	root-mean-square
SN	Serial Number
S/A	Spectrum Analyzer
V	Volt

2 Equipment Under Test

2.1 EUT Identification

The results obtained relate only to the item(s) tested.

Table 1: Overview of Industrial Cellular Router, Equipment Under Test

ITEM	DESCRIPTION	
Manufacturer:	Beijing Inhand Networks Technology Co., Ltd.	
IC Number:	11594A-IR611S	
Trade Mark:	N/A	
EUT Name:	Industrial Cellular Router	
Test Model:	IR611-S	
ISED Rule Parts:	RSS-247	
Frequency Range:	IEEE 802.11b/g/n(HT20): 2412 – 2462MHz	
	IEEE 802.11n (HT40): 2422 – 2452 MHz	
Maximum Output Power:	IEEE 802.11b: 20.24dBm	
	IEEE 802.11g: 24.08dBm	
	IEEE 802.11n (HT20): 23.88dBm	
	IEEE 802.11n (HT40): 23.18dBm	
Modulation:	Direct Sequence Spread Spectrum & Orthogonal Frequency Division Multiplexing	
Necessary Bandwidth:	IEEE 802.11b/g/n(HT20): 20 MHz	
	IEEE 802.11n (HT40): 40 MHz	
Keying:	Automatic	
Type of Information:	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)	
	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11n (HT20), HT40: OFDM (64QAM, 16QAM,	
	QPSK,BPSK)	
Number of Channels:	IEEE 802.11b/g/n(HT20): 11	
	IEEE 802.11n (HT40): 7	
Antenna Type	Sucker antenna	
Frequency Tolerance:	N/A	
Emission Type(s):	N/A	
Interface Cables:	None	
Power Source & Voltage:	DC 12V from AC adapter	
Sample Received Date:	Jan. 20, 2018	

WLL Report #17WB1024358I Rev. 0

Sample tested Date:	Jan. 21, 2018~ Mar. 12, 2018
---------------------	------------------------------

2.2 EUT Description

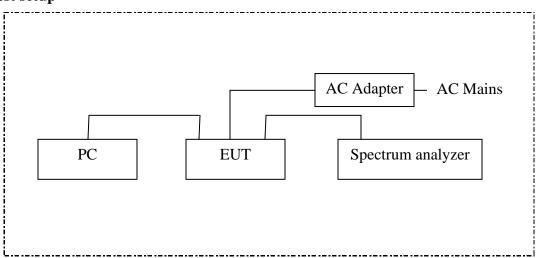
The Industrial Cellular Router is a network Router for household users. By connecting it to IP network through Ethernet interface or Wi-Fi, it can stream videos over the network to TV display panel via network cable connection.

Product Name: Industrial Cellular Router

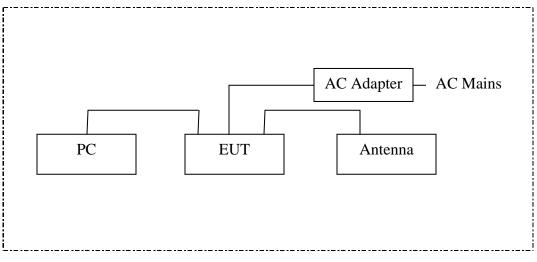
Model No.: IR601-S, IR611-S, IR691-S (These models are identical in interior structure, electrical circuits and components, and the differences as follows: software, the number of network ports and model name, declared by the manufacturer.)

Tested Model No.: IR611-S

EUT Rated Voltage: DC 12V from AC adapter


I/O Ports: Front Side: (1) RJ-45 Port*1; (2) SMA connection Port*4

2.3 Test Configuration


The Beijing Inhand Networks Technology Co., Ltd. Industrial Cellular Router, Equipment Under Test (EUT), was operated by DC 12V from AC adapter.

The EUT was configured with AC adapter, an antenna, a support PC with network cable. The EUT firmware/software was set up to control power, bit rate, and channel selection.

RF test setup

AC Conducted Emission & Radiated Emission test setup:

Figure 1: Test Configuration

2.4 Equipment Configuration

The EUT was set up as outlined in Radiated Emission Test Configuration photo. The EUT was comprised of the following equipment. (All Modules, PCBs, etc. listed were considered as part of the EUT, as tested.)

Name / Description	Model Number	Part Number	Serial Number	Revision
Industrial Cellular Router	IR611-S	N/A	N/A	N/A

2.5 Interface Cables

Table 3:	Interface	Cables
----------	-----------	--------

Port Identification	Connector Type	Cable Length	Shielded (Y/N)	Termination Point
WIFI Antenna	SMA	2.5m	Y	N/A
WIFI Antenna	SMA	2.5m	Y	N/A
4G Antenna	SMA-J	2.0m	Y	N/A
4G Antenna	SMA-J	2.0m	Y	N/A
Antenna cable	SMA	0.3m	Y	N/A
Antenna cable	SMA	0.3m	Y	N/A
Network cable	RJ45	1.5m	Ν	N/A

WLL Report #17WB1024358I Rev. 0

2.6 Support Equipment

No.	Support Equipment	Model/Part Number	Serial Number
1	Lenovo Notebook	B40-80	MP12NEQ6
2	AC Adaptor	KT10W120100CHD	N/A

The following support equipment was used during testing:

2.7 EUT Modifications

No modifications were performed in order to meet the test requirements:

2.8 Testing Algorithm

The Industrial Cellular Router was operated using and drivers.

2.9 Test Location

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109

2.10 Measurements

2.10.1 Measurement Method

All measurements were performed according to the 2013 version of ANSI C63.10 for testing compliance of a wide variety of unlicensed wireless devices

2.11 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

= standard uncertainty
= individual uncertainty elements
= the individual uncertainty element divisor based on the probability distribution
divisor $= 1.732$ for rectangular distribution
divisor $= 2$ for normal distribution
divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

where U	= expanded uncertainty
k	= coverage factor
Annex G)	$k \leq 2$ for 95% coverage (ANSI/NCSL Z540-2
u_c	= standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 4 below.

Scope	Expanded Uncertainty	
Conducted emission	\pm 3.80dB(9KHz-150KHz)	
Conducted emission	\pm 3.40dB(150KHz-30MHz)	
	±4.90dB(9KHz-30MHz)	
Uncertainty for Radiation Emission test	±4.70dB(30MHz-1GHz)	
in 3m chamber	±5.10dB(1GHz-18GHz)	
	±5.20dB(18GHz-26GHz)	
	±5.20dB(26GHz-40GHz)	

Table 4: Expanded Uncertainty List

3 Test Equipment

Table 5 shows a list of the test equipment used for measurements along with the calibration information.

Table 5: Test Equipment List

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Calibration interval
1	Receiver	R&S	ESR7/1316.3003K07- 101181-K3	Dec. 10, 2017	1 Year
2	Pulse Limiter	R&S	ESH3- Z2/0357.8810.54	Dec. 10, 2017	1 Year
3	LISN	R&S	ESH2-Z5/860014/024	Dec. 10, 2017	1 Year
4	LISN	ETS-Lindgren	3816/2SH/00201088	Dec. 10, 2017	1 Year
5	Test Software	Audix	e3		Version: 0323

Conducted Emission Test Equipment List

Radiated Test Equipment Lis

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Calibration interval
1	3M Chamber & Accessory Equipment	ETS- LINDGREN	3M/N/A	Dec. 20, 2015	3 Years
2	Receiver	R&S	ESIB26/100114	Dec. 10, 2017	1 Year
3	EXA Spectrum Analyzer	KEYSIGHT	N9010A/ MY51440197	Dec. 10, 2017	1 Year
4	Broadband Antenna	ETS- LINDGREN	3142E/00201891	Dec. 17, 2017	1 Year
5	Preamplifier	HP	8447F/2805A02960	Dec. 10, 2017	1 Year
6	Horn Antenna	ETS- LINDGREN	3117/00164202	Dec. 17, 2017	1 Year
7	Multi device Controller	ETS- LINDGREN	7006-001/00160105	N/A	N/A

WLL Report #17WB1024358I Rev. 0

8	Horn Antenna (Pre-amplifier)	ETS- LINDGREN	3116C-PA/00202652	Dec. 17, 2017	1 Year
9	Band Rejection Filter (2400MHz~2500M Hz)	Micro-Tronics	BRM50702/ G248	Jun. 21, 2017	1 Year
10	Test Software	Audix	e3/ Software Version: 9.160323		

RF Test Equipment List

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Calibration interval
1	EXA Spectrum Analyzer	KEYSIGHT	N9010A/ MY51440197	Dec. 10, 2017	1 Year
2	USB Wideband Power Sensor	KEYSIGHT	U2021XA/ MY55430035	Dec. 10, 2017	1 Year
3	Power Meter	Anritsu	ML2495A/1204003	Feb. 21, 2017	1 Year
4	Power Sensor	Anritsu	MA2411B/1126150	Feb. 21, 2017	1 Year

4 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, conducted and radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by an AC adapter. Only the worst case data were recorded in this test report.

For STBC modes (2Tx), there are two transmission antennas. Both Chain 1 and Chain 2 used at the same time and antenna ports have uniform output powers. The Chain 1 and Chain 2 antenna ports cannot be used alone.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

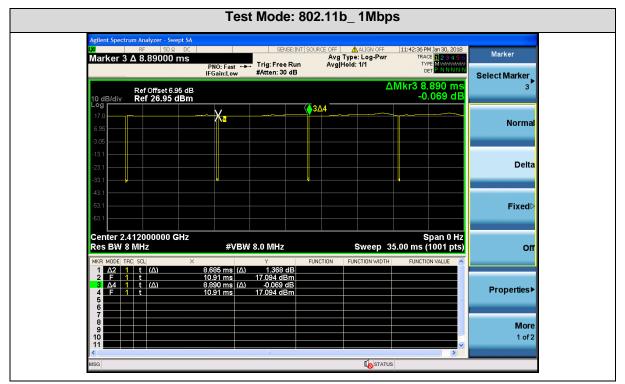
Frequency Band(GHz)	Mode	Antenna Port	Worst-case Orientation
2.4~2.4835	1TX SISO		Y-Portrait
	11/0100		Y-Portrait
	2TX STBC	Chain 1 + Chain 2	Y-Portrait

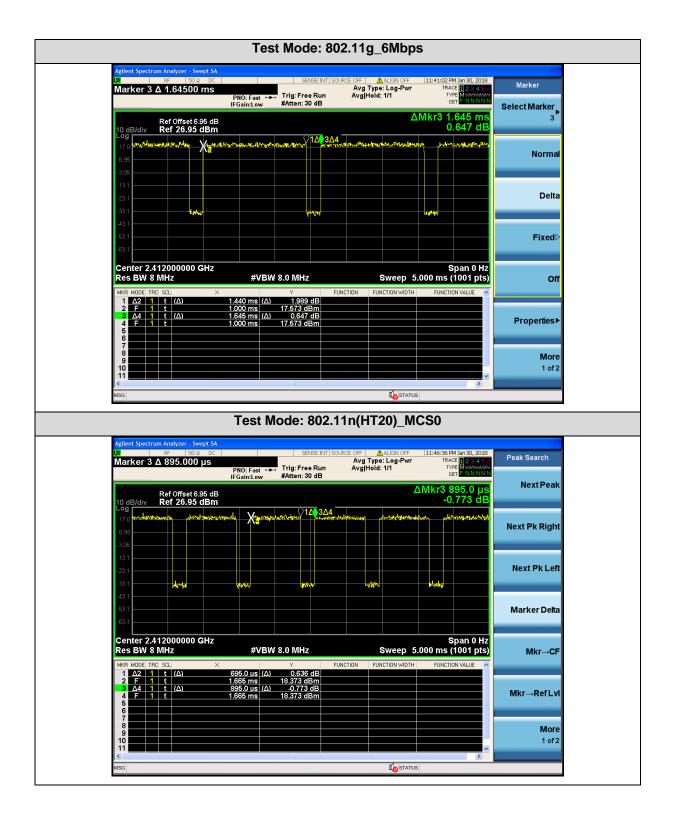
Worst-case data rates see table below:

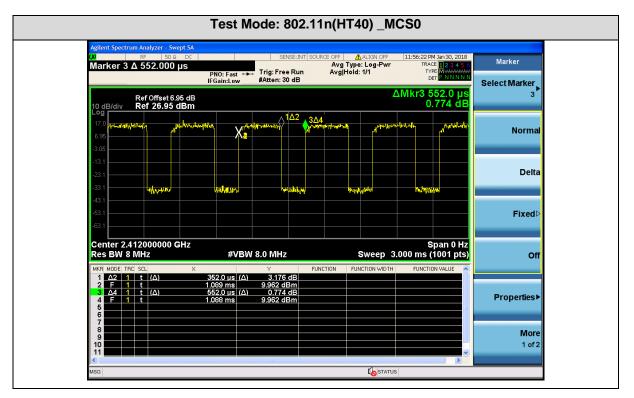
	Worst-case data rates				
Mode	SISO Mode		STBC Mode		
	Chain 1	Chain 2	Chain 1+2		
802.11b	1 Mbps	1 Mbps			
802.11g	6 Mbps	6 Mbps			
802.11n HT20			MCS 8		
802.11n HT40			MCS 8		

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.


5 Duty Cycle of Test Signal and Measurement Methods


5.1 Duty Cycle


Mode	Data rates (Mbps)	Transmission Duration T (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
802.11b	1Mbps	8.685	8.890	0.98	97.69	0.10	0.12
802.11g	1Mbps	1.440	1.645	0.88	87.54	0.58	0.69
802.11n(HT20)	MCS0	0.695	0.895	0.78	77.65	1.10	1.44
802.11n(HT40)	MCS0	0.352	0.552	0.64	63.77	1.95	2.84

Remark:

- 1. Duty cycle = On Time/ Period;
- 2. Duty Cycle factor = $10 * \log(1/\text{ Duty cycle})$
- 3. Period = Mkr3 Mkr1
- 4. Transmission Duration = Mkr2 Mkr1

5.2 Measurement Methods

KDB 558074 D01 DTS Meas Guidance v04

KDB 662911 D01 Multiple Transmitter Output v02r01

ANSI C63.10-2013

6 Test Results

6.1 **RF Power Output**

To measure the output power the unit was set to transmit on a low, high and middle channel. The output from the transmitter was connected to an attenuator and then to the input of a detector diode. The output of the detector diode was displayed on an oscilloscope. The trace deflection was recorded and the transmitter was replaced with a signal generator at the same frequency. The output of the signal generator was increased until the trace deflection was the same as it was with the transmitter. The signal from the generator was then connected to a power meter and the level was taken.

6.1.1 Limit

For systems using digital modulation in the 2400—2483.5MHz, The Peak output Power shall not exceed 1W (30dBm). The e.i.r.p. shall not exceed 4W (36dBm), except as fixed point-to-point systems.

6.1.2 Test Procedure(KDB 558074 D01 v04, Section 9.1.3)

1, Connected the EUT's antenna port to measure device by 10dB attenuator.

2, For IEEE 802.11b/g and IEEE802.11n HT20 and HT40 mode, use a PK or Average power meter which's bandwidth is 20MHz up to 40MHz and above 6dB bandwidth of signal to measure out each test modes' PK or Average output power.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

6.1.3 Test Data

The EUT complied with the ISED RSS-247 RF Power Output requirements.

Table 6 provides the test results for RF Power Output. (All the data attached was use the worst case data rate data)

6.1.4 Areas of Concern

None.

Table 6: RF Output Peak Power

Chain 1 and Chain 2 (SISO Mode)-Test Data

IEEE 802.11b

	Б		RF Output Peak Power (dBm)							
Channel	Freq. (MHz)	Chain		DSSS Data Rate						
			1 Mbps	2 Mbps	5.5Mbps	11 Mbps				
1	2412	1	19.59	19.31	19.26	19.23				
1	2712	2	19.46	19.35	19.32	19.21				
6	2437	1	19.47	19.34	19.22	19.13				
0	2437	2	19.25	19.12	19.02	19.07				
11	2462	1	20.24	20.18	20.09	19.99				
11	2402	2	19.83	19.69	19.49	19.41				

IEEE 802.11g

				RF Output Peak Power (dBm)							
Channel	Freq.	Chain	-	OFDM Data Rate							
	(MHz)		6	9	12	18	24	36	48	54	
			Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	
1	2412	1	23.75	23.53	23.46	23.41	23.35	23.28	23.16	23.22	
1	2112	2	23.25	23.17	23.09	23.01	22.88	22.75	22.70	22.62	
6	2437	1	23.80	23.62	23.51	23.48	23.39	23.31	23.22	23.17	
0	2137	2	23.36	23.21	23.18	23.11	23.02	22.97	22.83	22.76	
11	2462	1	24.08	23.88	23.76	23.54	23.36	23.33	23.29	23.31	
11	2102	2	23.69	23.51	23.46	23.39	23.31	23.16	23.25	23.17	

			RF Output Peak Power (dBm)								
Channel	Freq. (MHz)	Chain		OFDM Data Rate							
			MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
1	2412	1	23.19	23.11	23.04	22.98	22.85	22.76	22.61	22.46	
1	2712	2	22.92	22.87	22.76	22.69	22.61	22.53	22.41	22.30	
6	2437	1	23.29	23.18	23.11	23.02	22.91	22.83	22.65	22.72	
0	2737	2	23.01	22.89	22.63	22.45	22.57	22.48	22.31	22.39	
11	11 2462	19.57	23.88	23.69	23.54	23.69	23.58	23.47	23.39	23.26	
		2	23.39	23.31	23.27	23.05	23.13	23.19	23.28	23.02	

IEEE 802.11n (HT20)

IEEE 802.11(HT40)

	T			RF Output Peak Power (dBm)								
Channel Freq. (MHz)		Chain		OFDM Data Rate								
			MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
3	2422	1	22.91	22.76	22.63	22.58	22.43	22.37	22.31	22.26		
5	2122	2	21.83	21.65	21.71	21.60	21.52	21.38	21.33	21.20		
6	2437	1	22.97	22.87	22.61	22.46	22.41	22.36	22.23	22.09		
0	2137	2	22.03	21.88	21.76	21.53	21.59	21.43	21.36	21.31		
9	9 2452	1	23.18	23.02	23.09	22.89	22.81	22.68	22.53	22.40		
		2	22.33	22.20	22.11	22.03	21.87	21.79	21.71	21.68		

	Channel	RF C	Output Peal	c Power (dBm)	Limit	Pass/Fail	
Mode	/Freq. (MHz)	Chain 1 Power	Chain 2 Power	Total Power (Chain 1+2)	(dBm)		
	1/2412	23.19	22.92	26.07	30	Pass	
IEEE 802.11n (HT20)	6/2437	23.29	23.01	26.16	30	Pass	
	11/2462	23.88	23.39	26.65	30	Pass	
	3/2422	22.91	21.83	25.41	30	Pass	
IEEE 802.11n (HT40)	6/2437	22.97	22.03	25.54	30	Pass	
	9/2452	23.18	22.33	25.79	30	Pass	

Chain 1 + Chain 2 (MIMO Mode)-Test Data

Remark:

1. According exploratory test, EUT will have maximum output power as above bolded data rate, so those data rate were used for all test.

2. Total Power (Chain 1+2) = $10*\log[(10^{Chain 1/10})+(10^{Chain 2/10})]$

3. Directional gain and the maximum conducted output power see table below:

Frequency	Chain 1 Antenna Gain (dBi)	Chain 2 Antenna Gain (dBi)	Directional gain (dBi)	Peak Power Limits (dBm)							
2.4 GHz	2	2	2	30							
NOTE: All transmit s	NOTE: All transmit signals are uncorrelated with each other.										
The directiona	The directional gain = $G_{ANT} = 2dBi$										

	Channel		RF Outpu	t Average Po	wer (dBm)	
Mode	/Freq.	Measure	ed Power	Power with	Total Power	
	(MHz)	Chain 1	Chain 2	Chain 1	Chain 2	(Chain 1+2)
	1/2412	16.77	16.28	16.57	16.08	
IEEE 802.11b	6/2437	16.47	15.94	16.27	15.74	
	11/2462	17.33	16.70	17.13	16.50	
	1/2412	16.69	15.71	15.53	14.55	
IEEE 802.11g	6/2437	16.79	15.97	15.63	14.81	
	11/2462	17.41	16.73	16.25	15.57	
	1/2412	15.06	15.25	12.86	13.05	15.97
IEEE 802.11n (HT20)	6/2437	15.05	15.53	12.85	13.33	16.11
()	11/2462	16.61	16.14	14.41	13.94	17.19
	3/2422	14.66	13.81	10.75	9.90	13.36
IEEE 802.11n (HT40)	6/2437	14.69	14.04	10.78	10.13	13.48
	9/2452	14.99	14.93	11.08	11.02	14.06
Remark	•					

RF Output Average Power

Remark:

1. All the data attached was use the worst case data rate.

2. Power with Duty Factor = Measured Power + Duty Cycle Factor.(The Duty Cycle Factor See Section 5.1)

3. Total Power (Chain 1+2) = $10*\log[(10^{Chain 1/10})+(10^{Chain 2/10})]$.

6.2 **RF Power Spectral Density**

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

6.2.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.2.2 Test Procedure(KDB 558074 D01 v04, Section 10.2)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.2.3 Test Data

The EUT complied with the RSS-247 RF Power Spectral Density requirements.

Table 7 provides the test results for RF Power Spectral Density. (All the data attached was use the worst case data rate data)

6.2.4 Areas of Concern

None.

	Channel		PSD (dBn	n)			
Mode	Channel /Freq.	SISO	Mode	STBC Mode	Limit	Pass/Fail	
	(MHz)	Chain 1 PSD	Chain 2 PSD	Total PSD (Chain 1+2)	(dBm)		
	1/2412	-10.975	-9.902	/	8	Pass	
IEEE 802.11b	6/2437	-10.760	-10.362	/	8	Pass	
	11/2462	-8.410	-9.335	/	8	Pass	
	1/2412	-9.653	-14.178	/	8	Pass	
IEEE 802.11g	6/2437	-9.358	-9.149	/	8	Pass	
	11/2462	-8.332	-9.861	/	8	Pass	
	1/2412	-9.444	-10.301	-6.84	8	Pass	
IEEE 802.11n (HT20)	6/2437	-10.189	-9.769	-6.96	8	Pass	
	11/2462	-9.058	-7.693	-5.31	8	Pass	
	3/2422	-12.624	-12.495	-9.55	8	Pass	
IEEE 802.11n (HT40)	6/2437	-12.743	-12.439	-9.58	8	Pass	
	9/2452	-11.723	-13.681	-9.58	8	Pass	

Table 7: RF Power Spectral Density

Remark:

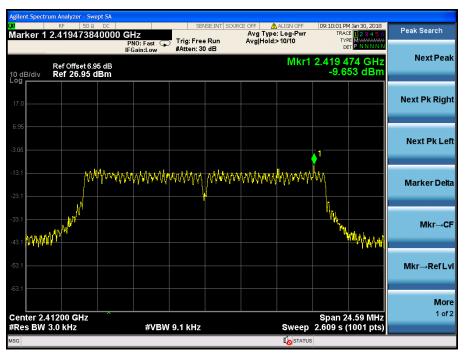
1.

All the data attached was use the worst case data rate. Total PSD (Chain 1+2) = $10*\log[(10^{Chain 1/10})+(10^{Chain 2/10})]$ 2.

Chain 1-Test plot as follows

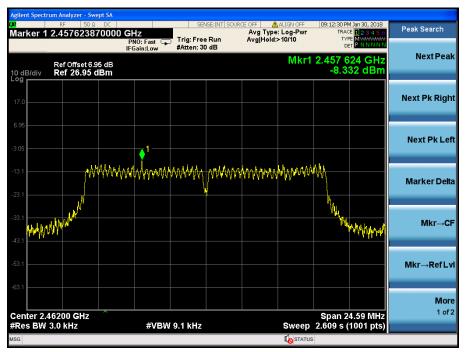
Test Mode: IEEE 802.11b TX Test CH1: 2412MHz

Test CH6: 2437MHz

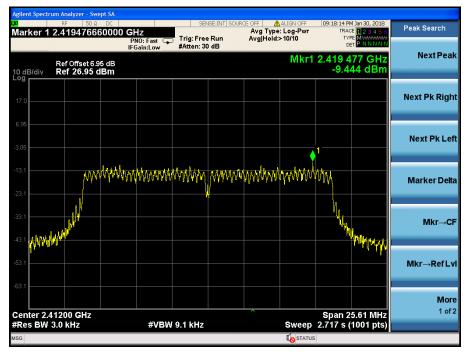


Test CH11: 2462MHz

Test Mode: IEEE 802.11g TX


Test CH1: 2412MHz

Test CH6: 2437MHz



Test CH11: 2462MHz



Test Mode: IEEE 802.11n (HT20) TX


Test CH1: 2412MHz

Test CH6: 2437MHz

Test CH11: 2462MHz

Test Mode: IEEE 802.11n (HT40) TX


Test CH3: 2422MHz

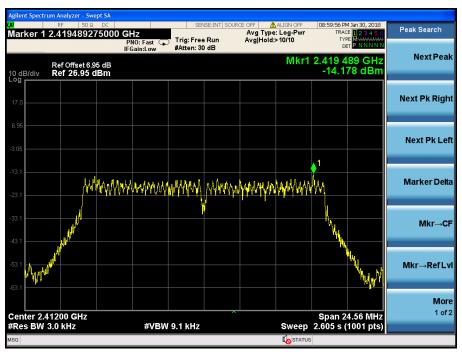
Test CH6: 2437MHz

Test CH9: 2452MHz

Chain 2-Test plot as follows

Test Mode: IEEE 802.11b TX Test CH1: 2412MHz

Test CH6: 2437MHz

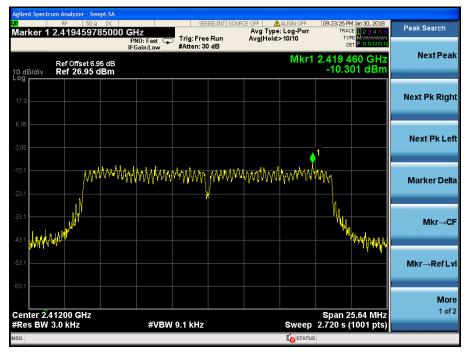


Test CH11: 2462MHz

Test Mode: IEEE 802.11g TX Test

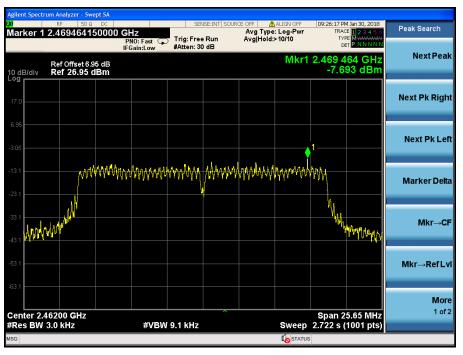
CH1: 2412MHz

Test CH6: 2437MHz

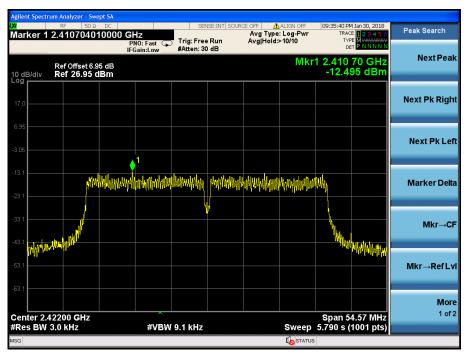


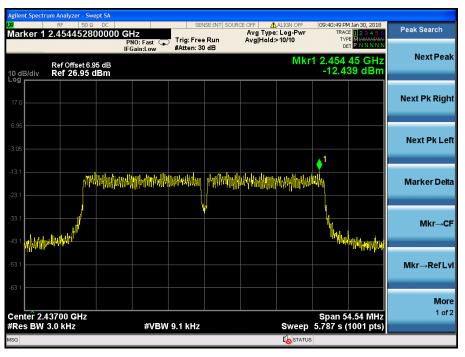
Test CH11: 2462MHz

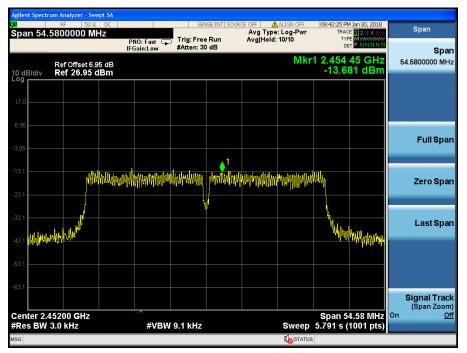



Test Mode: IEEE 802.11n (HT20) TX

Test CH1: 2412MHz


Test CH6: 2437MHz




Test Mode: IEEE 802.11n (HT40) TX

Test CH3: 2422MHz

Test CH9: 2452MHz

6.3 Occupied Bandwidth

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

6.3.1 Limit

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz

6.3.2 Test Procedure(KDB 558074 D01 v04, Section 8.1)

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3.3 Test Data

The EUT complied with the RSS-247 Issue 2 & RSS-Gen Issue 4 Occupied bandwidth requirements.

Table 8 provides the test results for occupied bandwidth. (All the data attached was use the worst case data rate as in table 6)

6.3.4 Areas of Concern

None.

Mode	Channel /Freq.	6dB BW	/ (MHz)	OBW (MHz)		6dB BW	Pass/Fail
	(MHz)	Chain 1	Chain 2	Chain 1	Chain 2	Limit	1 ass/1 an
	1/2412	10.10	10.05	12.273	12.324	> 500 kHz	Pass
IEEE 802.11b	6/2437	10.10	10.07	12.313	12.385	> 500 kHz	Pass
	11/2462	10.10	10.07	12.651	12.377	> 500 kHz	Pass
	1/2412	16.39	16.37	16.631	16.557	> 500 kHz	Pass
IEEE 802.11g	6/2437	16.39	16.38	16.739	16.618	> 500 kHz	Pass
	11/2462	16.39	16.38	18.399	16.622	> 500 kHz	Pass
	1/2412	17.07	17.09	17.677	17.618	> 500 kHz	Pass
IEEE 802.11n (HT20)	6/2437	17.07	17.09	17.711	17.657	> 500 kHz	Pass
	11/2462	17.13	17.10	18.214	17.679	> 500 kHz	Pass
	3/2422	36.13	36.38	36.296	36.264	> 500 kHz	Pass
IEEE 802.11n (HT40)	6/2437	36.15	36.36	36.336	36.287	> 500 kHz	Pass
	9/2452	36.13	36.39	36.461	36.329	> 500 kHz	Pass

Table 8: Occupied Bandwidth Results

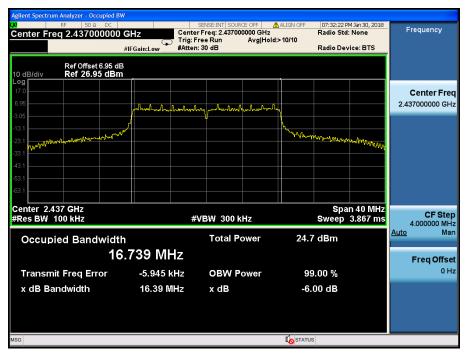
Remark:

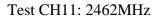
1. All the data attached was use the worst case data rate.

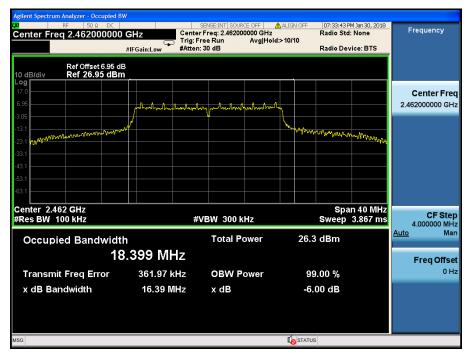
Chain 1-Test plot as follows

Test Mode: IEEE 802.11b TX

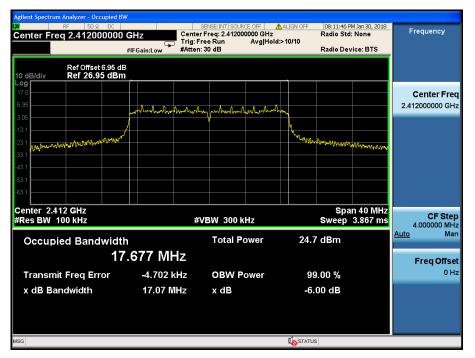
Test CH1: 2412MHz

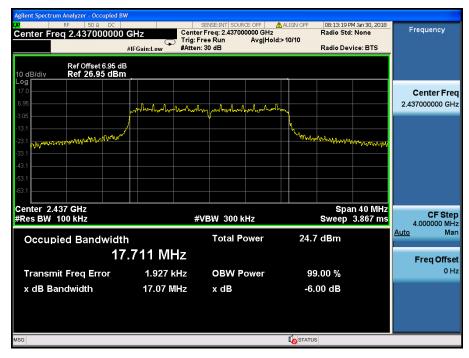




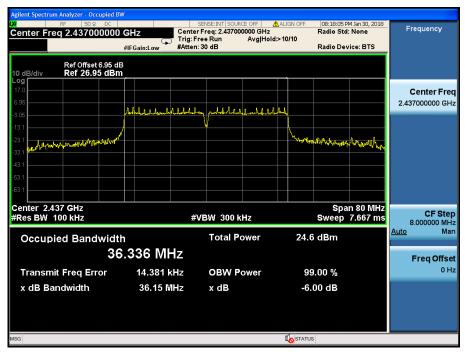

Test Mode: IEEE 802.11g TX

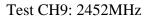
Test CH1: 2412MHz

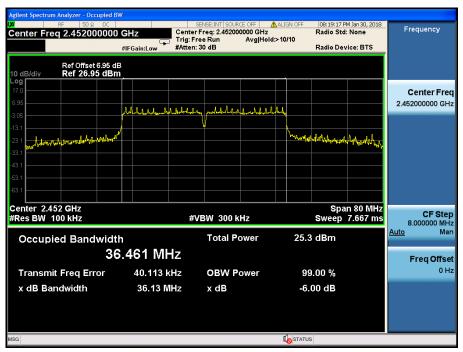

Agilent Spectrum Analyzer - Occupied B	W	SENSE:INT SOURCE OFF	ALIGN OFF 07:24:1	8 PM Jan 30, 2018	
Center Freq 2.412000000	Trig: F	r Freq: 2.412000000 GHz Free Run Avg Hol h: 30 dB	Radio 5 d:>10/10	Std: None Std: BTS	Frequency
Ref Offset 6.95 d 10 dB/div Ref 26.95 dBr Log					
17.0 6.95 -3.05	palial mark	my mulasuloundreallaselline	ling		Center Freq 2.412000000 GHz
-13.1 -23.1 -33.1	مرم مراجع		how wanter	MMM Mark	
-43.1 -63.1					
Center 2.412 GHz #Res BW 100 kHz	#	VBW 300 kHz		oan 40 MHz p 3.867 ms	CF Step 4.000000 MHz
Occupied Bandwidt	_h 6.631 MHz	Total Power	24.7 dBm		<u>Auto</u> Man Freq Offset
Transmit Freq Error	-19.562 kHz	OBW Power	99.00 %		0 Hz
x dB Bandwidth	16.39 MHz	x dB	-6.00 dB		
MSG			I o status		



Test Mode: IEEE 802.11n (HT20) TX Test CH1: 2412MHz

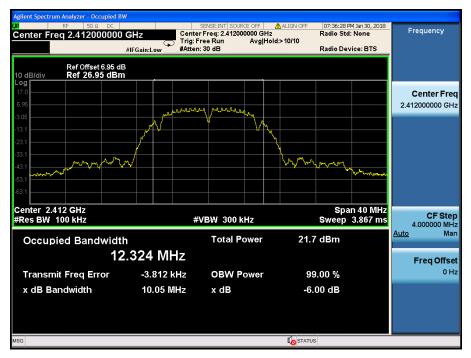



Agilent Spectrum Analyzer - Occupied W RF 50 Q DC Center Freq 2.46200000	0 GHz Cente	SENSE:INT SOURCE OFF r Freq: 2.462000000 GHz ree Run Avg Hol : 30 dB	Radio d:>10/10	06 PM Jan 30, 2018 Std: None Device: BTS	Frequency
Ref Offset 6.95	dB				
Log 17.0 6.95 		ng untrudion theodownthan	bony		Center Freq 2.462000000 GHz
-13.1 -23.1 WMMMMMMMMMMMMM	work		u harder and	᠕ᡊᡪ᠊ᢦᠰᡡᢦᡶᢦᠯᠰ	
-33.1 -43.1 -63.1					
-63.1			S S	pan 40 MHz	
#Res BW 100 kHz		#VBW 300 kHz		p 3.867 ms	CF Step 4.000000 MHz <u>Auto</u> Man
Occupied Bandwic	^{ith} 8.214 MHz	Total Power	26.4 dBm		Freq Offset
Transmit Freq Error	58.633 kHz	OBW Power	99.00 %		0 Hz
x dB Bandwidth	17.13 MHz	x dB	-6.00 dB		
MSG			STATUS		

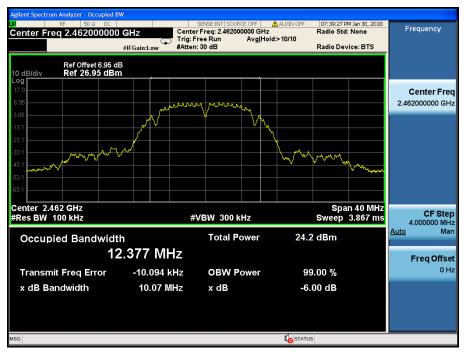

Test Mode: IEEE 802.11n (HT40) TX

Test CH3: 2422MHz

Agilent Spectrum Analyzer - Occupied B VI RF 50 Q DC Ref Offset 6.95 dB	Cente	r Freq: 2.422000000 GHz	Ra	8:16:39 PM Jan 30, 2018 adio Std: None	Amptd/Y S	Scale
		ree Run Avg Hol n: 30 dB		adio Device: BTS	Y Axis	Unit
Ref Offset 6.95 df 10 dB/div Ref 26.95 dBm						dBm
Log 17.0 6.95					Ref Lvi	Offset 6.95 dB
-3.05	Artulated and a second and a se	on our hall all all and the second of the second	L-A-A.			
-23.1 -33.1 Work land way way of the and the first of the	4			whomogene two and they		
-43.1						ernal eamp►
						Off
Center 2.422 GHz #Res BW 100 kHz	#	VBW 300 kHz	S	Span 80 MHz weep 7.667 ms	Ref Po	sition
Occupied Bandwidt	h	Total Power	24.6 d	Bm	<u>Top</u> Ctr	Bot
	.296 MHz				Auto S	caling
Transmit Freq Error	6.298 kHz	OBW Power	99.00	0 %	On Auto St	<u>Off</u>
x dB Bandwidth	36.13 MHz	x dB	-6.00	dB		
						More
						2 of 2
MSG			STATUS			

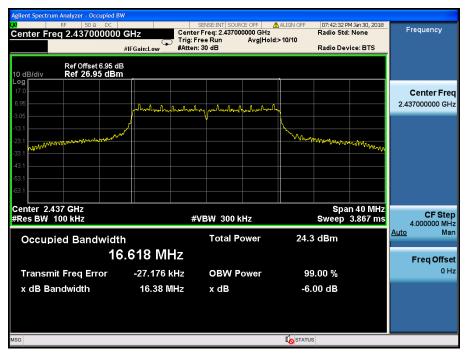


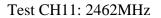



Chain 2-Test plot as follows

Test Mode: IEEE 802.11b TX

Test CH1: 2412MHz



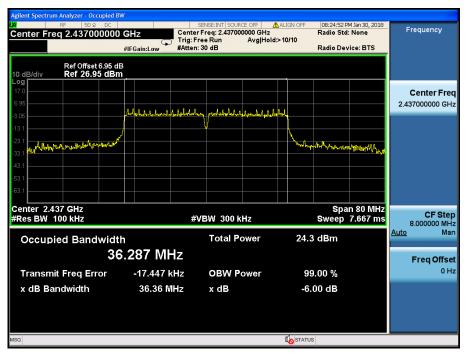


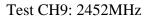
Test Mode: IEEE 802.11g TX

Test CH1: 2412MHz


Agilent Spectrum Analyzer - Occupied B RF 50 Q DC Center Freq 2.412000000	GHz Center Trig: F		Radio d:>10/10	:00 PM Jan 30, 2018 Std: None	Frequency
Ref Offset 6.95 dl	#IFGain:Low #Atten	: 30 dB	Radio	Device: BTS	
10 dB/div Ref 26.95 dBn			_		
Log 17.0 6.95		ng what have have have have have have have have	Λ		Center Freq 2.412000000 GHz
-3.05 -13.1 -23.1			A About the state		
-23.1 -33.1 allowman way war www.				munhunha	
-43.1					
-63.1					
Center 2.412 GHz #Res BW 100 kHz	#	/BW 300 kHz		span 40 MHz ep 3.867 ms	CF Step 4.000000 MHz
Occupied Bandwidt	h	Total Power	23.6 dBm	1	<u>Auto</u> Man
16	6.557 MHz				Freq Offset
Transmit Freq Error	-30.405 kHz	OBW Power	99.00 %		0 Hz
x dB Bandwidth	16.37 MHz	x dB	-6.00 dE	3	
			1		
MSG			STATUS		

Test Mode: IEEE 802.11n (HT20) TX Test CH1: 2412MHz


Center Freq 2.437000000				08:09:46 PM Jan 30, 2018 Radio Std: None Radio Device: BTS		Frequency
Ref Offset 6.95 dl 10 dB/div Ref 26.95 dBn						
- 09 17.0 6.95 3.05	on having his her her	way our produced and and an	Anny			Center Fre 2.437000000 GF
13.1 23.1 33.1	/			antra hing	Muhnunn	
43.1						
Center 2.437 GHz Res BW 100 kHz	#	VBW 300 kHz			n 40 MHz 3.867 ms	CF St e 4.000000 M
Occupied Bandwidt 17	_h 7.657 MHz	Total Power	24.0	ð dBm		<u>Auto</u> M Freg Offs
Transmit Freq Error	-22.490 kHz	OBW Power	9	9.00 %		. 01
x dB Bandwidth	17.09 MHz	x dB	-6	00 dB		
G			I N STATU	s		


Agilent Spectrum Analyzer - Occupied X RF 50 Q DC Center Freq 2.46200000) GHz Center	SENSE:INT SOURCE OFF		08:08:29 PM Jan 30, 2 Radio Std: None	018 Save
	#IFGain:Low #Atten	: 30 dB		Radio Device: BTS	State►
Ref Offset 6.95 d 10 dB/div Ref 26.95 dB Log					
6.95	windrasher here have here here here here here here here he	a pantardan fantardar	Anny		Trace (+ State)
-3.05	Nord			1	
-23.1 000000000000000000000000000000000000				alwankerere	MA
-43.1					Data
-63.1					(Export) ► Trace 1
Center 2.462 GHz #Res BW 100 kHz	#	VBW 300 kHz		Span 40 N Sweep 3.867	
Occupied Bandwid	th	Total Power	25.4	4 dBm	Image
1	7.679 MHz				
Transmit Freq Error	-21.154 kHz	OBW Power	99	9.00 %	
x dB Bandwidth	17.10 MHz	x dB	-6.	.00 d B	
MSG				s	

Test Mode: IEEE 802.11n (HT40) TX

Test CH3: 2422MHz

Agilent Spectrum Analyzer - Occupied E Off RF 50 2 DC Center Freq 2.422000000	S	Freq: 2.422000000 GHz ee Run Avg Hol	ALIGN OFF 08:23:44 PM Radio Std: N d:>10/10 Radio Devic	lone Frequency
Ref Offset 6.95 d 10 dB/div Ref 26.95 dBr			_	
Log 17.0 6.95 	fulplater at a state	y ronladylalystyles, and algebra	helbed.	Center Fre 2.422000000 GH
-13.1 -23.1 -33.1 Mark July and an and a start and a			L. L. March Marth and Martin and	Marth4 _{1-vte}
-63.1				
Center 2.422 GHz #Res BW 100 kHz	#V	'BW 300 kHz	Span Sweep 7	80 MHz .667 ms 8.000000 MH
Occupied Bandwid	.h 6.264 MHz	Total Power	23.8 dBm	Auto Ma Freg Offse
Transmit Freq Error	-23.098 kHz	OBW Power	99.00 %	0 H
x dB Bandwidth	36.38 MHz	x dB	-6.00 dB	
MSG				

6.4 Radiated Spurious Emissions

6.4.1 Limits

Radiated emissions that fall in the restricted bands must comply with the general emissions limits in RSS-Gen Issue 4, Section 6.13/8.9/8.10 as below table. Other emissions shall be at least 20 dB below the highest level of the desired power.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
30MHz-1000 MHz	120kHz	>30 kHz
>1000 MHz	1 MHz	<30 Hz

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. The high frequency, which started from 10 to26.5GHz, which above 10GHz are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured was not reported.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20dB.

6.4.2 Test Procedure(KDB 558074 D01 v04, Section 12.1 and Section12.2.5.3)

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.10-2013. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

6.4.3 Test Data

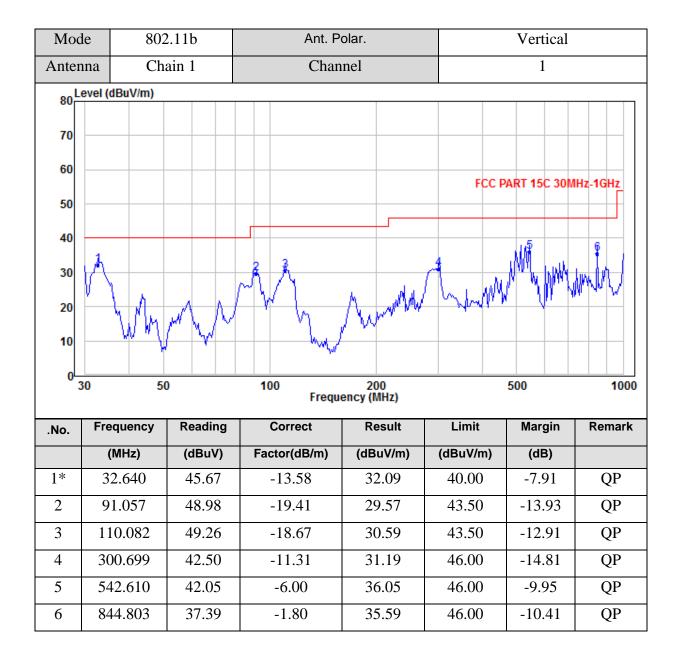
The EUT complied with the RSS-Gen Issue 4 Radiated Spurious Emissions requirements. Table 9 provide the test results for Radiated Spurious Emissions. (All the data attached was use the worst case data rate as in table 6)

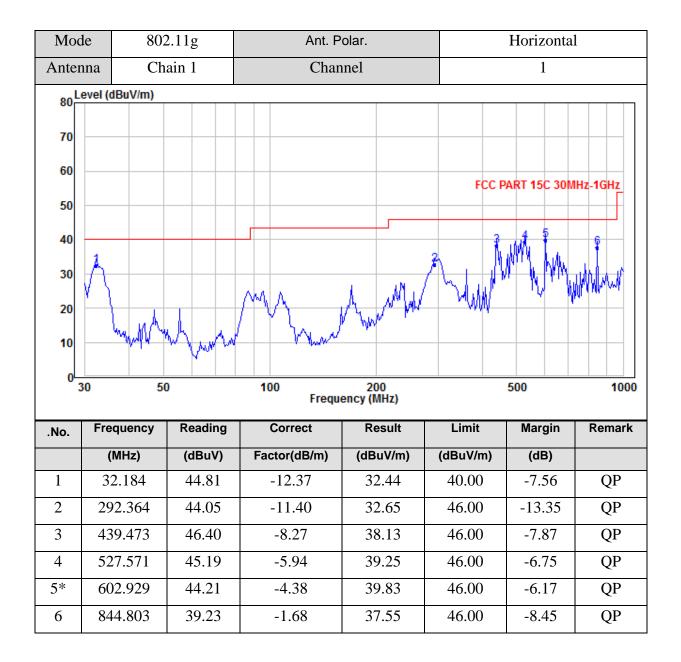
6.4.4 Areas of Concern

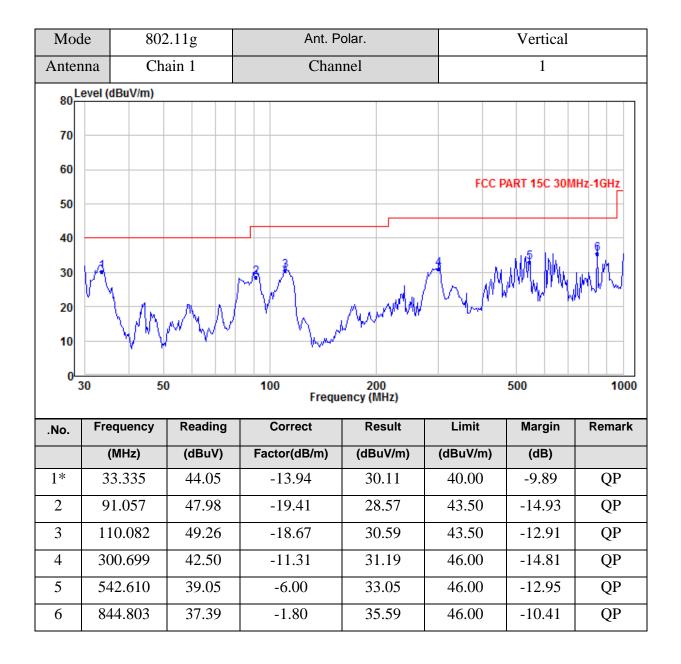
None

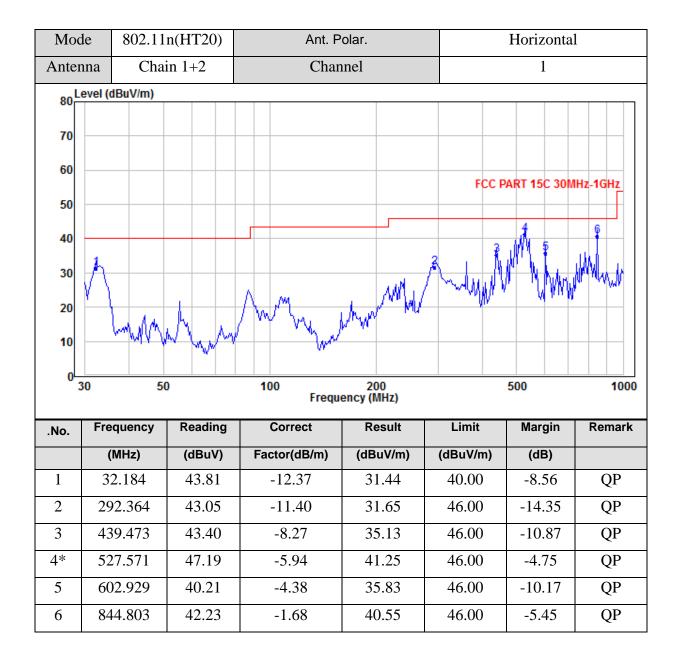
Table 9: Radiated Emission Test Data

Radiated Emission Test Data (Below 30 MHz)


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


Radiated Emission Test Data (Above 18 GHz)


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.


Mod	Mode 802.11b		Ant. P		Horizontal			
Anter						1		
80 <mark>L</mark>	evel (dBuV/m)							
70								
60					FCC P	ART 15C 30N	IHz-1GHz	
50								
40					t.			
30	A			- 2	AUM	MWY WAY	MAN AN AV	
20	V \		MA	A MAN	C WAMP'	, n N	la marte	
	LAM	the and		VWW				
10	¥+	WWW.						
0	30 50	0	100	200		500	1000	
	_			ency (MHz)				
.No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	32.184	43.81	-12.37	31.44	40.00	-8.56	QP	
2	235.135	43.10	-13.55	29.55	46.00	-16.45	QP	
3	292.364	42.05	-11.40	30.65	46.00	-15.35	QP	
4	439.473	46.40	-8.27	38.13	46.00	-7.87	QP	
5	527.571	43.19	-5.94	37.25	46.00	-8.75	QP	
6*	844.803	42.23	-1.68	40.55	46.00	-5.45	QP	

Radiated Emission Test Data (30 MHz~1 GHz Worst Case)

