SGS

SGS-CSTC Standards Technical Services Ltd.

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM141100603201 Page: 1 of 94

FCC REPORT

Application No:	SZEM1411006032CR
Applicant:	WOOX Innovations Ltd.
Manufacturer:	WOOX Innovations Ltd.
Factory:	Arts Electronics Co., Ltd.
Product Name:	Spotify Connect Multiroom Speaker
Model No.(EUT):	SW750M/zz, where zz=07, 17, 27, 37, 85 (different exported countries.)
Add Model No.:	SW700M/zz, where zz=07, 17, 27, 37, 85 (different exported countries.)
Trade Mark:	PHILIPS
FCC ID:	2AANUSW7X0M
Standards:	47 CFR Part 15, Subpart C (2013)
Date of Receipt:	2014-11-04
Date of Test:	2014-11-06 to 2014-11-17
Date of Issue:	2014-11-19
Test Result:	PASS *

.* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM141100603201 Page: 2 of 94

2 Version

Revision Record					
Version	Chapter	Date	Modifier	Remark	
00		2014-11-19		Original	

Authorized for issue by:		
Tested By	Eric Fu (Eric Fu) /Project Engineer	2014-11-17
Prepared By	Link Liang) /Clerk	2014-11-19
Checked By	(Kevin Feng) /Reviewer	2014-11-20 Date

Report No.: SZEM141100603201 Page: 3 of 94

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01 v03r02	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	KDB558074 D01 v03r02	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	KDB558074 D01 v03r02	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r02	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r02	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Remark:

Model No.: SW700M/zz, SW750M/zz, where zz=07, 17, 27, 37, 85 (different exported countries.)

Since the electrical circuit design, layout and RF full module (stand-alone configuration) were identical for all above models. With particular emphasis RF module had the radio frequency circuitry shielded and contain power supply regulation on the module.

Only different on the model number, external AC-DC adapter, and output of audio amplifier (non-RF circuitry, controlled by software).

AC adapter:	Model:S018KU1500100
(For SW700M/zz)	INPUT:AC 100-240V~50/60Hz 500mA OUTPUT:DC15V=1000mA
AC adapter:	Model:S032BU1500200
(For SW750M/zz)	INPUT:AC 100-240V~50/60Hz 900mA OUTPUT:DC15V == 2000mA

So the Model SW750M/37 was full tested, and SW700M/37 only was additional tested AC Power Line Conducted Emission and Radiated Spurious Emissions.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 4 of 94

4 Contents

			Page
1	CO	VER PAGE	
2	VEF	RSION	
3	TES	ST SUMMARY	
4	CO	NTENTS	
5	GE	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	TES	ST RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.		
	6.8.		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	

Report No.: SZEM141100603201 Page: 5 of 94

5 General Information

5.1 Client Information

Applicant:	WOOX Innovations Ltd.
Address of Applicant:	5/F., Philips Electronics Building, 5 Science Park East Avenue, Hong Kong Science Park, Shatin, New Territorries, Hong Kong
Manufacturer:	WOOX Innovations Ltd.
Address of Manufacturer:	5/F., Philips Electronics Building, 5 Science Park East Avenue, Hong Kong Science Park, Shatin, New Territorries, Hong Kong
Factory:	Arts Electronics Co., Ltd.
Address of Factory:	NO. 1, SHANGXING LU, SHANGJIAO COMMUNITY, CHANGAN TOWN, DONGGUAN CITY, GUANGDONG PROVINCE, CHINA

5.2 General Description of EUT

Product Name:	Spotify Connect Multiroom Speaker
Model No.:	SW700M/zz, where zz=07, 17, 27, 37, 85 (different exported countries.) SW750M/zz, where zz=07, 17, 27, 37, 85 (different exported countries.)
Trade Mark:	PHILIPS
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM,QPSK,BPSK)
Sample Type:	Fixed production
Test Power Grade:	13 provided by manufacturer
Test Software of EUT:	DOS command provided by manufacturer
Antenna Type and Gain:	Type : Integral Gain :0dBi
AC adapter: (For SW700M/ZZ)	Model:S018KU1500100 INPUT:AC 100-240V~50/60Hz 500mA OUTPUT:DC 15V=1000mA
AC adapter: (For SW750M/ZZ)	Model:S032BU1500200 INPUT:AC 100-240V~50/60Hz 900mA OUTPUT:DC15V == 2000mA
DC Cable:	175cm

Report No.: SZEM141100603201 Page: 6 of 94

Operation Frequency each of channel(802.11b/g/n HT20)												
Channel	Fr	equency	Channe	I Frequency	Channel	Fre	Frequency		Frequency		nel	Frequency
1	24	412MHz	4	2427MHz	7	244	42MHz	10)	2457MHz		
2	24	417MHz	5	2432MHz	8	244	47MHz	11		2462MHz		
3	24	422MHz	6	2437MHz	9	245	2452MHz					
Operation F	requ	ency each	of channe	el(802.11n HT40)								
Channe	l	Frequency		Channel	Frequen	Frequency Ch		nel		Frequency		
1		2422MHz		4	2437MHz		7			2452MHz		
2		2427	ИНz	5	2442MHz							
3		2432	MHz	6	2447MF	łz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 7 of 94

5.3 Test Environment and Mode

Operating Environment:	
Temperature:	20.0 °C
Humidity:	50 % RH
Atmospheric Pressure:	1020 mbar
Test mode:	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s)
Wi-Fi mode:	Keep the EUT communication with router via Wi-Fi, exchange data at the same time

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
Router	Buffalo	AC1300

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM141100603201 Page: 8 of 94

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM141100603201 Page: 9 of 94

5.10 Equipment List

	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88 SEL0042		2015-06-10			
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24			
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16			
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30			
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30			
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30			
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16			
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29			
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24			
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24			
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16			

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 10 of 94

RE in Chamber							
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10		
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16		
3	EMI Test software	AUDIX	E3	SEL0050	N/A		
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24		
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24		
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24		
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16		
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24		
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29		
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29		
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29		
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29		
13	Band filter	Amindeon	82346	SEL0094	2015-05-16		
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16		
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16		
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24		
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04		

Report No.: SZEM141100603201 Page: 11 of 94

	RF connected test							
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	DC Power Supply	Zhao Xin RXN-305D		SEL0117	2015-10-24			
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24			
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24			
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29			
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29			
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16			
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16			
8	Band filter	amideon	82346	SEL0094	2015-05-16			
9	POWER METER	R & S	NRVS	SEL0144	2015-10-24			
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16			
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24			

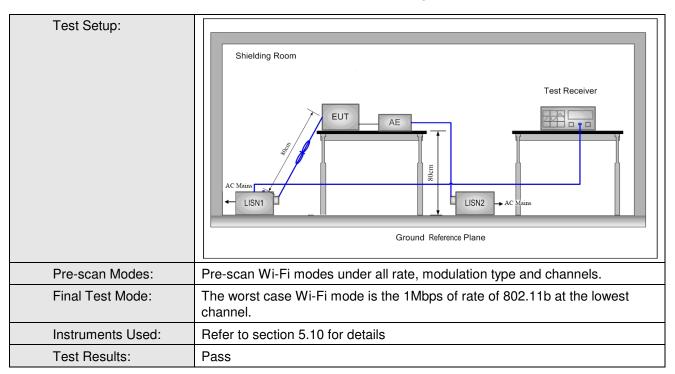
Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM141100603201 Page: 12 of 94

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)							
15.203 requirement:	15.203 requirement:							
An intentional radiator shall	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the							
responsible party shall be us	responsible party shall be used with the device. The use of a permanently attached antenna or of an							
antenna that uses a unique	antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit							
so that a broken antenna ca	so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or							
electrical connector is prohit	bited.							
15.247(b) (4) requirement:								
The conducted output powe	r limit specified in paragraph (b) of this section is based on the use of							
antennas with directional ga	ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this							
section, if transmitting anten	nas of directional gain greater than 6 dBi are used, the conducted output							
power from the intentional ra	adiator shall be reduced below the stated values in paragraphs (b)(1),							
(b)(2), and (b)(3) of this sect	ion, as appropriate, by the amount in dB that the directional gain of the							
antenna exceeds 6 dBi.								
EUT Antenna:								
The antenna is integrated or	The antenna is integrated on the main PCB and no consideration of replacement. The best case gain							
of the antenna is 0dBi.	of the antenna is 0dBi.							
and the second se								
	8972							


Report No.: SZEM141100603201 Page: 13 of 94

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2009						
Test Frequency Range	150kHz to 30MHz						
Limit:		Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.		-			
Test Procedure:	 room. 2) The EUT was connected to Impedance Stabilization Nation impedance. The power calls connected to a second LIS plane in the same way as the multiple socket outlet stript single LISN provided the rational structure placed on the horizontal gradient of the EUT shall be 0.4 m for the EUT shall be 0.4 m for the EUT shall be 0.4 m for the test and bonded mounted on top of the gradient of the EUT and associated explanation of the EUT and associated explanation. a) In order to find the maximum structure of the test was performed with the EUT and the test and bonded mounted on top of the gradient of the EUT and the test and bonded mounted on top of the gradient of the EUT and the test and bonded mounted on top of the gradient of the EUT and the maximum structure test and bonded and the test and bonded mounted on top of the gradient of the EUT and the maximum structure test and bonded and the test and bonded and the test and bonded mounted on top of the gradient of the EUT and associated explanations the EUT and the maximum structure test and bonded mounted on top of the gradient between the closest points the EUT and associated explanations the EUT and the maximum structure test and bonded test and test and bonded te	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shield room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linea impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of 					
the EUT and associated equipment was at least 0.8 m from th 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed ac ANSI C63.10: 2009 on conducted measurement.							

6.2 Conducted Emissions

Report No.: SZEM141100603201 Page: 14 of 94

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM141100603201 Page: 15 of 94

For model SW750M/37

Live Line:

4

5

6

7

8

9

10

11 12 0.18346

0.50737

0.50737

1.772

1.772

4.407

4.407

11.807

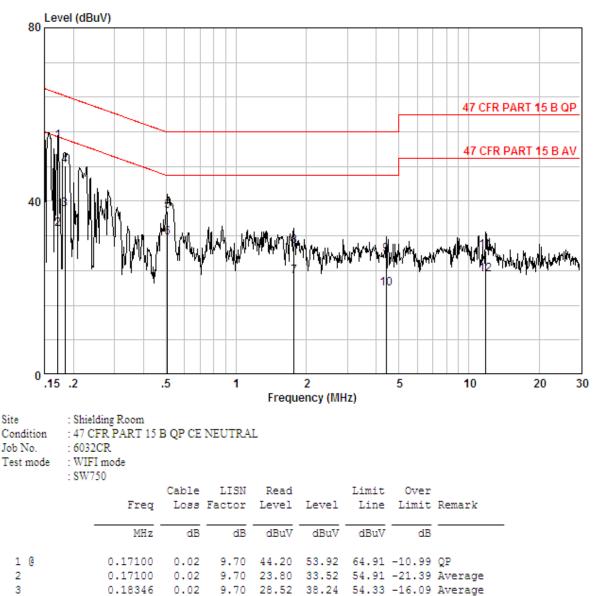
11.807

0.02

0.01

0.01

0.02


0.02

0.01

0.01

0.01

0.01

9.70 38.56

9.80 21.77

9.89 17.79

10.00 13.01

9.97

18.48

9.89

10.00

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

48.28

9.80 27.98 37.79 56.00 -18.21 OP

9.80 19.91 29.73 56.00 -26.27 QP

19.87

28.49

23.02

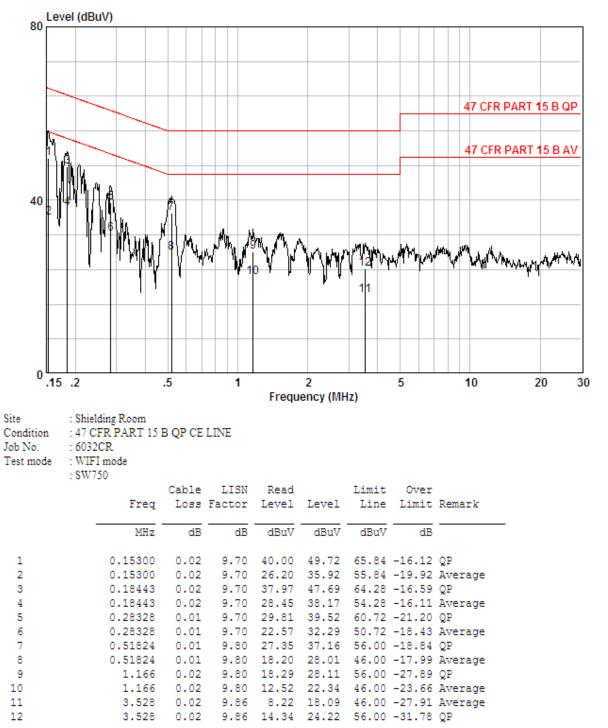
9.80 12.86 22.68 46.00 -23.32 Average

64.33 -16.05 QP

46.00 -26.13 Average

50.00 -26.98 Average

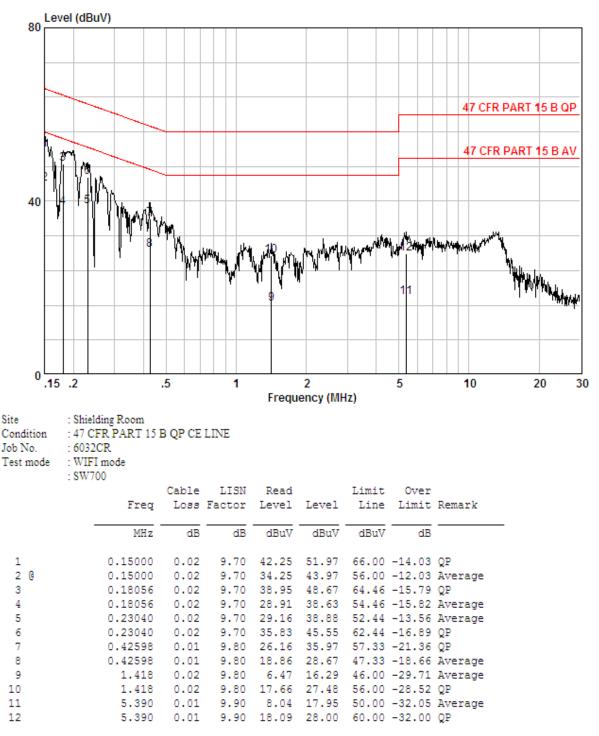
60.00 -31.51 QP


31.58 46.00 -14.42 Average

27.69 56.00 -28.31 QP

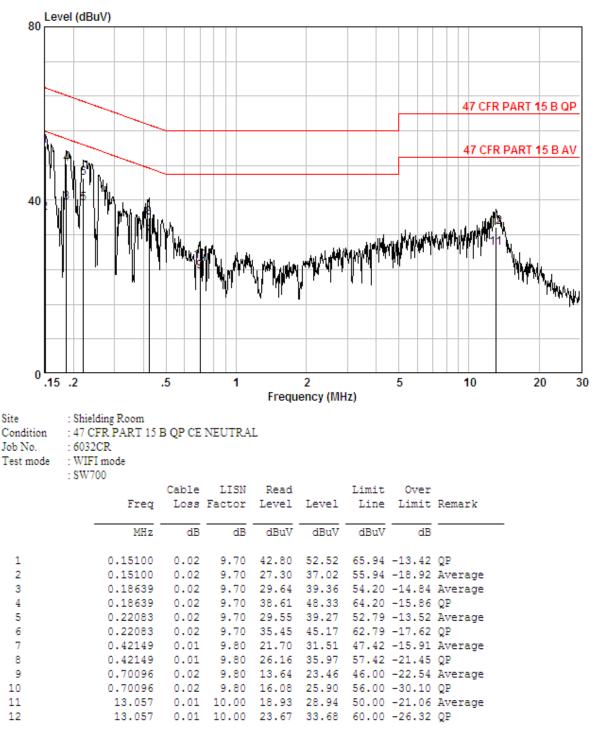
Report No.: SZEM141100603201 Page: 16 of 94

Neutral Line:



Report No.: SZEM141100603201 Page: 17 of 94

For model SW700M/37


Live Line:

Report No.: SZEM141100603201 Page: 18 of 94

Neutral Line:

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM141100603201 Page: 19 of 94

6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)				
Test Method:	KDB558074 D01 v03r02				
Test Setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark:				
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.				
Test Instruments:	Refer to section 5.10 for details				
Pre-scan Modes:	Pre-scan Transmitting modes under all rate, modulation type and channels.				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6Mbps of rate is the worst case of 802.11n(HT20).				
Limit:	30dBm				
Test Results:	Pass				

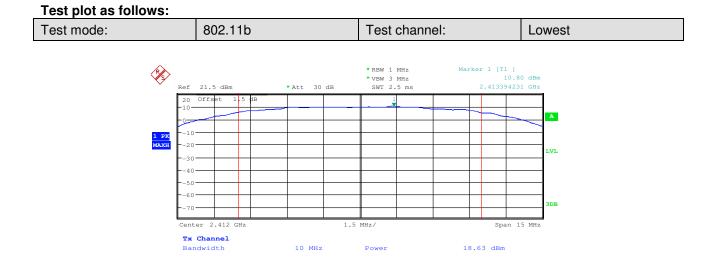
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

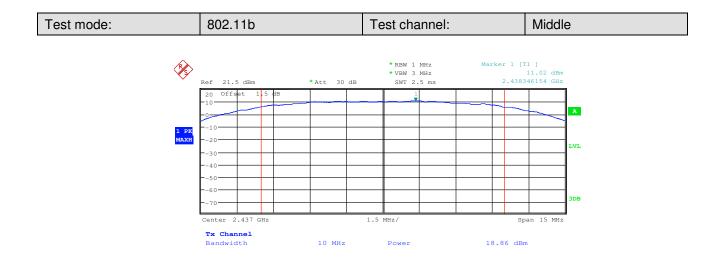
Report No.: SZEM141100603201 Page: 20 of 94

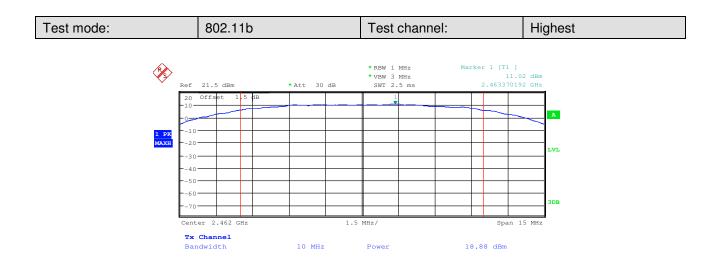
Pre-scan under all rate at lowest channel 1								
Mode		802	.11b			/		
Data Rate	1Mbps	2Mbps	5.5Mbps	11Mbps				
Power (dBm)	18.63	18.45	18.11	18.09				
Mode	802.11g							
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Power (dBm)	19.05	19.00	18.93	18.75	18.61	18.49	18.35	18.11
Mode	802.11n(HT20)							
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power (dBm)	18.75	18.61	18.42	18.21	18.09	17.99	17.78	17.45
Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g;								

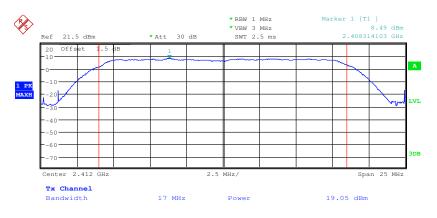
6Mbps of rate is the worst case of 802.11n(HT20)

Report No.: SZEM141100603201 Page: 21 of 94

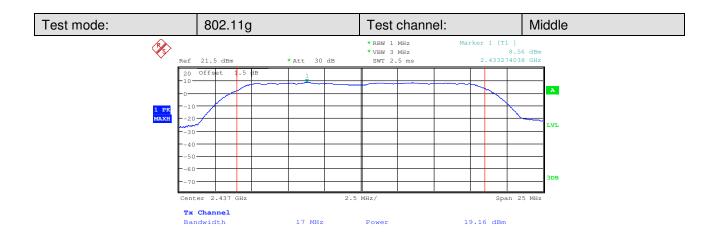

measurement Data								
802.11b mode								
Test channel	Test channel Peak Output Power (dBm)		Result					
Lowest	18.63	30.00	Pass					
Middle	18.86	30.00	Pass					
Highest	18.88	30.00	Pass					
	802.11g mc	de						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	19.05	30.00	Pass					
Middle	19.16	30.00	Pass					
Highest	ighest 19.38 30.00		Pass					
	802.11n(HT20)mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	18.75	30.00	Pass					
Middle	18.81	30.00	Pass					
Highest	19.18	30.00	Pass					

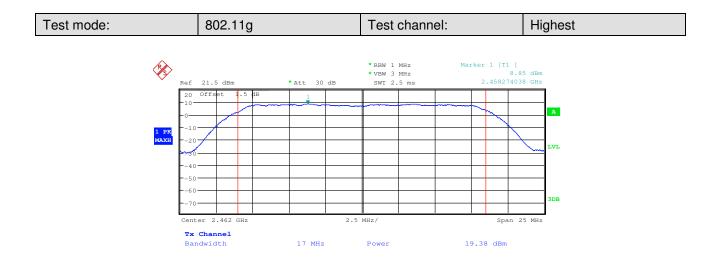

Measurement Data

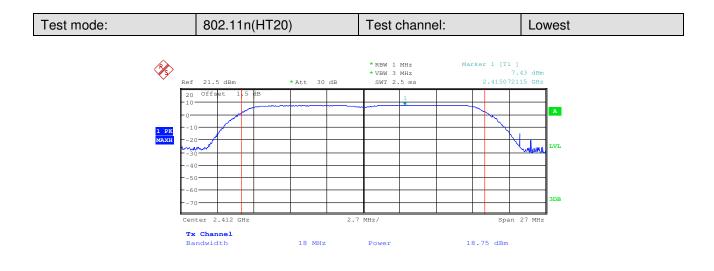

Report No.: SZEM141100603201 Page: 22 of 94

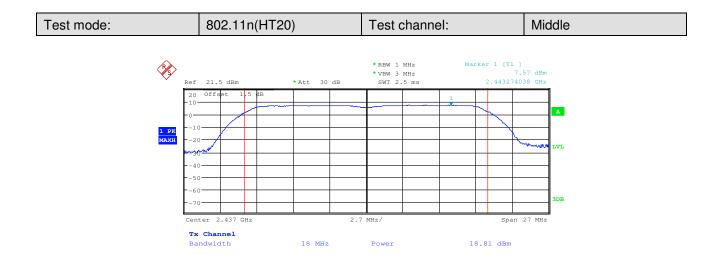


Report No.: SZEM141100603201 Page: 23 of 94

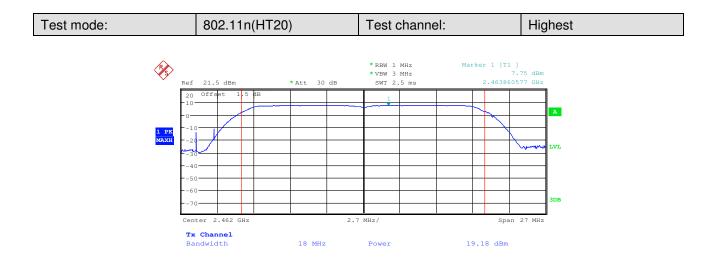





Report No.: SZEM141100603201 Page: 24 of 94



Report No.: SZEM141100603201 Page: 25 of 94



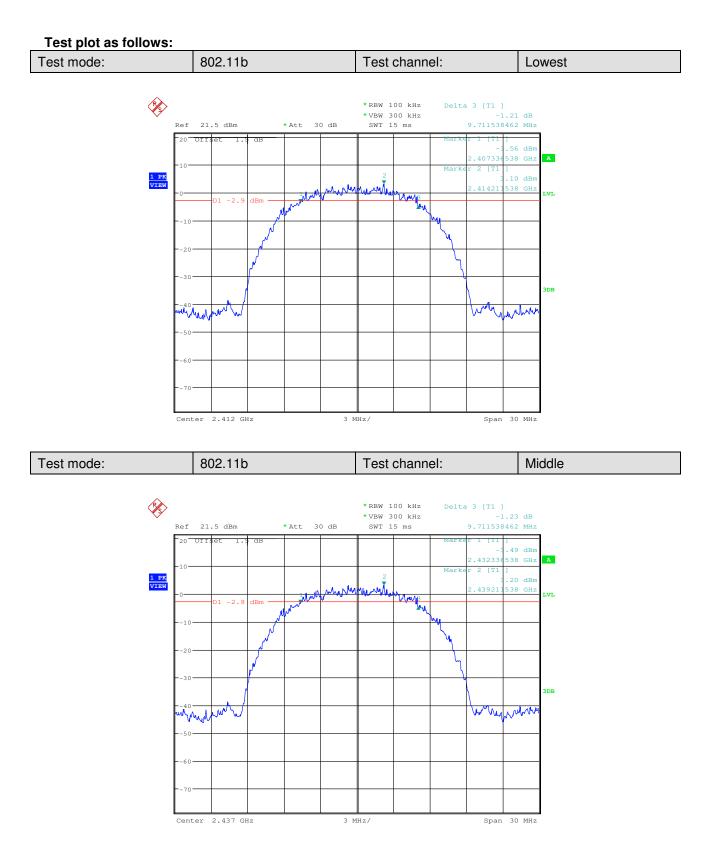
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 26 of 94

Report No.: SZEM141100603201 Page: 27 of 94

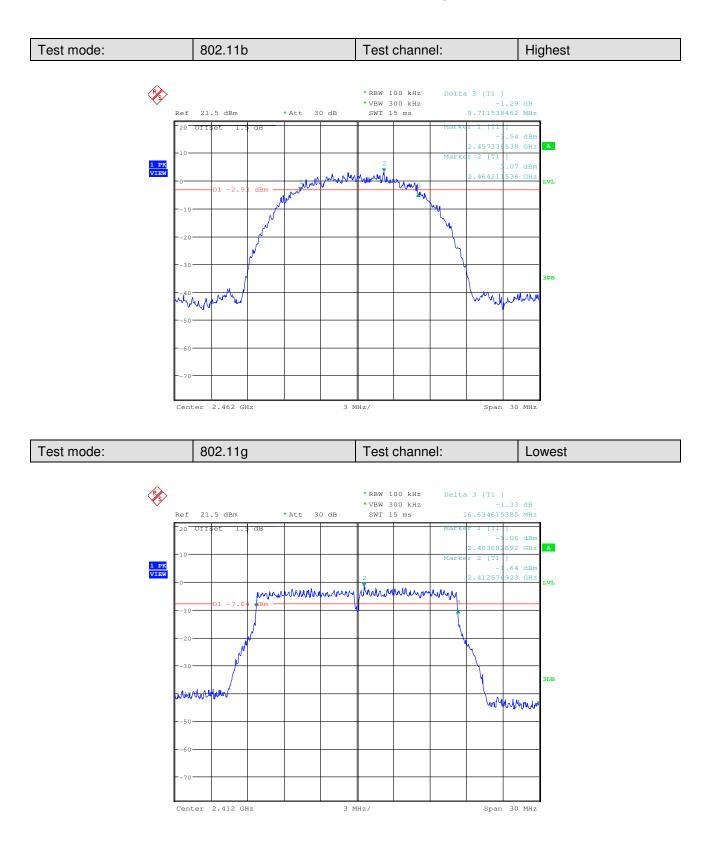
Test Requirement: 47 CFR Part 15C Section 15.247 (a)(2) Test Method: KDB558074 D01 v03r02 Test Setup: Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Instruments Used: Refer to section 5.10 for details Pre-scan Modes: Pre-scan Transmitting modes under all rate, modulation type and channels. Final Test Mode: Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6Mbps of rate is the worst case of 802.11n(HT20) Limit: ≥ 500 kHz **Test Results:** Pass

6.4 6dB Occupy Bandwidth

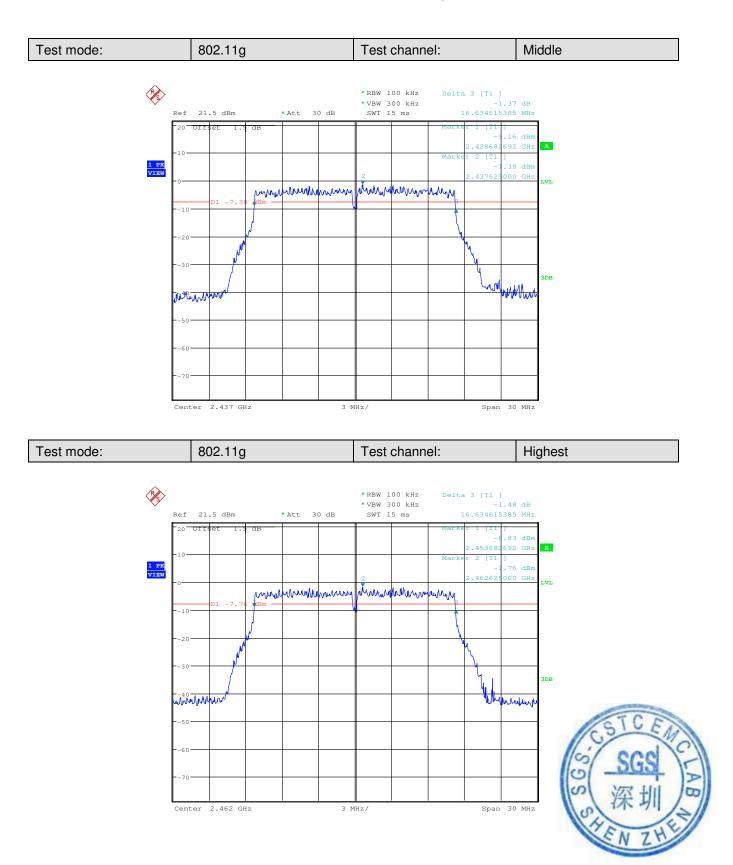


Report No.: SZEM141100603201 Page: 28 of 94

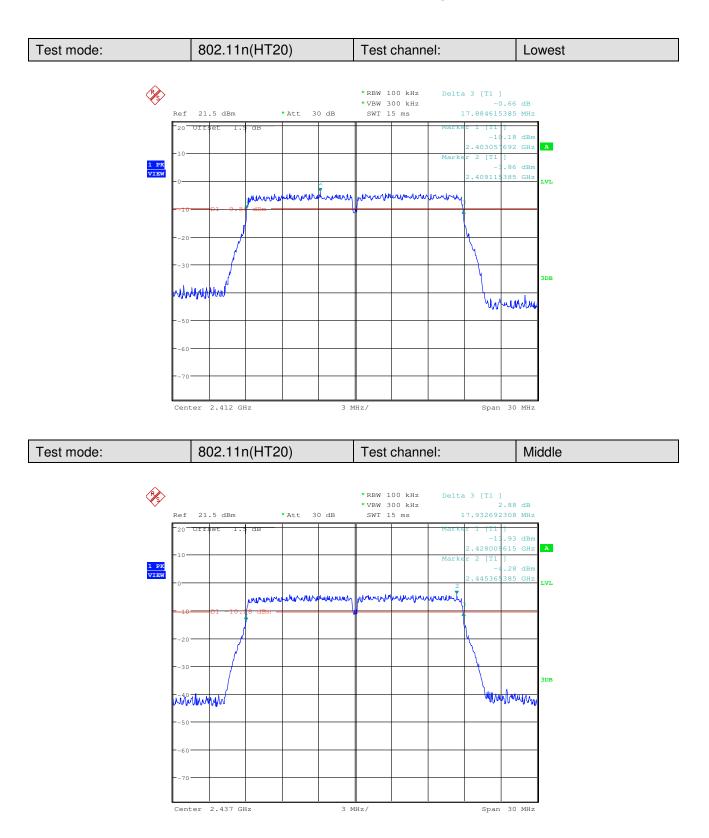
Measurement Data 802.11b mode Test channel 6dB Occupy Bandwidth (MHz) Limit (kHz) Result 9.71 ≥500 Lowest Pass Middle 9.71 ≥500 Pass 9.71 Highest ≥500 Pass 802.11g mode Test channel 6dB Occupy Bandwidth (MHz) Limit (kHz) Result Lowest 16.63 ≥500 Pass Middle 16.63 ≥500 Pass 16.63 Highest ≥500 Pass 802.11n(HT20) mode Test channel 6dB Occupy Bandwidth (MHz) Limit (kHz) Result 17.88 Lowest ≥500 Pass 17.93 Middle ≥500 Pass 17.93 Highest ≥500 Pass



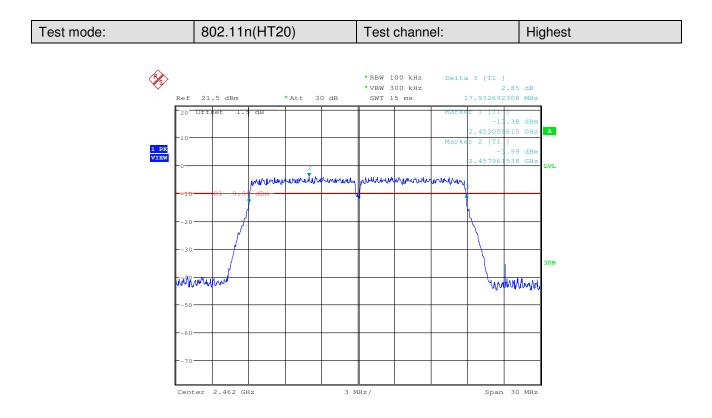
Report No.: SZEM141100603201 Page: 29 of 94



Report No.: SZEM141100603201 Page: 30 of 94



Report No.: SZEM141100603201 Page: 31 of 94



Report No.: SZEM141100603201 Page: 32 of 94

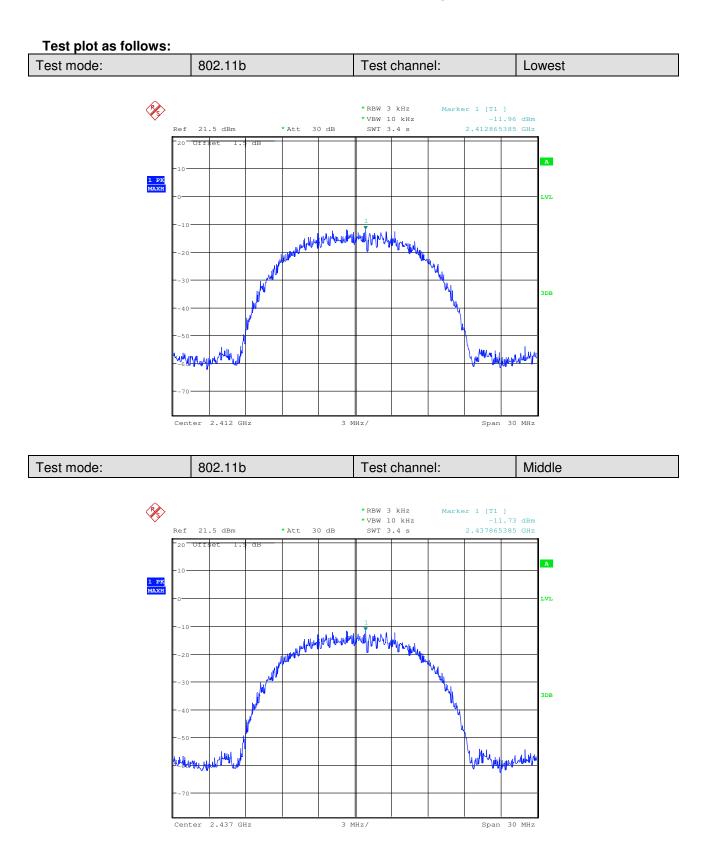
Report No.: SZEM141100603201 Page: 33 of 94

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 34 of 94

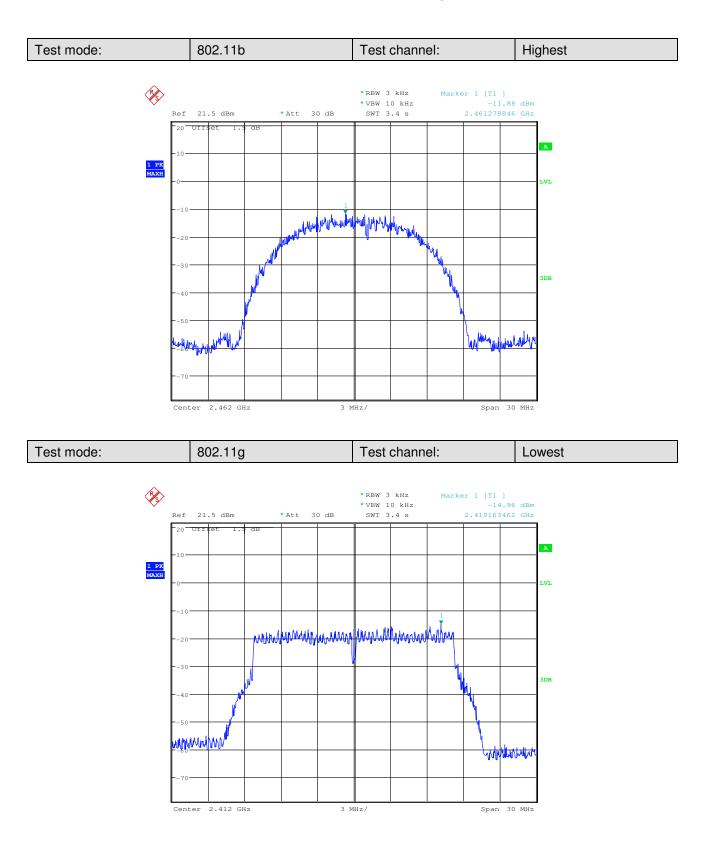
Test Requirement: 47 CFR Part 15C Section 15.247 (e) Test Method: KDB558074 D01 v03r02 Test Setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane** Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer. **Test Instruments:** Refer to section 5.10 for details Pre-scan Modes: Pre-scan Transmitting modes under all rate, modulation type and channels. Final Test Mode: Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6Mbps of rate is the worst case of 802.11n (HT20). Limit: ≤8.00dBm Test Results: Pass

6.5 Power Spectral Density

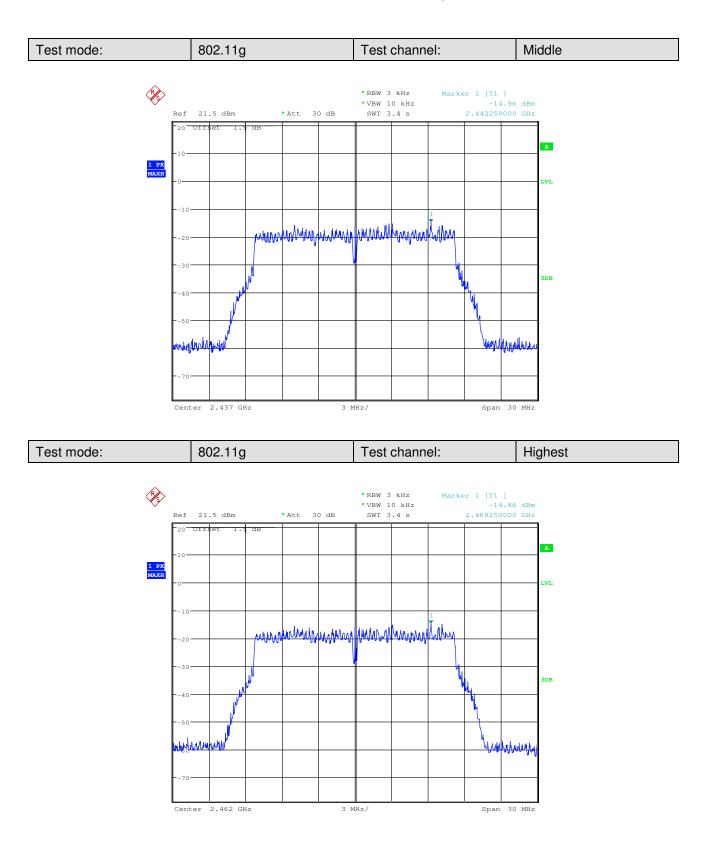


Report No.: SZEM141100603201 Page: 35 of 94

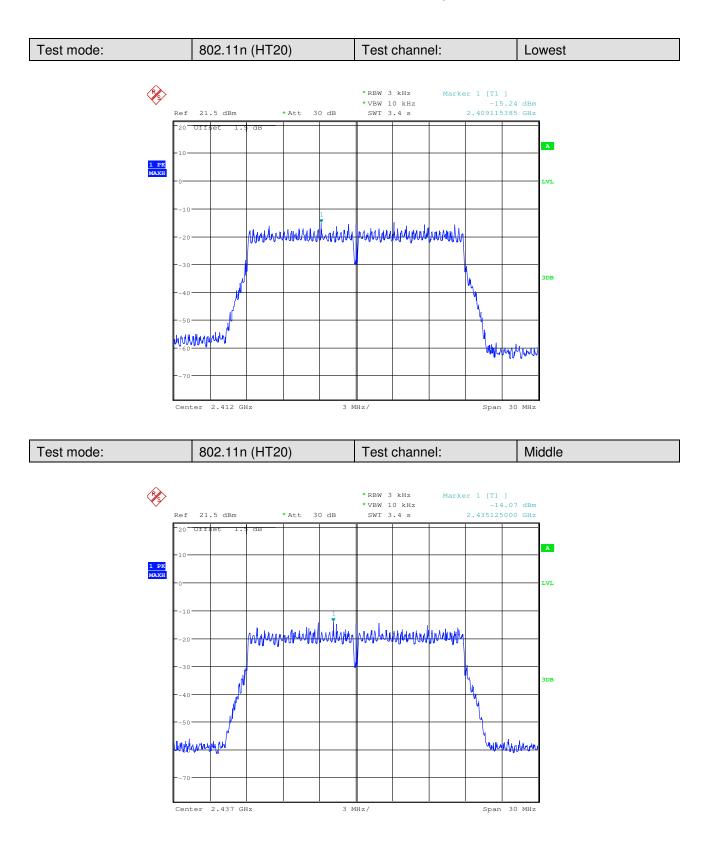
Measurement Data 802.11b mode Test channel Power Spectral Density (dBm) Limit (dBm) Result -11.96 Lowest ≤8.00 Pass Middle -11.73 ≤8.00 Pass -11.80 Highest ≤8.00 Pass 802.11g mode Test channel Power Spectral Density (dBm) Limit (dBm) Result -14.96 Lowest ≤8.00 Pass -14.96 Middle ≤8.00 Pass -14.86 Highest ≤8.00 Pass 802.11n(HT20) mode Test channel Power Spectral Density (dBm) Limit (dBm) Result -15.24 Lowest ≤8.00 Pass -14.07 Middle ≤8.00 Pass -14.55 Highest ≤8.00 Pass



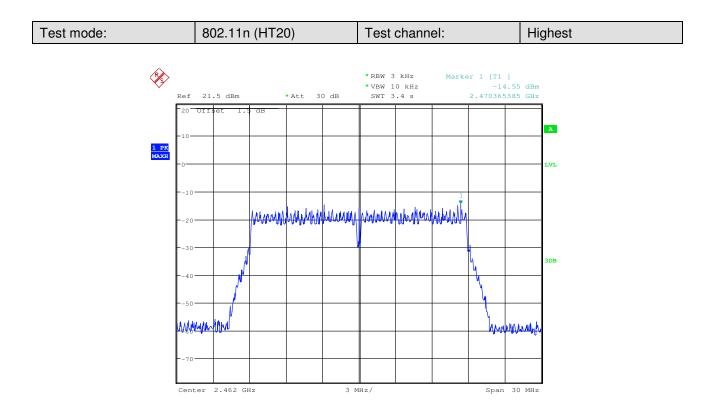
Report No.: SZEM141100603201 Page: 36 of 94



Report No.: SZEM141100603201 Page: 37 of 94



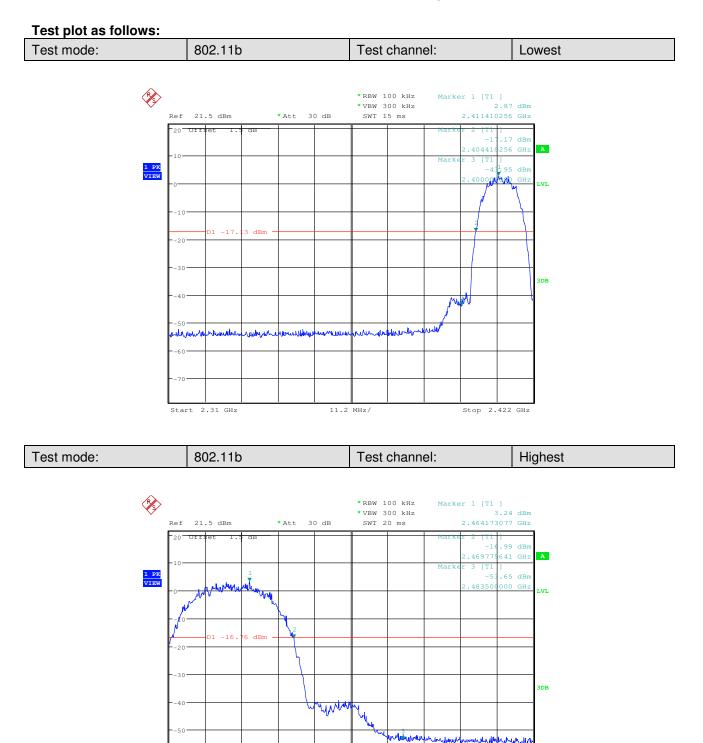
Report No.: SZEM141100603201 Page: 38 of 94



Report No.: SZEM141100603201 Page: 39 of 94

Report No.: SZEM141100603201 Page: 40 of 94

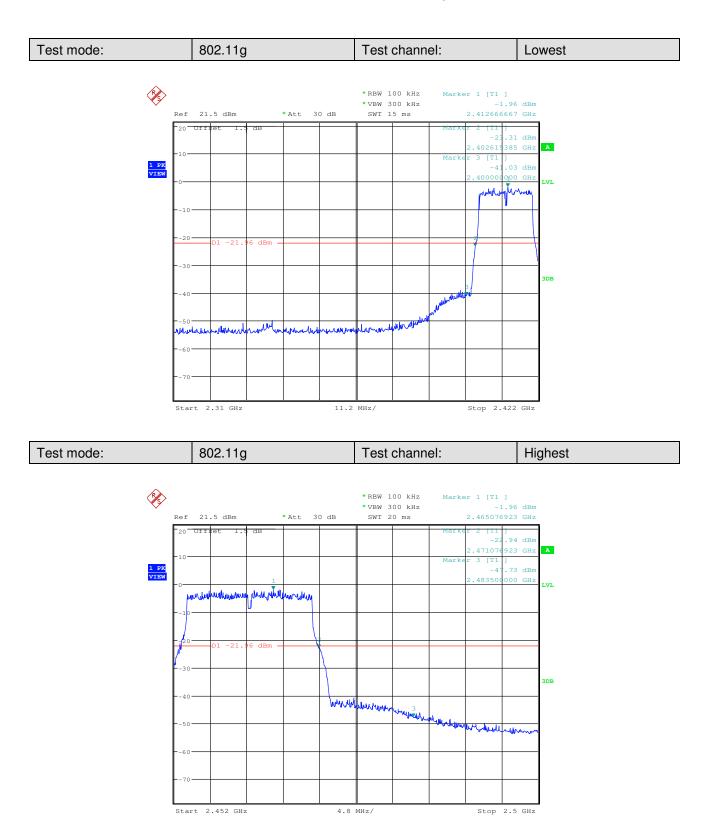
Report No.: SZEM141100603201 Page: 41 of 94


6.6 Band-edge for RF Conducted Emissions

Test Devision	47 OED Dart 160 Ocation 16 047 (d)						
Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	KDB558074 D01 v03r02						
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
	Remark:						
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.						
Pre-scan Modes:	Pre-scan Transmitting modes under all rate, modulation type and channels.						
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;						
	6Mbps of rate is the worst case of 802.11g ; 6Mbps of rate is the worst case						
	of 802.11n(HT20) .						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread						
	spectrum intentional radiator is operating, the radio frequency power that is						
	produced by the intentional radiator shall be at least 20 dB below that in the						
	100 kHz bandwidth within the band that contains the highest level of the						
	desired power, based on either an RF conducted or a radiated measurement.						
Instruments Used:	Refer to section 5.10 for details						
Test Results:	Pass						

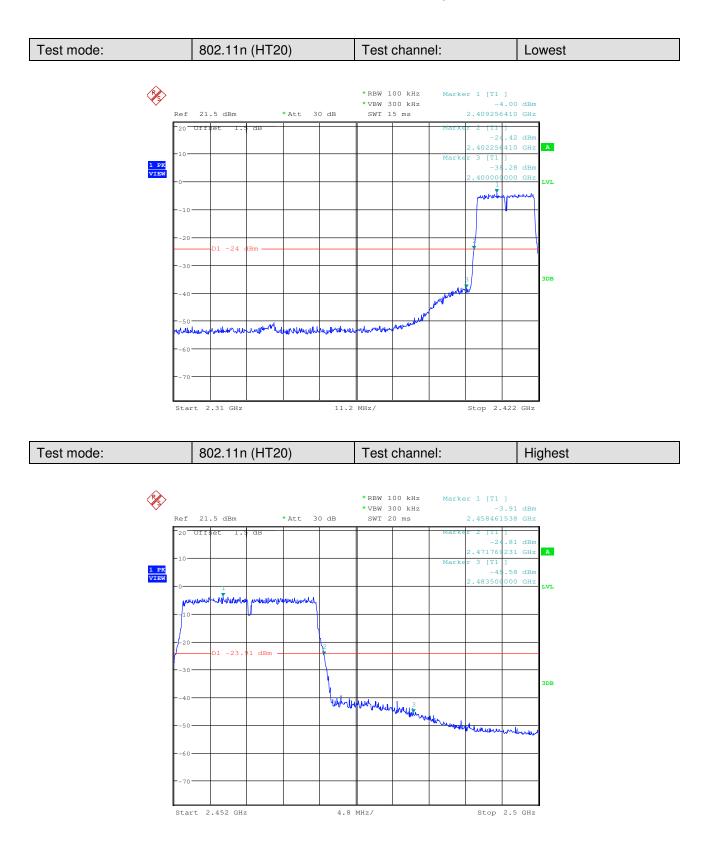
Report No.: SZEM141100603201 Page: 42 of 94

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


4.6 MHz/

Stop 2.5 GHz

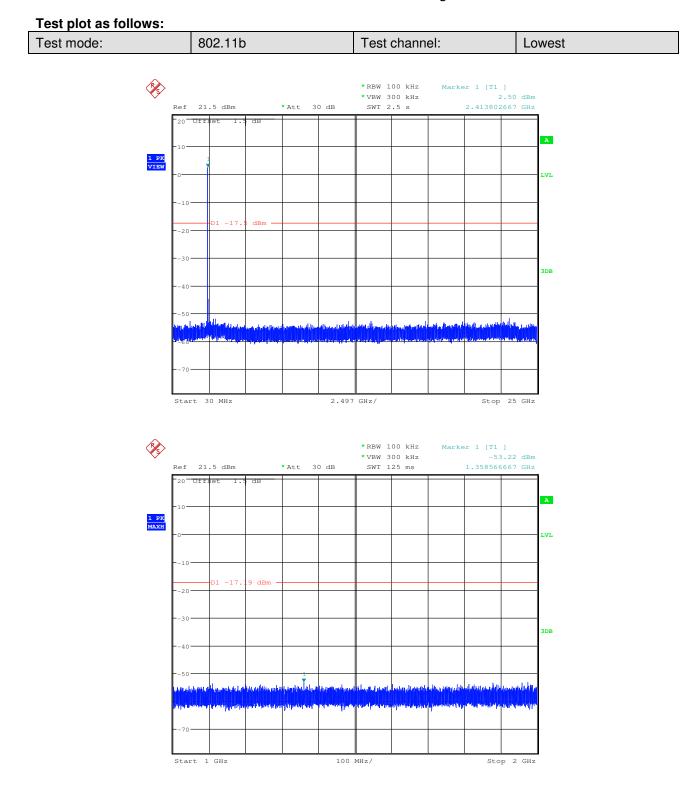
Start 2.454 GHz



Report No.: SZEM141100603201 Page: 43 of 94

Report No.: SZEM141100603201 Page: 44 of 94

Report No.: SZEM141100603201 Page: 45 of 94


6.7 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	KDB558074 D01 v03r02
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Pre-scan Modes:	Pre-scan Transmitting modes under all rate, modulation type and channels.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g ; 6Mbps of rate is the worst case of 802.11n(HT20) .
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

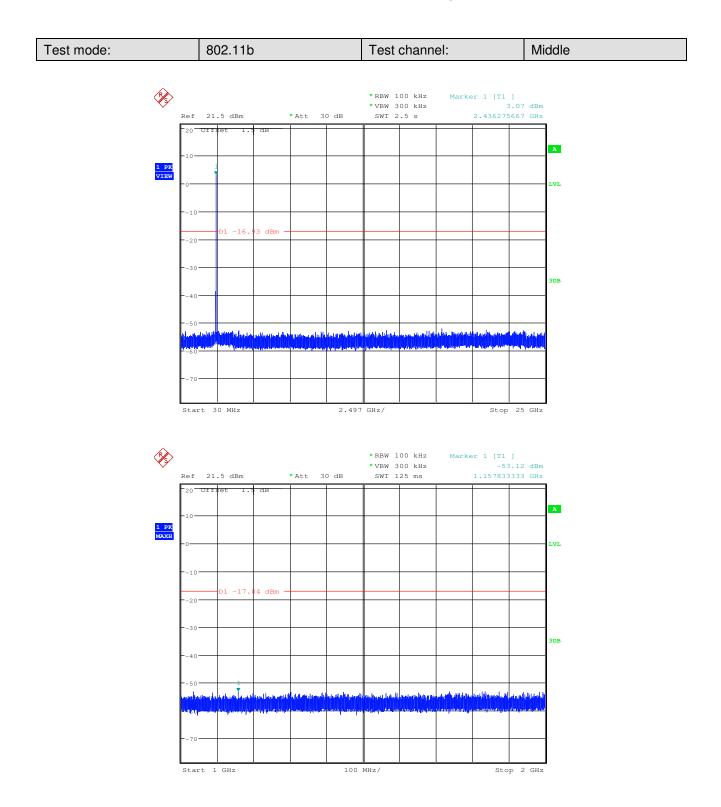
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 46 of 94

×

1 PK VIEW

×

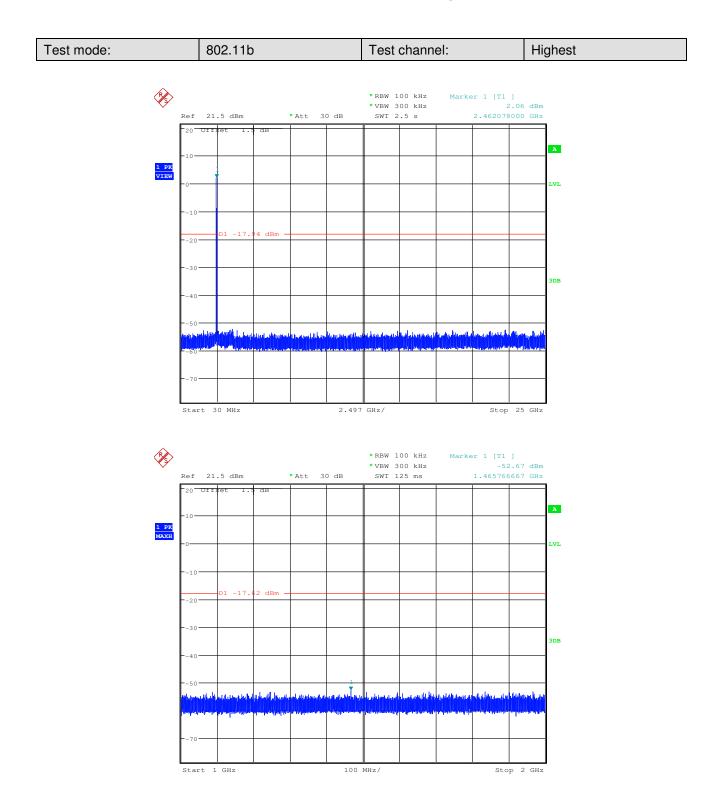

1 PK MAXH

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM141100603201 47 of 94 Page: * RBW 100 kHz Marker 1 [T1] *VBW 300 kHz 2.81 dBm Ref 21.5 dBm * Att 30 dB SWT 125 ms 2.411233333 GHz 20 Oftset a A dBn 3DB Start 2 GHz 100 MHz/ Stop 3 GHz * RBW 100 kHz Marker 1 [T1] -52.49 dBm * VBW 300 kHz 21.5 dBm 30 dB SWT 125 ms 4.055233333 GHz Ref * Att 20 Offset dF A LVL dBn 3DB 100 MHz/ Stop 5 GHz Start 4 GHz

Report No.: SZEM141100603201 Page: 48 of 94

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

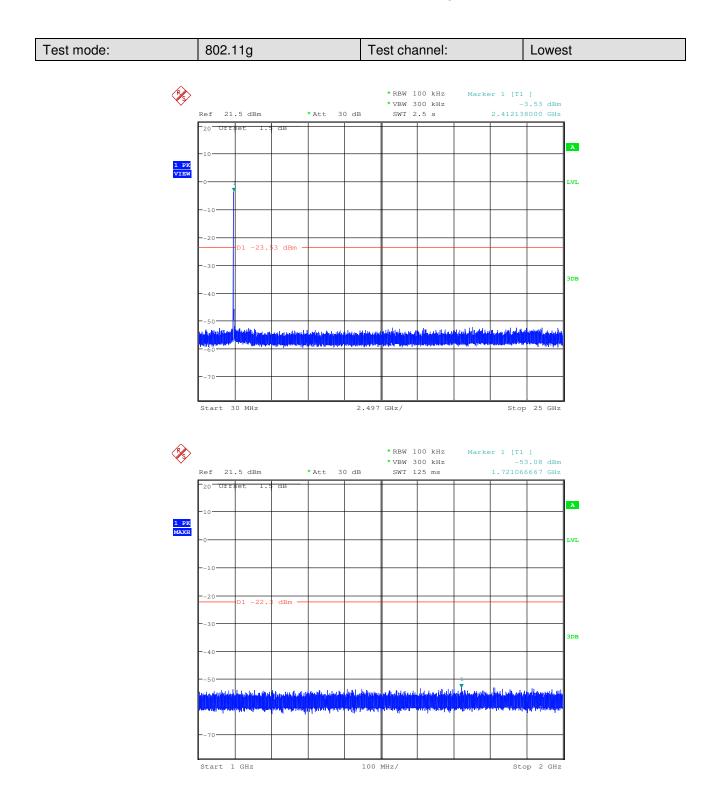

Page: 49 of 94 × * RBW 100 kHz Marker 1 [T1] 2.96 dBm *VBW 300 kHz Ref 21.5 dBm * Att 30 dB SWT 125 ms 2.436233333 GHz 20 Oftset a A 1 PK VIEW LVL dBm 3DB Start 2 GHz 100 MHz/ Stop 3 GHz × * RBW 100 kHz Marker 1 [T1] -53.39 dBm * VBW 300 kHz 21.5 dBm 30 dB SWT 125 ms 4.848533333 GHz Ref * Att 20 Offset dF A 1 PK MAXH LVL dBm 3DB 100 MHz/ Stop 5 GHz Start 4 GHz

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

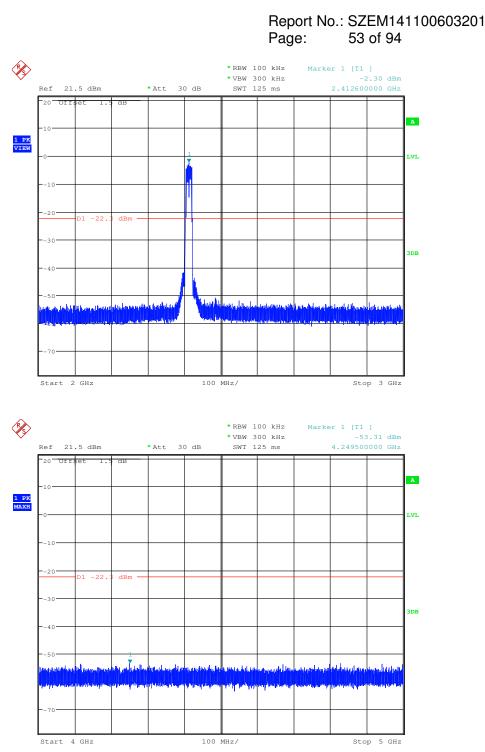
Report No.: SZEM141100603201 Page: 49 of 94

Report No.: SZEM141100603201 Page: 50 of 94

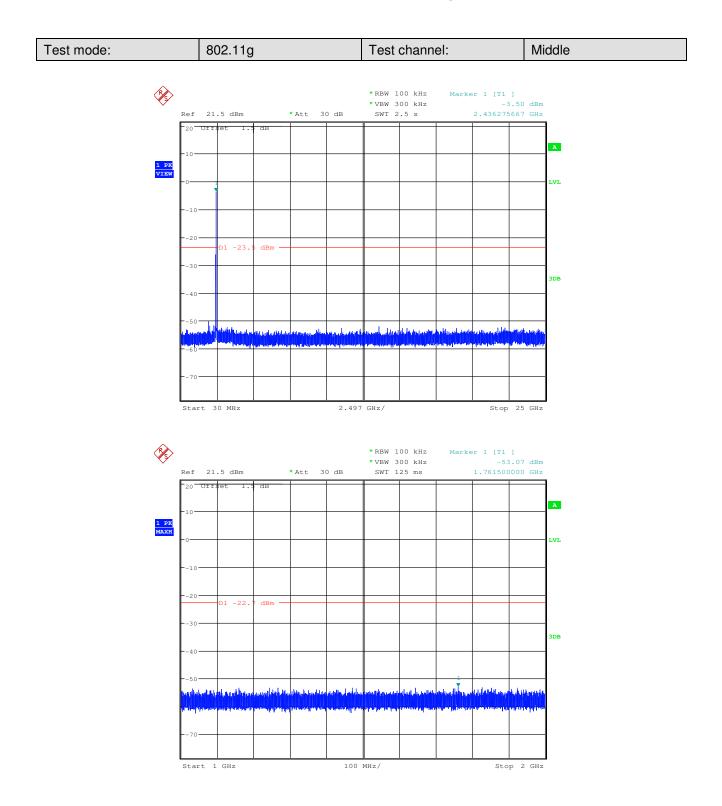
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

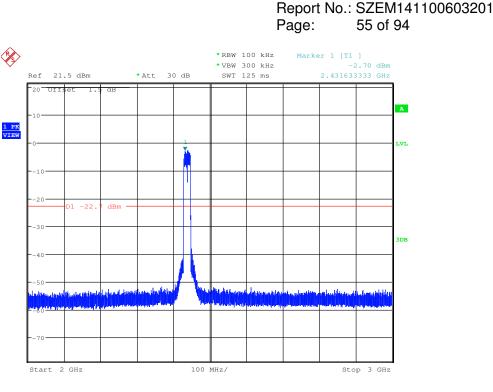


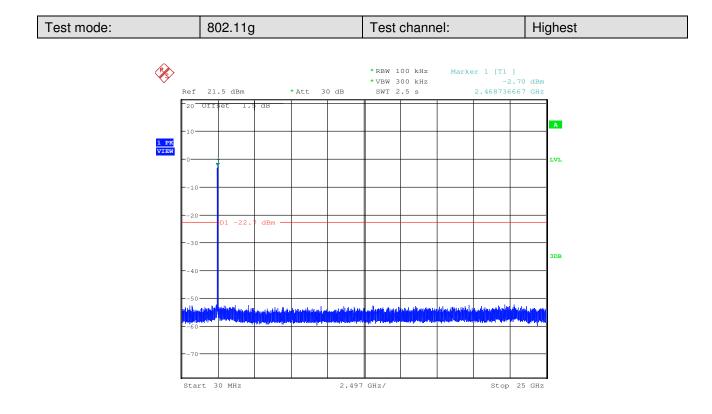
Report No.: SZEM141100603201 51 of 94 Page: × * RBW 100 kHz Marker 1 [T1] *VBW 300 kHz 2.38 dBm Ref 21.5 dBm * Att 30 dB SWT 125 ms 2.464166667 GHz 20 Oftset a A 1 PK VIEW 3DB Start 2 GHz 100 MHz/ Stop 3 GHz × * RBW 100 kHz Marker 1 [T1] -53.14 dBm * VBW 300 kHz 21.5 dBm 30 dB SWT 125 ms 4.470033333 GHz Ref * Att 20 Offset dF A 1 PK MAXH LVL dBn 3DB 100 MHz/ Stop 5 GHz Start 4 GHz



Report No.: SZEM141100603201 Page: 52 of 94

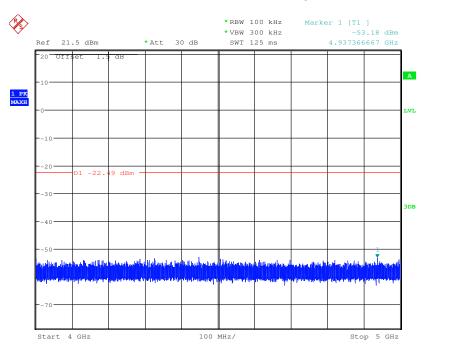


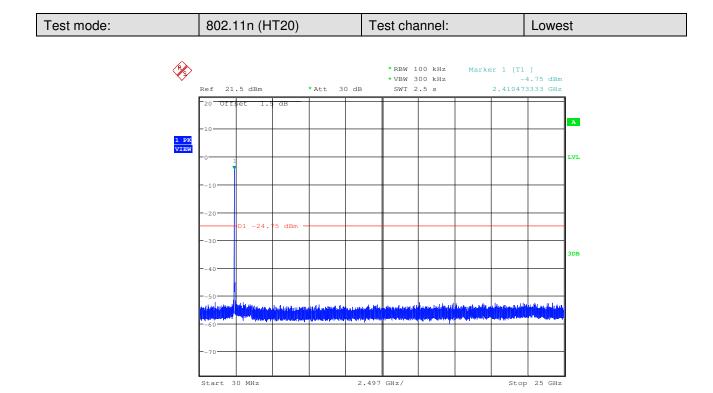



Report No.: SZEM141100603201 Page: 54 of 94

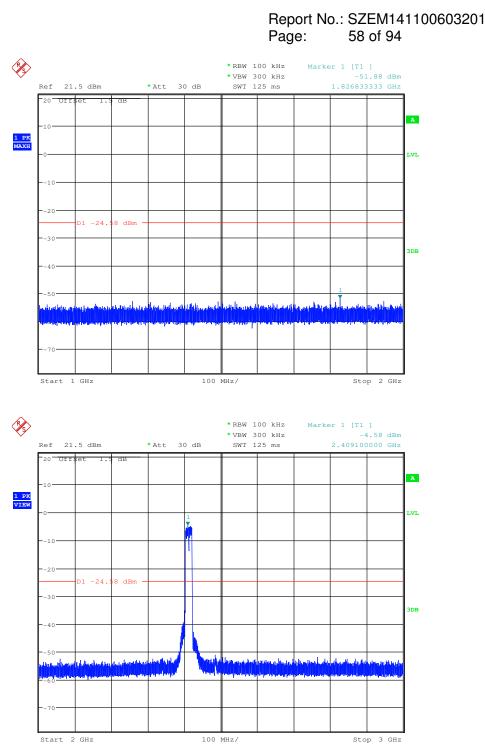
SGS

SGS-CSTC Standards Technical Services Ltd.

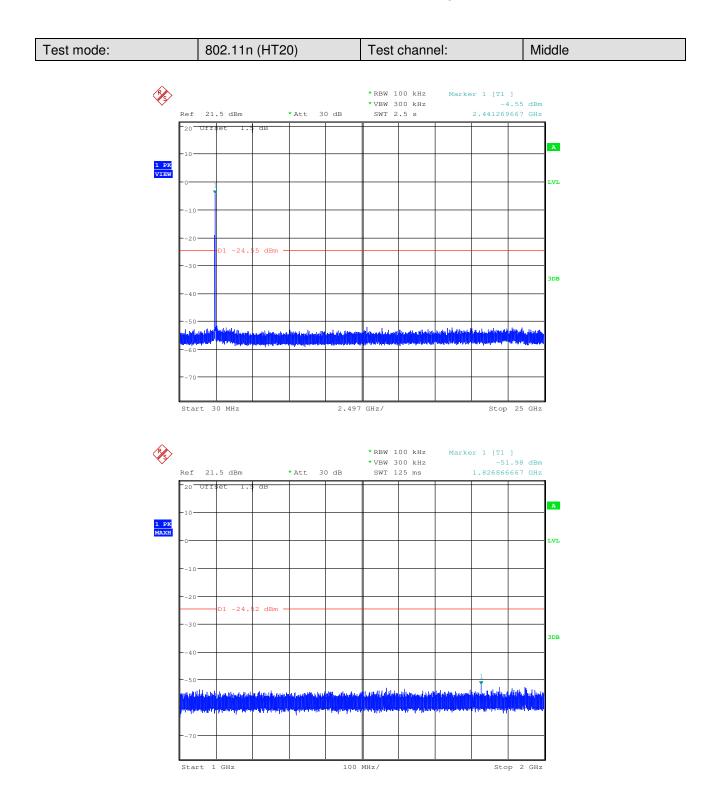



Report No.: SZEM141100603201 56 of 94 Page: × * RBW 100 kHz Marker 1 [T1] *VBW 300 kHz -53.14 dBm Ref 21.5 dBm * Att 30 dB SWT 125 ms 1.753933333 GHz 20 Offset a A 1 PR dBm 3DB Start 1 GHz 100 MHz/ Stop 2 GHz × *RBW 100 kHz Marker 1 [T1] -2.49 dBm 2.465733333 GHz *VBW 300 kHz 21.5 dBm * Att 30 dB Ref SWT 125 ms Off A 1 PK VIEW LVL 9 dBm 3DB Start 2 GHz 100 MHz/ Stop 3 GHz

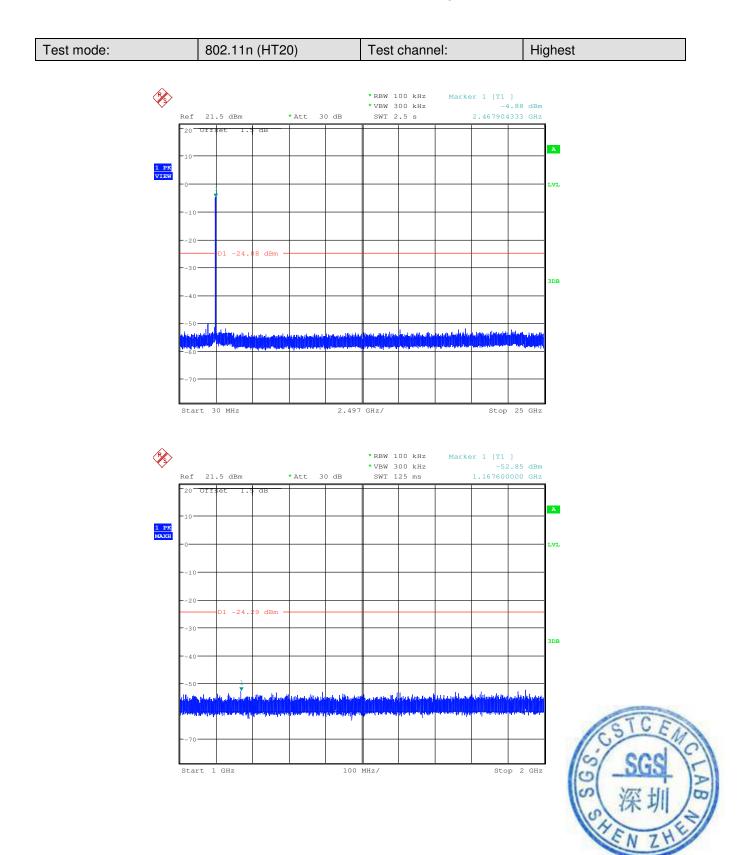
SGS


SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM141100603201 Page: 57 of 94



Report No.: SZEM141100603201 Page: 59 of 94



Report No.: SZEM141100603201 Page: 60 of 94 × * RBW 100 kHz Marker 1 [T1] *VBW 300 kHz 4.52 dBm 21.5 dBm * Att 30 dB SWT 125 ms 2.430366667 GHz Ref 20 Oftset al A 1 PK VIEW 01 -24 2 dBm 3DB Stop 3 GHz 100 MHz/ Start 2 GHz × *RBW 100 kHz Marker 1 [T1] *VBW 300 kHz -52.77 dBm Ref 21.5 dBm * Att 30 dB SWT 125 ms 4.397433333 GHz 20 Offset 1. dE A 1 PK MAXH LVT. -24 2 dBm 3DB Start 4 GHz 100 MHz/ Stop 5 GHz

Report No.: SZEM141100603201 Page: 61 of 94

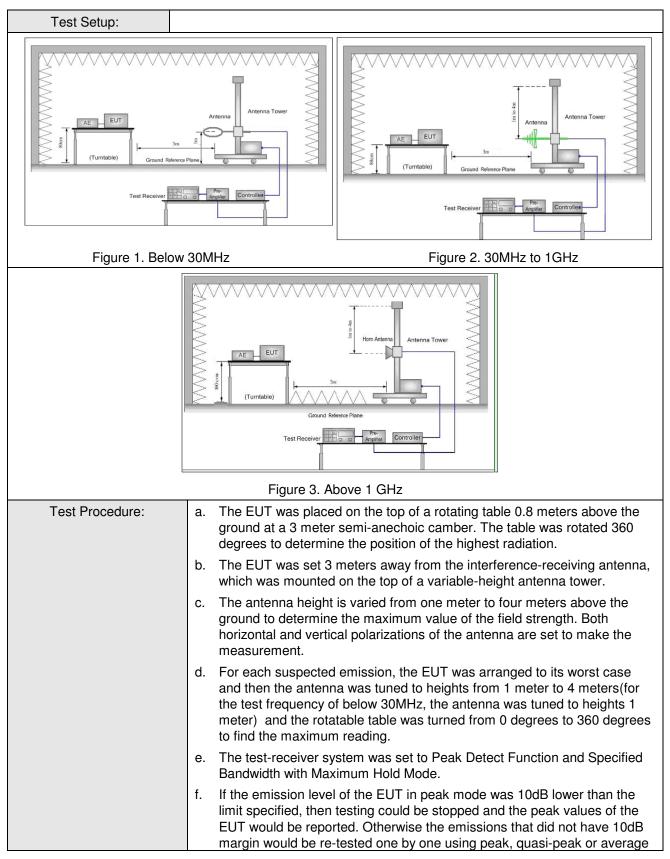
Report No.: SZEM141100603201 Page: 62 of 94 × * RBW 100 kHz Marker 1 [T1] *VBW 300 kHz 4.29 dBm 21.5 dBm * Att 30 dB SWT 125 ms 2.464800000 GHz Ref 20 Oftset al A 1 PK VIEW LVL -24 9 dBm 3DB Stop 3 GHz 100 MHz/ Start 2 GHz × * RBW 100 kHz Marker 1 [T1] -52.98 dBm * VBW 300 kHz Ref 21.5 dBm * Att 30 dB SWT 125 ms 4.484233333 GHz 20 Offset 1. А 1 PK MAXH LVL 01 -24 9 dBm 3DB Start 4 GHz 100 MHz/ Stop 5 GHz

Report No.: SZEM141100603201 Page: 63 of 94

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM141100603201 Page: 64 of 94


6.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above TGH2	Peak	1MHz	10Hz	Average				
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)			30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total emission level radiated by the device.									

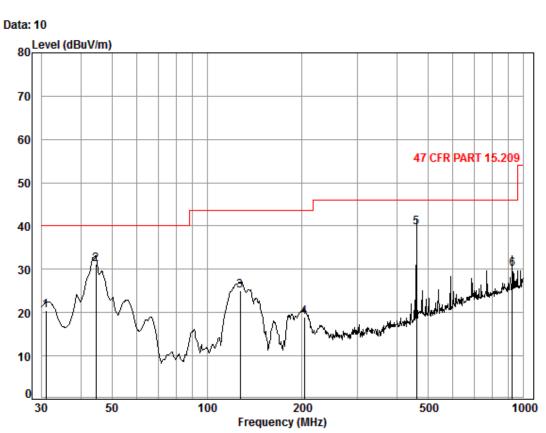
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 65 of 94

Report No.: SZEM141100603201 Page: 66 of 94

	method as specified and then reported in a data sheet.				
	g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel				
	h. Repeat above procedures until all frequencies measured was complete.				
Pre-scan Modes:	Pre-scan Transmitting modes under all rate, modulation type and channels.				
Final Test Mode:	For frequency range below 1GHz, the worst case Transmitting mode is the 1Mbps of rate of 802.11b at the lowest channel.				
	For frequency range above 1GHz, the worst case Transmitting modes is the 1Mbps of rate of 802.11b, 6Mbps of rate of 802.11g, and 6Mbps of rate of 802.11n(HT20). Test the EUT in the lowest channel,the middle channel ,the Highest channel.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

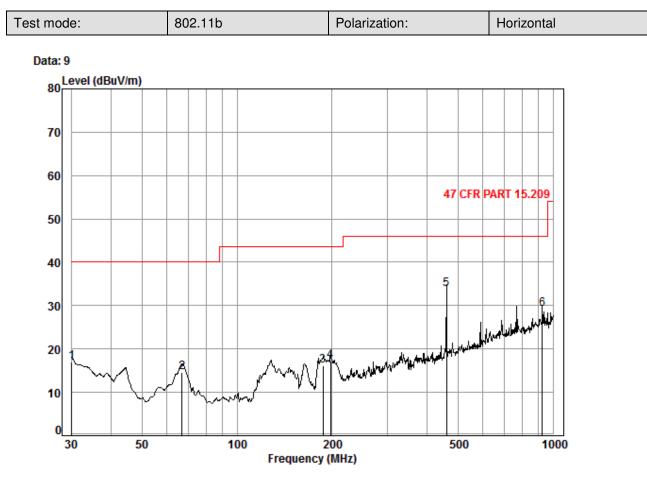
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: SZEM141100603201 Page: 67 of 94

6.8.1 Radiated emission below 1GHz

For mode SW750M/37

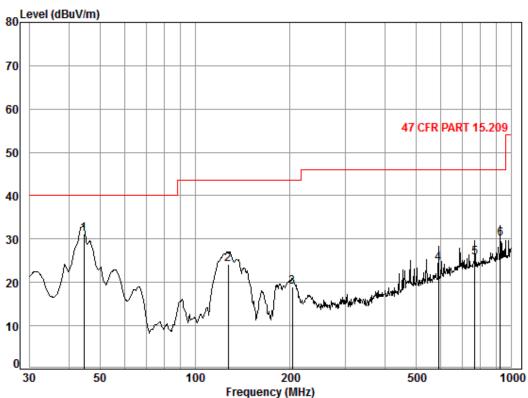

Test mode: 802.11b	Polarization:	Vertical
--------------------	---------------	----------

Condition: 47 CFR PART 15.209 3m 3142C Vertical eut : 6032CR mode : Wifi mode : SW750									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	30.96	0.60	18.16	27.35	29.12	20.53	40.00	-19.47	
2	44.59	0.70	11.08	27.31	46.70	31.17	40.00	-8.83	
3	127.22	1.27	7.76	27.03	43.12	25.12	43.50	-18.38	
4	203.52	1.42	10.38	26.69	33.87	18.98	43.50	-24.52	
5	460.73	2.45	17.29	27.50	47.40	39.64	46.00	-6.36	
6	922.52	3.62	23.29	26.68	29.82	30.05	46.00	-15.95	

Report No.: SZEM141100603201 Page: 68 of 94

Condition:	47	CFR	PART	15.209	Зm	3142C	Horizontal
eut :	603	32CR					

Cuc		200							
mode	: Wit	fi mod	e						
	: SW2	750							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	ab	abuv	dBuV/m	abuv/m	dB	
1	30.00	0.60	18.70	27.36	25.16	17.10	40.00	-22.90	
2	66.97	0.80	6.99	27.25	34.05	14.59	40.00	-25.41	
3	187.10	1.38	10.04	26.75	31.53	16.20	43.50	-27.30	
4	197.89	1.40	10.18	26.70	32.24	17.12	43.50	-26.38	
5	460.73	2.45	17.29	27.50	41.65	33.89	46.00	-12.11	
6	922.52	3.62	23.29	26.68	28.94	29.17	46.00	-16.83	

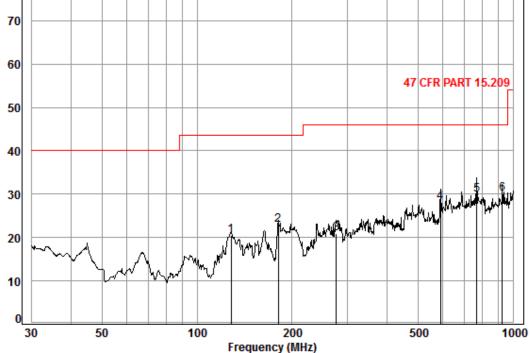


Report No.: SZEM141100603201 Page: 69 of 94

For mode SW700M/37

30MHz~1GHz (QP)		
Test mode:	802.11b	Vertical

Data: 20



Condition: 47 CFR PART 15.209 3m 3142C Vertical									
eut	: 603	32CR							
mode	: Wit	Fi mode	e						
	: SW7	700							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	44.59	0.70	11.08	27.31	46.70	31.17	40.00	-8.83	
2	127.22	1.27	7.76	27.03	42.12	24.12	43.50	-19.38	
3	203.52	1.42	10.38	26.69	33.87	18.98	43.50	-24.52	
4	588.91	2.69	19.49	27.56	29.71	24.33	46.00	-21.67	
5	768.75	3.11	21.92	27.33	27.96	25.66	46.00	-20.34	
6	922.52	3.62	23.29	26.68	29.82	30.05	46.00	-15.95	

Report No.: SZEM141100603201 Page: 70 of 94

Test mode:	802.11b	Horizontal
Data: 19 80 Level (dBuV/m)		
70		

Condition:	47	CFR	PART	15.209	Зm	3142C	Horizontal
eut :	603	32CR					

mode	: Wifi mode									
	: SW700									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
_										
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	128.11	1.27	7.74	27.02	38.42	20.41	43.50	-23.09		
2	180.65	1.37	9.91	26.77	38.45	22.96	43.50	-20.54		
3	276.12	1.80	12.85	26.46	32.83	21.02	46.00	-24.98		
4	588.91	2.69	19.49	27.56	33.46	28.08	46.00	-17.92		
5	768.75	3.11	21.93	27.33	32.14	29.85	46.00	-16.15		
6	922.52	3.62	23.29	26.68	29.94	30.17	46.00	-15.83		

For mode SW750M/37

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM141100603201 Page: 71 of 94

6.8.2 Transmitter emission above 1GHz

Test mode: 802.11b		.11b	Test channel:		Lowest	Remark:		Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Levei (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
3437.081	7.09	32.82	38.71	49.11	50.31	74	-23.69	Vertical	
4824.000	6.46	34.72	39.24	51.90	53.84	74	-20.16	Vertical	
6087.002	8.06	36.20	39.17	47.77	52.86	74	-21.14	Vertical	
7236.000	8.96	35.60	39.06	46.69	52.19	74	-21.81	Vertical	
9648.000	9.97	37.45	37.91	43.05	52.56	74	-21.44	Vertical	
11791.720	10.52	38.49	38.60	43.43	53.84	74	-20.16	Vertical	
3417.246	7.13	32.80	38.70	48.61	49.84	74	-24.16	Horizontal	
4824.000	6.46	34.72	39.24	48.75	50.69	74	-23.31	Horizontal	
6051.874	8.07	36.24	39.18	47.74	52.87	74	-21.13	Horizontal	
7236.000	8.96	35.60	39.06	45.76	51.26	74	-22.74	Horizontal	
9648.000	9.97	37.45	37.91	42.59	52.10	74	-21.90	Horizontal	
11860.170	10.55	38.56	38.64	43.51	53.98	74	-20.02	Horizontal	

Test mode:	802	802.11b		annel:	Middle	Remark	:	Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
3527.774	6.95	32.92	38.75	48.38	49.50	74	-24.50	Vertical	
4874.000	6.57	34.77	39.26	49.70	51.78	74	-22.22	Vertical	
6113.481	8.05	36.17	39.17	47.62	52.67	74	-21.33	Vertical	
7311.000	9.06	35.52	39.06	46.75	52.27	74	-21.73	Vertical	
9748.000	9.91	37.76	37.85	42.61	52.43	74	-21.57	Vertical	
11290.820	10.34	38.13	38.37	43.12	53.22	74	-20.78	Vertical	
3447.042	7.07	32.83	38.72	49.16	50.34	74	-23.66	Horizontal	
4874.000	6.57	34.77	39.26	50.40	52.48	74	-21.52	Horizontal	
5947.702	8.00	36.20	39.19	48.12	53.13	74	-20.87	Horizontal	
7311.000	9.06	35.52	39.06	46.21	51.73	74	-22.27	Horizontal	-
9748.000	9.91	37.76	37.85	42.45	52.27	74	-21.73	Horizontal	2
11225.660	10.33	38.12	38.33	43.48	53.60	74	-20.40	Horizontal	F

Report No.: SZEM141100603201 Page: 72 of 94

Test mode:	802	.11b	Test cha	nnel:	Highest	Remark:		Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
3387.708	7.18	32.75	38.69	47.92	49.16	74	-24.84	Vertical	
4924.000	6.68	34.82	39.28	48.52	50.74	74	-23.26	6 Vertical	
5982.226	8.05	36.27	39.19	47.07	52.20	74	-21.80) Vertical	
7386.000	9.16	35.44	39.05	48.25	53.80	74	-20.20) Vertical	
9848.000	9.85	38.06	37.79	41.79	51.91	74	-22.09	Vertical	
11860.170	10.55	38.56	38.64	43.07	53.54	74	-20.46	6 Vertical	
3797.945	6.80	33.15	38.87	49.15	50.23	74	-23.77	' Horizontal	
4924.000	6.68	34.82	39.28	49.93	52.15	74	-21.85	6 Horizontal	
6016.949	8.08	36.28	39.18	47.35	52.53	74	-21.47	' Horizontal	
7386.000	9.16	35.44	39.05	45.58	51.13	74	-22.87	' Horizontal	
9848.000	9.85	38.06	37.79	42.31	52.43	74	-21.57	' Horizontal	
12386.320	11.19	39.18	39.03	42.35	53.69	74	-20.31	Horizontal	

Test mode: 802.		11g	Test channel:		Lowest	Remark:		Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
3610.398	6.90	33.01	38.79	48.79	49.91	74	-24.09	Vertical	
4824.000	6.46	34.72	39.24	51.86	53.80	74	-20.20	Vertical	
6095.816	8.06	36.19	39.17	48.14	53.22	74	-20.78	Vertical	
7236.000	8.96	35.60	39.06	45.68	51.18	74	-22.82	Vertical	
9648.000	9.97	37.45	37.91	43.28	52.79	74	-21.21	Vertical	
11622.330	10.44	38.32	38.52	43.56	53.80	74	-20.20	Vertical	
3447.042	7.07	32.83	38.72	48.39	49.57	74	-24.43	Horizontal	
4824.000	6.46	34.72	39.24	48.85	50.79	74	-23.21	Horizontal	
5564.720	7.39	35.31	39.23	50.27	53.74	74	-20.26	Horizontal	
7236.000	8.96	35.60	39.06	47.35	52.85	74	-21.15	Horizontal	
9648.000	9.97	37.45	37.91	43.60	53.11	74	-20.89	Horizontal	
11160.880	10.32	38.12	38.30	43.70	53.84	74	-20.16	Horizontal	

Report No.: SZEM141100603201 Page: 73 of 94

Test mode:	802	.11g	Test cha	nnel:	Middle	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3553.389	6.94	32.95	38.77	47.83	48.95	74	-25.05	Vertical
4874.000	6.57	34.77	39.26	48.51	50.59	74	-23.41	Vertical
6060.637	8.07	36.23	39.18	46.65	51.77	74	-22.23	Vertical
7311.000	9.06	35.52	39.06	45.75	51.27	74	-22.73	Vertical
9748.000	9.91	37.76	37.85	42.50	52.32	74	-21.68	Vertical
11588.750	10.43	38.29	38.51	42.18	52.39	74	-21.61	Vertical
3599.965	6.91	33.00	38.79	48.05	49.17	74	-24.83	Horizontal
4874.000	6.57	34.77	39.26	49.05	51.13	74	-22.87	' Horizontal
5982.226	8.05	36.27	39.19	47.38	52.51	74	-21.49	Horizontal
7311.000	9.06	35.52	39.06	46.65	52.17	74	-21.83	Horizontal
9748.000	9.91	37.76	37.85	42.66	52.48	74	-21.52	Horizontal
11096.470	10.30	38.11	38.27	43.08	53.22	74	-20.78	Horizontal

Test mode:	802.	.11g	Test cha	innel:	Highest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3568.847	6.93	32.97	38.77	46.81	47.94	74	-26.06	6 Vertical
4924.000	6.68	34.82	39.28	48.33	50.55	74	-23.45	5 Vertical
6043.124	8.07	36.25	39.18	47.94	53.08	74	-20.92	2 Vertical
7386.000	9.16	35.44	39.05	48.10	53.65	74	-20.35	Vertical
9848.000	9.85	38.06	37.79	43.81	53.93	74	-20.07	Vertical
11372.800	10.36	38.15	38.41	42.94	53.04	74	-20.96	6 Vertical
3422.194	7.12	32.81	38.71	47.93	49.15	74	-24.85	6 Horizontal
4924.000	6.68	34.82	39.28	48.90	51.12	74	-22.88	B Horizontal
6025.661	8.07	36.27	39.18	47.12	52.28	74	-21.72	e Horizontal
7386.000	9.16	35.44	39.05	48.16	53.71	74	-20.29	Horizontal
9848.000	9.85	38.06	37.79	41.29	51.41	74	-22.59	Horizontal
11706.720	10.48	38.41	38.56	43.09	53.42	74	-20.58	B Horizontal

Report No.: SZEM141100603201 Page: 74 of 94

Test mode:	8	02.11n(HT20)	Test cha	nnel:	Lowest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	_	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3517.580	6.96	32.91	38.75	46.85	47.97	74	-26.03	8 Vertical
4824.000	6.46	34.72	39.24	46.93	48.87	74	-25.13	8 Vertical
5956.314	8.01	36.22	39.19	48.81	53.85	74	-20.15	5 Vertical
7236.000	8.96	35.60	39.06	47.41	52.91	74	-21.09	Vertical
9648.000	9.97	37.45	37.91	44.48	53.99	74	-20.01	Vertical
11555.260	10.4	1 38.27	38.49	42.17	52.36	74	-21.64	Vertical
3684.279	6.86	33.06	38.82	47.13	48.23	74	-25.77	' Horizontal
4824.000	6.46	34.72	39.24	49.14	51.08	74	-22.92	2 Horizontal
5982.226	8.05	36.27	39.19	48.05	53.18	74	-20.82	2 Horizontal
7236.000	8.96	35.60	39.06	48.50	54.00	74	-20.00) Horizontal
9648.000	9.97	37.45	37.91	43.92	53.43	74	-20.57	' Horizontal
11274.500	10.34	4 38.13	38.36	43.26	53.37	74	-20.63	B Horizontal

Test mode:	802	.11n(HT20)	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3584.372	6.92	32.98	38.78	47.68	48.80	74	-25.20	Vertical
4874.000	6.57	34.77	39.26	48.42	50.50	74	-23.50	Vertical
6025.661	8.07	36.27	39.18	47.85	53.01	74	-20.99	Vertical
7311.000	9.06	35.52	39.06	47.75	53.27	74	-20.73	Vertical
9748.000	9.91	37.76	37.85	42.72	52.54	74	-21.46	Vertical
11505.210	10.39	38.23	38.47	42.85	53.00	74	-21.00	Vertical
3620.861	6.90	33.02	38.79	48.25	49.38	74	-24.62	Horizontal
4874.000	6.57	34.77	39.26	48.19	50.27	74	-23.73	Horizontal
6043.124	8.07	36.25	39.18	47.39	52.53	74	-21.47	Horizontal
7311.000	9.06	35.52	39.06	48.02	53.54	74	-20.46	Horizontal
9748.000	9.91	37.76	37.85	43.06	52.88	74	-21.12	Horizontal
11911.760	10.57	38.61	38.66	42.73	53.25	74	-20.75	Horizontal

Report No.: SZEM141100603201 Page: 75 of 94

Test mode:	80	2.11n(HT20)	Test cha	nnel:	Highest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3482.133	7.00	32.87	38.73	48.16	49.30	74	-24.70	Vertical
4924.000	6.68	34.82	39.28	50.98	53.20	74	-20.80	Vertical
6016.949	8.08	36.28	39.18	48.47	53.65	74	-20.35	Vertical
7386.000	9.16	35.44	39.05	45.55	51.10	74	-22.90	Vertical
9848.000	9.85	38.06	37.79	42.81	52.93	74	-21.07	Vertical
11605.530	10.44	38.31	38.52	42.97	53.20	74	-20.80	Vertical
3574.015	6.93	32.97	38.77	47.83	48.96	74	-25.04	Horizontal
4924.000	6.68	34.82	39.28	48.32	50.54	74	-23.46	Horizontal
6025.661	8.07	36.27	39.18	47.58	52.74	74	-21.26	Horizontal
7386.000	9.16	35.44	39.05	46.63	52.18	74	-21.82	Horizontal
9848.000	9.85	38.06	37.79	42.86	52.98	74	-21.02	Horizontal
11209.430	10.33	38.12	38.33	43.31	53.43	74	-20.57	Horizontal

For mode SW700M/37

Test mode:	802.	11b	Test cha	innel:	Lowest	Remark:	1	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3610.398	6.90	33.01	38.79	48.79	49.91	74	-24.09	Vertical
4824.000	6.46	34.72	39.24	50.24	52.18	74	-21.82	Vertical
5982.226	8.05	36.27	39.19	48.59	53.72	74	-20.28	Vertical
7236.000	8.96	35.60	39.06	46.68	52.18	74	-21.82	Vertical
9648.000	9.97	37.45	37.91	42.80	52.31	74	-21.69	Vertical
11290.820	10.34	38.13	38.37	43.07	53.17	74	-20.83	Vertical
3447.042	7.07	32.83	38.72	48.39	49.57	74	-24.43	Horizontal
4824.000	6.46	34.72	39.24	48.61	50.55	74	-23.45	Horizontal
6016.949	8.08	36.28	39.18	48.26	53.44	74	-20.56	Horizontal
7236.000	8.96	35.60	39.06	47.17	52.67	74	-21.33	Horizontal
9648.000	9.97	37.45	37.91	43.60	53.11	74	-20.89	Horizontal
11521.870	10.40	38.24	38.48	43.42	53.58	74	-20.42	Horizontal

Report No.: SZEM141100603201 Page: 76 of 94

Test mode:	802	.11b	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3716.403	6.84	33.09	38.84	48.52	49.61	74	-24.39	Vertical
4874.000	6.57	34.77	39.26	49.05	51.13	74	-22.87	Vertical
6016.949	8.08	36.28	39.18	48.41	53.59	74	-20.41	Vertical
7311.000	9.06	35.52	39.06	48.48	54.00	74	-20.00	Vertical
9748.000	9.91	37.76	37.85	43.51	53.33	74	-20.67	Vertical
11422.280	10.37	38.17	38.43	43.39	53.50	74	-20.50	Vertical
3339.043	7.28	32.62	38.67	47.82	49.05	74	-24.95	Horizontal
4874.000	6.57	34.77	39.26	49.05	51.13	74	-22.87	Horizontal
5982.226	8.05	36.27	39.19	48.38	53.51	74	-20.49	Horizontal
7311.000	9.06	35.52	39.06	46.70	52.22	74	-21.78	Horizontal
9748.000	9.91	37.76	37.85	43.62	53.44	74	-20.56	Horizontal
10873.950	10.21	37.99	38.16	43.09	53.13	74	-20.87	Horizontal

Test mode:	802	.11b	Test cha	innel:	Highest	Remark:	F	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3427.149	7.11	32.81	38.71	47.33	48.54	74	-25.46	Vertical
4924.000	6.68	34.82	39.28	49.27	51.49	74	-22.51	Vertical
5999.562	8.08	36.3	39.18	47.87	53.07	74	-20.93	Vertical
7386.000	9.16	35.44	39.05	46.47	52.02	74	-21.98	Vertical
9848.000	9.85	38.06	37.79	41.76	51.88	74	-22.12	Vertical
11000.550	10.28	38.1	38.22	42.66	52.82	74	-21.18	Vertical
3507.416	6.97	32.9	38.74	47.74	48.87	74	-25.13	Horizontal
4924.000	6.68	34.82	39.28	48.8	51.02	74	-22.98	Horizontal
6122.333	8.05	36.16	39.17	47.57	52.61	74	-21.39	Horizontal
7386.000	9.16	35.44	39.05	45.96	51.51	74	-22.49	Horizontal
9848.000	9.85	38.06	37.79	42.38	52.5	74	-21.5	Horizontal
11555.260	10.41	38.27	38.49	42.96	53.15	74	-20.85	Horizontal

Report No.: SZEM141100603201 Page: 77 of 94

Test mode:	802.	.11g	Test cha	nnel:	Lowest	Remark:	F	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3387.708	7.18	32.75	38.69	47.92	49.16	74	-24.84	Vertical
4824.000	6.46	34.72	39.24	48.85	50.79	74	-23.21	Vertical
5982.226	8.05	36.27	39.19	48.07	53.20	74	-20.80	Vertical
7236.000	8.96	35.60	39.06	48.06	53.56	74	-20.44	Vertical
9648.000	9.97	37.45	37.91	43.41	52.92	74	-21.08	Vertical
11096.470	10.30	38.11	38.27	42.67	52.81	74	-21.19	Vertical
3548.251	6.94	32.94	38.76	47.56	48.68	74	-25.32	Horizontal
4824.000	6.46	34.72	39.24	48.31	50.25	74	-23.75	Horizontal
6025.661	8.07	36.27	39.18	48.02	53.18	74	-20.82	Horizontal
7236.000	8.96	35.60	39.06	48.06	53.56	74	-20.44	Horizontal
9648.000	9.97	37.45	37.91	42.62	52.13	74	-21.87	Horizontal
11571.990	10.42	38.28	38.50	43.34	53.54	74	-20.46	Horizontal

Test mode:	802.	11g	Test cha	innel:	Middle	Remark:	F	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3452.033	7.06	32.84	38.72	48.00	49.18	74	-24.82	Vertical
4874.000	6.57	34.77	39.26	49.03	51.11	74	-22.89	Vertical
6087.002	8.06	36.20	39.17	48.42	53.51	74	-20.49	Vertical
7311.000	9.06	35.52	39.06	47.35	52.87	74	-21.13	Vertical
9748.000	9.91	37.76	37.85	42.50	52.32	74	-21.68	Vertical
11455.380	10.38	38.19	38.45	43.39	53.51	74	-20.49	Vertical
3641.878	6.89	33.03	38.80	47.84	48.96	74	-25.04	Horizontal
4874.000	6.57	34.77	39.26	48.71	50.79	74	-23.21	Horizontal
6043.124	8.07	36.25	39.18	47.39	52.53	74	-21.47	Horizontal
7311.000	9.06	35.52	39.06	46.56	52.08	74	-21.92	Horizontal
9748.000	9.91	37.76	37.85	42.76	52.58	74	-21.42	Horizontal
11274.500	10.34	38.13	38.36	43.48	53.59	74	-20.41	Horizontal

Report No.: SZEM141100603201 Page: 78 of 94

Test mode:	802	.11g	Test cha	nnel:	Highest	Remark:	F	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3457.032	7.05	32.84	38.72	48.83	50.00	74	-24.00	Vertical
4924.000	6.68	34.82	39.28	49.03	51.25	74	-22.75	Vertical
6034.386	8.07	36.26	39.18	48.13	55.28	74	-20.72	Vertical
7386.000	9.16	35.44	39.05	47.13	54.68	74	-21.32	Vertical
9848.000	9.85	38.06	37.79	42.55	54.67	74	-21.33	Vertical
11160.880	10.32	38.12	38.30	43.54	55.68	74	-20.32	Vertical
3457.032	7.05	32.84	38.72	47.42	48.59	74	-25.41	Horizontal
4924.000	6.68	34.82	39.28	48.71	50.93	74	-23.07	Horizontal
5973.576	8.04	36.25	39.19	48.17	53.27	74	-20.73	Horizontal
7386.000	9.16	35.44	39.05	46.36	51.91	74	-22.09	Horizontal
9848.000	9.85	38.06	37.79	41.78	51.90	74	-22.10	Horizontal
11471.960	10.38	38.20	38.45	43.85	53.98	74	-20.02	Horizontal

Test mode:	802	.11n(HT20)	Test cha	innel:	Lowest	Remark:	F	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1655.354	2.74	29.46	38.39	52.65	46.46	74	-27.54	Vertical
3709.691	4.06	33.08	38.83	45.57	43.88	74	-30.12	Vertical
4824.000	4.31	34.72	39.24	47.41	47.20	74	-26.80	Vertical
7236.000	5.28	35.60	39.06	43.36	45.18	74	-28.82	Vertical
9648.000	6.51	37.45	37.91	42.42	48.47	74	-25.53	Vertical
11933.470	7.25	38.63	38.67	42.69	49.90	74	-24.10	Vertical
1706.700	2.79	29.69	38.40	46.39	40.47	74	-33.53	Horizontal
3367.661	3.75	32.70	38.68	46.60	44.37	74	-29.63	Horizontal
4824.000	4.31	34.72	39.24	46.82	46.61	74	-27.39	Horizontal
7236.000	5.28	35.60	39.06	44.18	46.00	74	-28.00	Horizontal
9648.000	6.51	37.45	37.91	40.88	46.93	74	-27.07	Horizontal
12178.980	6.92	38.93	38.85	43.69	50.69	74	-23.31	Horizontal

Report No.: SZEM141100603201 Page: 79 of 94

Test mode:	80	2.11n(HT20)	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1655.354	2.74	29.46	38.39	53.68	47.49	74	-26.51	Vertical
3728.625	4.05	33.10	38.84	45.24	43.55	74	-30.45	Vertical
4874.000	4.36	34.77	39.26	47.99	47.86	74	-26.14	Vertical
7311.000	5.22	35.52	39.06	44.43	46.11	74	-27.89	Vertical
9748.000	6.49	37.76	37.85	41.30	47.70	74	-26.30	Vertical
11994.380	7.21	38.69	38.70	43.54	50.74	74	-23.26	Vertical
1655.354	2.74	29.46	38.39	49.99	43.80	74	-30.20	Horizontal
3728.625	4.05	33.10	38.84	45.24	43.55	74	-30.45	Horizontal
4874.000	4.36	34.77	39.26	47.99	47.86	74	-26.14	Horizontal
7311.000	5.22	35.52	39.06	44.43	46.11	74	-27.89	Horizontal
9748.000	6.49	37.76	37.85	41.07	47.47	74	-26.53	Horizontal
12055.600	7.12	38.77	38.75	43.38	50.52	74	-23.48	Horizontal

Test mode:	802	.11n(HT20)	Test cha	innel:	Highest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1663.803	2.75	29.50	38.39	54.46	48.32	74	-25.68	Vertical
3489.840	3.93	32.88	38.74	45.56	43.63	74	-30.37	Vertical
4944.000	4.42	34.84	39.28	47.56	47.54	74	-26.46	Vertical
7416.000	5.14	35.42	39.05	45.16	46.67	74	-27.33	Vertical
9888.000	6.74	38.18	37.77	41.71	48.86	74	-25.14	Vertical
12556.750	6.82	39.24	39.17	44.29	51.18	74	-22.82	Vertical
1655.354	2.74	29.46	38.39	49.37	43.18	74	-30.82	Horizontal
3672.110	4.10	33.06	38.82	46.58	44.92	74	-29.08	Horizontal
4944.000	4.42	34.84	39.28	46.58	46.56	74	-27.44	Horizontal
7416.000	5.14	35.42	39.05	45.17	46.68	74	-27.32	Horizontal
9888.000	6.74	38.18	37.77	41.71	48.86	74	-25.14	Horizontal
12117.140	7.02	38.85	38.80	44.44	51.51	74	-22.49	Horizontal

Report No.: SZEM141100603201 Page: 80 of 94

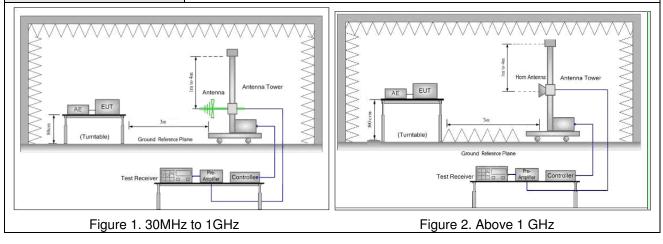
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

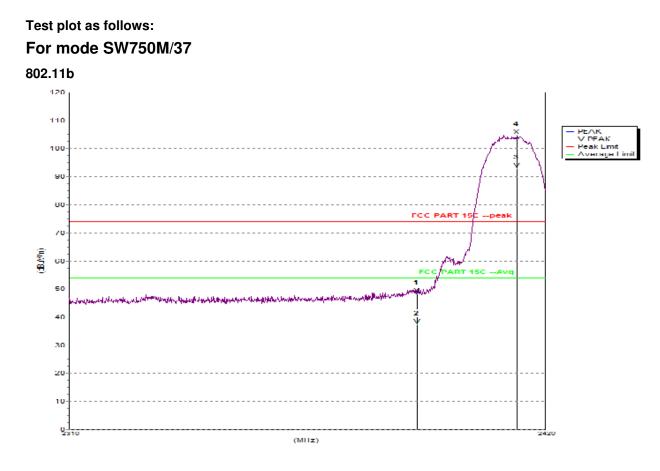


Report No.: SZEM141100603201 Page: 81 of 94

6.9 Restricted bands around fundamental frequency

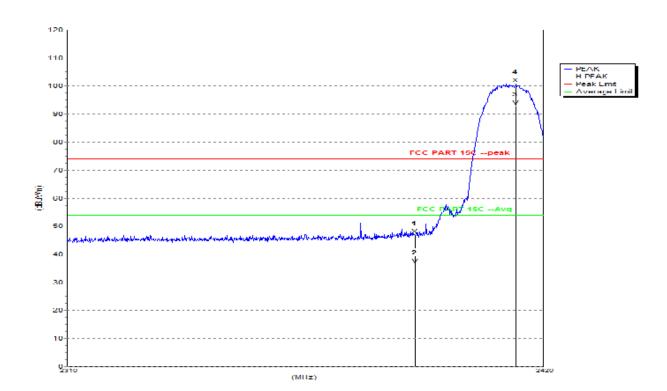
Test Requirement:	47 CFR Part 15C Section	15.209 and 15.205	
Test Method:	ANSI C63.10 2009		
Test Site:	Measurement Distance: 3r	n (Semi-Anechoic Chambe	er)
Limit:	Frequency	Limit (dBuV/m @3m)	Remark
	30MHz-88MHz	40.0	Quasi-peak Value
	88MHz-216MHz	43.5	Quasi-peak Value
	216MHz-960MHz	46.0	Quasi-peak Value
	960MHz-1GHz	54.0	Quasi-peak Value
	Above 1011-	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Tost Sotup:			

Test Setup:

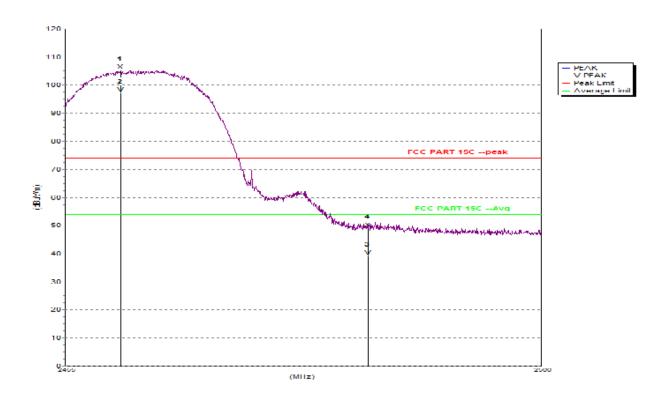

Report No.: SZEM141100603201 Page: 82 of 94

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	 Repeat above procedures until all frequencies measured was complete.
Pre-scan Modes:	Pre-scan transmitting modes under all rate, modulation type and the lowest channel & Highest channels.
Final Test Mode:	The worst case transmitting modes is the 1Mbps of rate of 802.11b, 6Mbps of rate of 802.11g, and 6Mbps of rate of 802.11n(HT20). Test the EUT in the lowest channel and the Highest channel.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

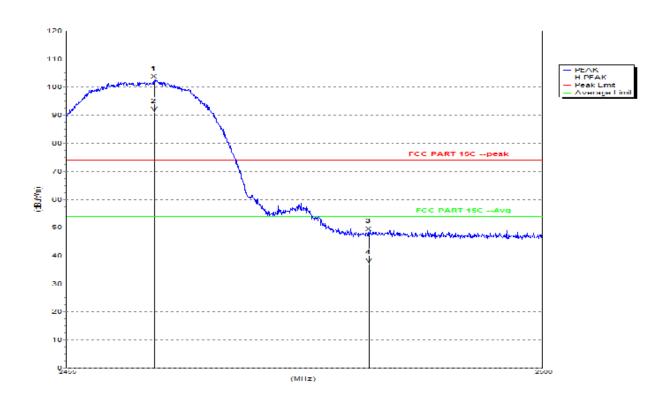

Report No.: SZEM141100603201 Page: 83 of 94

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	48.4	74.0	25.6	28.7	35.3	5.0	V
2 F	2413.400	104.8			28.9	35.3	5.1	V
Avg								
1	2390	37.2	54.0	16.8	28.7	35.3	5.0	V
2 F	2413.400	93.0			28.9	35.3	5.1	V


Report No.: SZEM141100603201 Page: 84 of 94

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	47.0	74.0	27.0	28.7	35.3	5.0	Н
2 F	2413.620	100.9			28.9	35.3	5.1	Н
Avg								
1	2390	36.6	54.0	17.4	28.7	35.3	5.0	Н
2 F	2413.620	92.9			28.9	35.3	5.1	Н

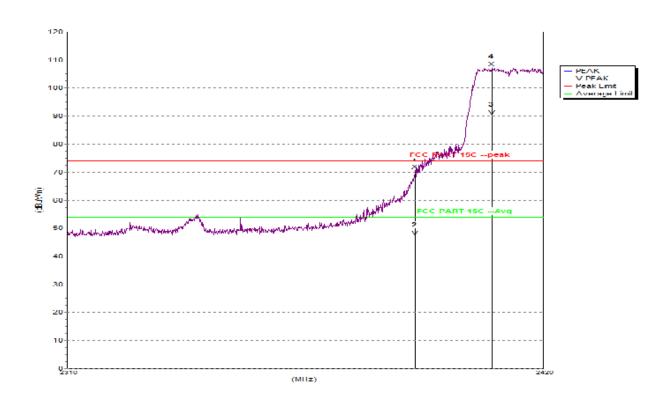
Report No.: SZEM141100603201 Page: 85 of 94



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2460.220	105.3			29.2	35.3	5.2	V
2	2483.5	49.0	74.0	25.0	29.3	35.3	5.2	V
Avg								
1 F	2460.220	97.2			29.2	35.3	5.2	V
2	2483.5	39.2	54.0	14.8	29.3	35.3	5.2	V

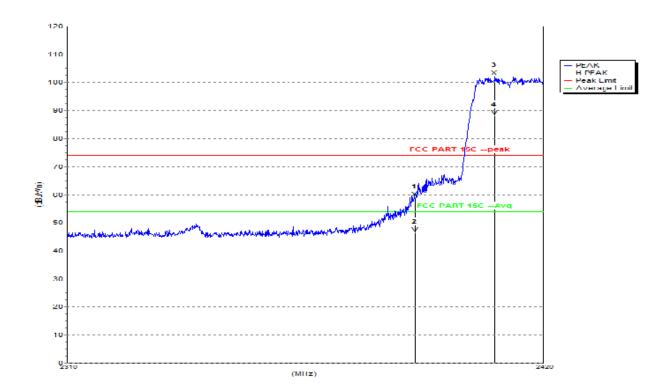
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 86 of 94


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.280	102.7			29.2	35.3	5.2	Н
2	2483.5	48.4	74.0	25.6	29.3	35.3	5.2	Н
Avg								
1 F	2463.280	91.0			29.2	35.3	5.2	Н
2	2483.5	37.1	54.0	16.9	29.3	35.3	5.2	Н

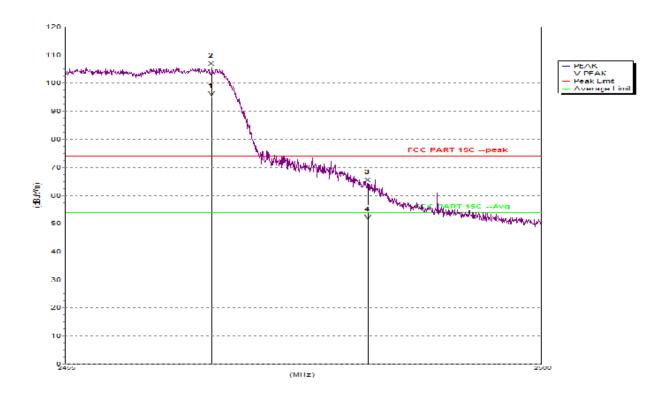
802.11g

SGS-CSTC Standards Technical Services Ltd.


Report No.: SZEM141100603201 Page: 87 of 94

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	70.8	74.0	3.2	28.7	35.3	5.0	V
2 F	2407.900	107.2			28.8	35.3	5.1	٧
Avg								
1	2390	47.2	54.0	6.8	28.7	35.3	5.0	V
2 F	2407.900	90.1			28.8	35.3	5.1	۷

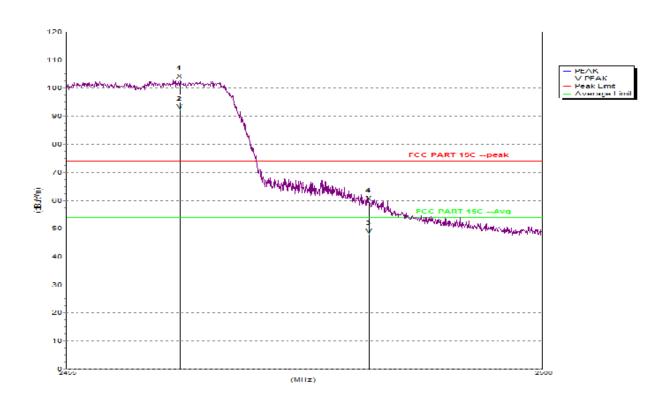
Report No.: SZEM141100603201 Page: 88 of 94



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	58.9	74.0	15.1	28.7	35.3	5.0	Н
2 F	2408.450	102.2			28.8	35.3	5.1	Н
Avg								
1	2390	46.3	54.0	7.7	28.7	35.3	5.0	Н
2 F	2408.450	88.2			28.8	35.3	5.1	Н

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 89 of 94



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2468.815	105.7			29.2	35.3	5.2	V
2	2483.5	64.4	74.0	9.6	29.3	35.3	5.2	V
Avg								
1 F	2468.815	95.1			29.2	35.3	5.2	V
2	2483.5	51	54.0	3.0	29.3	35.3	5.2	V

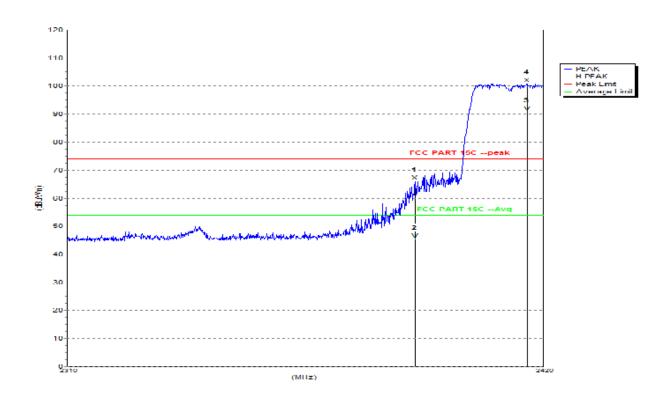
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 90 of 94

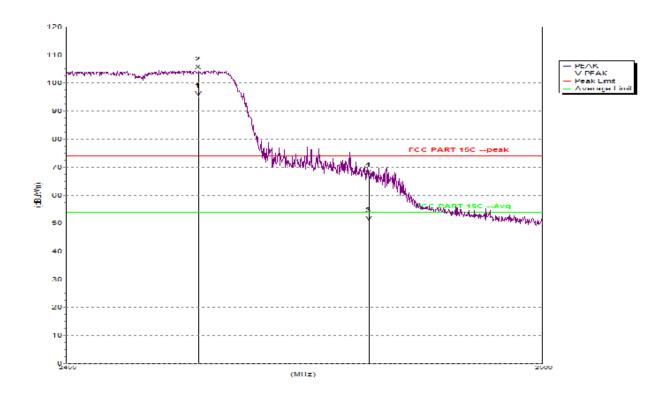
Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2465.710	103.0			29.2	35.3	5.2	V
2	2483.5	59.6	74.0	14.4	29.3	35.3	5.2	٧
Avg								
1 F	2465.710	92.2			29.2	35.3	5.2	٧
2	2483.5	48.0	54.0	6.0	29.3	35.3	5.2	۷

Report No.: SZEM141100603201 Page: 91 of 94

120 110 PEAK V PEAK Peak Limit Average I 100 90 UU 70 (BMM) GÜ 10 Maple мî 50 40 30 20 10 23 (MIIZ)

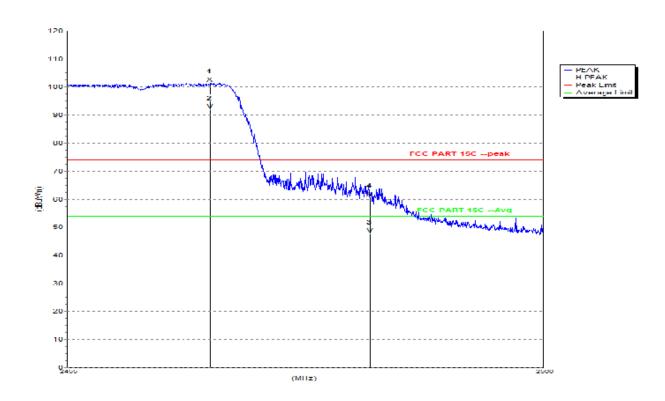

802 1	1 1 n/	(HT20)	
0UZ .		(П120)	

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	67.4	74.0	6.6	28.8	35.3	5.0	V
2 F	2418.460	103.3			28.9	35.3	5.1	V
Avg								
1	2390	49.8	54.0	4.2	28.8	35.3	5.0	V
2 F	2418.460	92.2			28.9	35.3	5.1	V


Report No.: SZEM141100603201 Page: 92 of 94

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	66.0	74.0	8.0	28.7	35.3	5.0	Н
2 F	2416.260	100.9			28.9	35.3	5.1	Н
Avg								
1	2390	45.4	54.0	8.6	28.7	35.3	5.0	Н
2 F	2416.260	90.8			28.9	35.3	5.1	Н

Report No.: SZEM141100603201 Page: 93 of 94



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2467.510	104.6			29.2	35.3	5.2	V
2	2483.5	66.9	74.0	7.1	29.3	35.3	5.2	V
Avg								
1 F	2467.510	95.1			29.2	35.3	5.2	V
2	2483.5	50.7	54.0	3.3	29.3	35.3	5.2	V

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM141100603201 Page: 94 of 94

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2468.500	101.5			29.2	35.3	5.2	Н
2	2483.5	60.7	74.0	13.3	29.3	35.3	5.2	Н
Avg								
1 F	2468.500	91.9			29.2	35.3	5.2	Н
2	2483.5	47.8	54.0	6.2	29.3	35.3	5.2	Н

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor