SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Telephone: $+86(0) 2082155555$	Report No.: GZEM170600318001	
Fax:	+86 (0) 2082075059	Page:
Email:	ee.guangzhou@sgs.com	FC 71

FCC ID: 2AANUSHB4305

TEST REPORT

Application No.:	GZEM1706003180CR
FCC ID:	2AANUSHB4305
Applicant:	Gibson Innovations Limited
Address of Applicant:	5/F, Philips Electronics Building, 5 Science Park East Avenue, Hong Kong Science Park, Shatin, N.T. Hong Kong
Manufacturer:	The same as Applicant
Address of Manufacturer:	The same as Applicant
Factory:	Minami Acoustics Limited
Address of Factory:	Muhejing Road Gangkou Town, Zhongshan City, Guangdong, China.
Equipment Under Test (EUT):	
EUT Name:	In-ear Bluetooth Headphones
Model No.:	SHB4305, SHB4305/XX, SHB4305YY/XX (YY=AA to ZZ; XX=00 to 99) a
${ }_{\square}$	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
Trade Mark:	Philips
Standards:	47 CFR Part 15, Subpart C:2016 section 15.247
Date of Receipt:	2017-06-01
Date of Test:	2017-07-26
Date of Issue:	2017-07-31
Test Result :	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 2 of 71
FCC ID: 2AANUSHB4305

2 Version

Revision Record

Version	Chapter	Date	Modifier	Remark
00		2017-07-31		Original Report

Authorized for issue by:		
Tested By	$\text { Cwmy } W_{L}$ Curry_Wu/Project Engineer	$\frac{2017-07-26}{\text { Date }}$
Checked By	Ridey Liu Ricky_Liu/ Reviewer	$\frac{2017-07-31}{\text { Date }}$

Report No.: GZEM170600318001
Page: 3 of 71
FCC ID: 2AANUSHB4305

3 Test Summary

Test	Test Requirement	Test method	Result
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS
Occupied Bandwidth	FCC PART 15 C section 15.247 (a)(1)	ANSI C63.10: Clause 6.9.2	PASS
Carrier Frequencies Separated	$\begin{gathered} \text { FCC PART } 15 \text { C } \\ \text { section } 15.247(\mathrm{a})(1) \end{gathered}$	ANSI C63.10: Clause 7.8.2	PASS
Hopping Channel Number	FCC PART 15 C section 15.247(a)(1)(iii)	ANSI C63.10: Clause 7.8.3	PASS
Dwell Time	FCC PART 15 C section 15.247(a)(1)(iii)	ANSI C63.10: Clause 7.8.4	PASS
Pseudorandom Frequency Hopping Sequence	FCC PART 15 C section $15.247(a)(1)$	FCC PART 15 C section 15.247(a)(1)	PASS
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(1)	ANSI C63.10: Clause 7.8.5	PASS
Unwanted Emission (30 MHz to 25 GHz)	FCC PART 15 C section 15.247(d)	ANSI C63.10: Clause 7.8.8	PASS
Radiated Spurious Emissions	FCC PART 15 C Section 15.209 and 15.205	ANSI C63.10:	PASS
Radiated Emissions which fall in the restricted bands	FCC PART 15 C section 15.247(d)	ANSI C63.10: Clause 6.3, 6.5 and 6.6	PASS
Band Edges Measurement	FCC PART 15 C section 15.247 (d) \&15.205	ANSI C63.10: Clause 6.10	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS
Remark: N/A: not applicable. Refer to the relative section for the details. EUT: In this whole report EUT means Equipment Under Test. Tx: In this whole report Tx (ortx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver. RF: In this whole report RF means Radio Frequency. ANSI C63.10: the detail version is ANSI C63.10:2013 in the whole report. DA 00-705 was used as a guideline in preparing this Test Report. Conducted testing use a direct connection between the antenna port of the device and the spectrum analyzer, may through suitable attenuator, all the attenuation in the conducted RF path, include cable loss or external attenuation will be offset to the spectrum analyzer during testing. Detailed offset value, please refer to the corresponding test plot.			

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 4 of 71
FCC ID: 2AANUSHB4305

a Declaration of EUT Family Grouping:
Model No.: SHB4305, SHB4305/XX, SHB4305YY/XX
$Y Y=A A$ to $Z Z$ (for different color)
$X X=00$ to 99 (for marketing purpose representing different countries)
According to the declaration from the applicant, the electrical circuit design, layout, components used and internal wiring were identical for all models, only with different color and destination country.
Therefore only one model SHB4305 was tested in this report.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 5$ of 71
FCC ID: 2AANUSHB4305

4 Contents

1 Cover Page 1
2 Version 2
3 Test Summary 3
4 Contents 5
5 General Information 6
5.1 Details of E.U.T. 6
5.2 Modulation configure 6
5.3 Description of Support Units 7
5.4 Deviation from Standards 7
5.5 Abnormalities from Standard Conditions 7
5.6 Other Information Requested by the Customer. 7
5.7 Test Location 8
5.8 Measurement Uncertainty 8
5.9 Test Facility 9
6 Equipment List 10
7 Test Results 12
7.1 E.U.T. test conditions 12
7.2 Antenna Requirement 15
7.3 Occupied Bandwidth 16
7.4 Carrier Frequencies Separated 21
7.5 Hopping Channel Number 25
7.6 Dwell Time 27
7.7 Pseudorandom Frequency Hopping Sequence 38
7.8 Maximum Peak Output Power. 41
7.9 Conducted Spurious Emissions 46
7.10 Radiated Spurious Emissions 52
7.11 Radiated Emissions which fall in the restricted bands 59
7.12 Band Edges Requirement 65
7.13 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz 68

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 6$ of 71
FCC ID: 2AANUSHB4305

5 General Information

5.1 Details of E.U.T.

Operating Frequency
Type of Modulation:
Number of Channels
Channel Separation:
Antenna Type
Antenna gain:
Speciality:
Function:
Power Supply:

Normal Test Voltage:

2402 MHz to 2480 MHz
GFSK, (т/4)DQPSK, 8DPSK
79 Channels
1 MHz
Integral
0 dBi
Bluetooth 2.1 with EDR
Headphones with BT function to transmit and receive audio signal DC 3.7V rechargeable battery for working

DC 5V 0.5A USB port for charging
DC 3.7V for working
DC 5V for charging

5.2 Modulation configure

Modulation	Packet	Packet Type	Packet Size
GFSK	DH1	4	24
	DH3	11	183
	DH5	15	339
$(\pi / 4)$ DQPSK	2 DH 1	20	54
	2 DH 3	26	367
	2 DH 5	30	379
8DPSK	$3 D H 1$	24	83
	$3 D H 3$	27	552
	$3 D H 5$	31	1021

Remark:

Modulation 8-DPSK

The modulation 8 PSK works with 8 phases between 0 and 2*pi (0 and 360 degrees), it can be seeing bellow in the circle.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 7$ of 71
FCC ID: 2AANUSHB4305

Normal mode: the Bluetooth has been tested on the Modulation of GFSK;
EDR mode: the Bluetooth has been tested on the Modulation of ($\pi / 4$)DQPSK and 8DPSK, compliance test and record the worst case on 8DPSK.

5.3 Description of Support Units

The EUT has been tested with corresponding accessories as below supplied by SGS:

Description	Manufacturer	Model No.	SN/Certificate NO
NoteBook	IBM	T30	S/N78-3VMLX 06/01
BT test board	SGS EMC	RF 07	RF 07
Adapter 1(EMCA021)	Minji	MJ4105	N/A

Using the special software and development board we can enter the product for engineer mode then we can control the EUT to select the wanted channel for test. The test board and PC are only to configure the engineer mode and not used to final test

5.4 Deviation from Standards

Biconical and log periodic antennas were used instead of dipole antennas.

5.5 Abnormalities from Standard Conditions

None

5.6 Other Information Requested by the Customer

None.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 8 of 71
FCC ID: 2AANUSHB4305

5.7 Test Location

All tests were performed at:
SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic \& Technology Development District, Guangzhou, China 510663
Tel: +86 2082155555 Fax: +86 2082075059
No tests were sub-contracted.

5.8 Measurement Uncertainty

No.	Item	Measurement uncertainty
1	Conducted emission	$1.02 \mathrm{~dB}(9 \mathrm{kHz}$ to 150 kHz$)$
		$1.05 \mathrm{~dB}(150 \mathrm{kHz}$ to 30 MHz$)$
2	Radiated emission	$5.06 \mathrm{~dB}(30 \mathrm{MHz}$ to 1 GHz$)$
		$5.06 \mathrm{~dB}(1 \mathrm{GHz}$ to 26 GHz$)$

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 9$ of 71
FCC ID: 2AANUSHB4305

5.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- NVLAP (Lab Code: 200611-0)

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

- ACMA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

- SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

- CNAS (Lab Code: L0167)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

- FCC Recognized 2.948 Listed Test Firm(Registration No.: 282399)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

- FCC Recognized Accredited Test Firm(Registration No.: 486818)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: CN5016, Test Firm Registration Number: 486818, Jul 13, 2017.

- Industry Canada (Registration No.: 4620B-1)

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

- VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)

The 10 m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co. Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

- CBTL (Lab Code: TL129)

SGS-CSTC Standards Technical Services Co., Ltd., E\&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01 and Rules of procedure IECEE 02, and the relevant IECEE CB-Scheme Operational documents.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 10$ of 71
FCC ID: 2AANUSHB4305

6 Equipment List

RE in Chamber						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
					(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0525	Compact SemiAnechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2016-12-04	2019-12-03
EMC0522	EMI Test Receiver	Rohde \& Schwarz	ESIB26	100283	2017-01-20	2018-01-19
EMC0056	EMI Test Receiver	Rohde \& Schwarz	ESCI	100236	2017-01-20	2018-01-19
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2016-04-19	2018-04-18
EMC2025	Trilog Broadband Antenna $30-1000 \mathrm{MHz}$	SCHWARZBECK MESSELEKTRONIK	VULB 9160	9160-3372	2016-09-08	2019-09-07
SEM00318	Trilog Broadband Antenna $25-2000 \mathrm{MHz}$	SCHWARZBECK MESSELEKTRONIK	VULB 9168	665	2016-06-29	2019-06-28
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2016-09-08	2019-09-07
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2017-05-04	2020-05-03
EMC2026	Horn Antenna $1-18 \mathrm{GHz}$	SCHWARZBECK MESSELEKTRONIK	BBHA 9120D	9120D-841	2016-09-09	2019-09-08
EMC0521	$1-26.5 \mathrm{GHz}$ Pre-Amplifier	Agilent	8449B	3008A01649	2017-01-20	2018-01-19
EMC2065	Amplifier	HP	8447F	N/A	2017-06-19	2018-06-18
EMC2086	PRE AMPLIFIER MH648A	ANRITSU CORP	MH648A	N/A	2016-12-02	2017-12-01
EMC2063	Pre-amplifier 1GHz- 26 GHz	Compliance Direction Systems Lnc.	$\begin{gathered} \text { PAP-1G26- } \\ 48 \end{gathered}$	6279.628	2016-12-02	2017-12-01
EMC0523	Active Loop Antenna	EMCO	6502	42963	2016-02-27	2018-02-26
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESSELEKTRONI	BBHA 9170	9170-375	2017-05-23	2020-05-22
EMC2079	High Pass Filter(915MHz)	FSY MICROWAVE	HM1465-9SS	009	2017-01-20	2018-01-19
EMC2069	2.4GHz Filter	Micro-Tronics	BRM 50702	149	2017-01-20	2018-01-19
EMC0530	10m SemiAnechoic Chamber	ETS	N/A	N/A	2016-04-30	2018-04-29

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 11 of 71
FCC ID: 2AANUSHB4305

Conducted Emission						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
	(YYYY-MM-DD)	(YYYY-MM-DD)				
EMC0306	Shielding Room	Zhong Yu	$8 \times 3 \times 3.8 \mathrm{~m}^{3}$	N/A	N/A	N/A
EMC0118	Two-line v-netwok	R\&S	ENV216	100359	$2017-01-20$	$2018-01-19$
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	$2016-09-20$	$2017-09-19$
EMC0506	EMI Test Receiver	Rohde \& Schwarz	ESCS30	100085	$2016-12-02$	$2017-12-01$
EMC0107	Coaxial Cable	SGS	$2 m$	N/A	$2016-07-24$	$2018-07-23$
EMC0106	Voltage Probe	SGS	N/A	N/A	$2016-04-05$	$2018-04-04$
EMC0120	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8-02	20550	$2016-09-26$	$2017-09-25$
EMC0121	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4-02	20549	$2016-09-28$	$2017-09-27$
EMC0122	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	20548	$2016-09-26$	$2017-09-25$
EMC2047	CDN	Elektronik- Feinmechanik	L-801:AF2	2793	$2015-09-19$	$2018-09-18$
EMC2048	CDN	Elektronik- Feinmechanik	L-801:M2/M3	2738	$2015-09-25$	$2018-09-24$
EMC2062	$6 d B$ Attenuator	HP	$8491 A$	24487	$2016-04-05$	$2018-04-04$
EMC0167	Conical metal housing	SGS-EMC	N/A	N/A	$2016-04-19$	$2018-04-18$

General used equipment						
No.	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
					(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0006	DMM	Fluke	73	70681569	2016-09-01	2017-08-31
EMC0007	DMM	Fluke	73	70671122	2016-08-22	2017-08-21

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 12$ of 71
FCC ID: 2AANUSHB4305

7 Test Results

7.1 E.U.T. test conditions

Test Voltage:
Temperature:
Humidity:
Atmospheric Pressure:
Requirements:

Test frequencies and frequency range:

DC 3.7V
$20.0-25.0^{\circ} \mathrm{C}$
38-50 \% RH
1000-1010 mbar
15.31(e): For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.
15.32: Power supplies and CPU boards used with personal computers and for which separate authorizations are required to be obtained shall be tested as follows: Testing shall be in accordance with the procedures specified in Section 15.31 of this part.

According to the $15.31(\mathrm{~m})$ Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz , up to at least the frequency shown in the following table:

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 13$ of 71
FCC ID: 2AANUSHB4305

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Frequency range of radiated emission measurements

Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified
At or above 30 GHz	

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 14 of 71
FCC ID: 2AANUSHB4305

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	27	2429	54	2456
1	2403	28	2430	55	2457
2	2404	29	2431	56	2458
3	2405	30	2432	57	2459
4	2406	31	2433	58	2460
5	2407	32	2434	59	2461
6	2408	33	2435	60	2462
7	2409	34	2436	61	2463
8	2410	35	2437	62	2464
9	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	1	1
26	2428	53	2455	1	1

Using the special software and development board we can enter the product for engineer mode then we can control the EUT to select the wanted channel for test as above list.
Test frequencies are the lowest channel: 0 channel(2402 MHz), middle channel: 39 channel $(2441 \mathrm{MHz}$) and highest channel: 78 channel $(2480 \mathrm{MHz}$)

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 15$ of 71
FCC ID: 2AANUSHB4305

7.2 Antenna Requirement

Standard requirement

15.203 requirement:

For intentional device. According to 15.203. an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
15.247 (c) (1)(i) requirement:
(i) Systems operating in the $2400-2483.5 \mathrm{MHz}$ bands that are used exclusively for fixed.

Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

EUT Antenna

The antenna is integrated antenna and no consideration of replacement. The maximum gain of the antenna is 0 dBi .

Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 16$ of 71
FCC ID: 2AANUSHB4305

7.3 Occupied Bandwidth

Test Requirement:
 FCC Part 15 C section 15.247

(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

Test Method:
Test Status:

ANSI C63.10: Clause 6.9.2
Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data package. Compliance test in normal mode (DH5 data packet with GFSK modulation type) and EDR mode (3DH5 data packet with 8DPSK modulation type) as the worst case was found.

Pre-test the EUT in B/O mode and charging mode find the worst case is B / O Mode.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer: Span = approximately 2 to 5 times the 20 dB bandwidth, centring on a hopping channel;
3. Set the spectrum analyzer: RBW:1\% $\sim 5 \%$ of the 20 dB bandwidth ,VBW $>=3$ RBW. Sweep $=$ auto; Detector Function = Peak. Trace $=$ Max Hold.
4. Mark the peak frequency and -20 dB points bandwidth.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 17$ of 71
FCC ID: 2AANUSHB4305

Test result:
Normal mode (DH5 data packet with GFSK modulation type):

Test Channel	Bandwidth(MHz)	2/3 bandwidth (MHz)
Lowest	0.992	0.661
Middle	0.982	0.655
Highest	0.992	0.661

EDR mode (3DH5 data packet with 8DPSK modulation type):

Test Channel	Bandwidth (MHz)	2/3 bandwidth (MHz)
Lowest	1.222	0.815
Middle	1.222	0.815
Highest	1.222	0.815

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 18 of 71
FCC ID: 2AANUSHB4305

Result plot as follows:

Normal mode (DH5 data packet with GFSK modulation type):
Lowest Channel(2.402 GHz):

Middle Channel(2.441 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 19$ of 71
FCC ID: 2AANUSHB4305

Highest Channel(2.480 GHz):

EDR mode (3DH5 data packet with 8DPSK modulation type):
Lowest Channel(2.402 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 20 of 71
FCC ID: 2AANUSHB4305

Middle Channel(2.441 GHz):

Highest Channel(2.480 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 21 of 71
FCC ID: 2AANUSHB4305

7.4 Carrier Frequencies Separated

Test Requirement:

Test Method:
 Test Status:

FCC Part 15 C section 15.247
(a),(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

ANSI C63.10: Clause 7.8.2

Pre-test the EUT in hopping mode with different data packet. Compliance test in hopping with EDR mode (3DH5 data packet with 8DPSK modulation type) as the worst case was found.

Pre-test the EUT in B/O mode and charging mode find the worst case is B/O Mode.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW >= 1% of the span, VBW >= RBW, Sweep $=$ auto; Detector Function $=$ Peak. Trace $=$ Max, hold.
3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 22 of 71
FCC ID: 2AANUSHB4305

Test result:

Test Channel	Carrier Frequencies Separated	Limit(1)	Pass/Fail
Lower Channels (channel 0 and channel 1)	1.011 MHz	0.815	Pass
Middle Channels (channel 39 and channel 40)	1.002 MHz	0.815	Pass
Upper Channels (channel 77 and channel 78)	1.002 MHz	0.815	Pass

Remark:
(1) The limit is two-thirds of the 20 dB bandwidth EDR(3DH5) mode due to the transmission power is less than 0.125 W shown on section 7.3 of this report.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 23 of 71
FCC ID: 2AANUSHB4305

Result plot as follows:
Lowest Channels: Carrier Frequencies Separated

Middle Channels: Carrier Frequencies Separated

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 24 of 71
FCC ID: 2AANUSHB4305

Highest Channels: Carrier Frequencies Separated

Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 25 of 71
FCC ID: 2AANUSHB4305

7.5 Hopping Channel Number

Test Requirement: FCC Part15 C section 15.247
(a)(1)(iii) Frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band shall use at least 15 channels.

Test Method:

ANSI C63.10: Clause 7.8.3
Test Status:
Pre-test the EUT in hopping mode with different data packet. Compliance test in hopping with EDR mode (3DH5 data packet with 8DPSK modulation type) as the worst case was found.

Pre-test the EUT in B/O mode and charging mode find the worst case is B/O Mode.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW $=100 \mathrm{kHz} . \mathrm{VBW}=100 \mathrm{kHz}$. Sweep $=$ auto; Detector Function $=$ Peak. Trace $=$ Max hold.
3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: start frequency $=2400 \mathrm{MHz}$. stop frequency $=2483.5 \mathrm{MHz}$. Submit the test result graph.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 26 of 71
FCC ID: 2AANUSHB4305

Test result: Total channels are 79 channels.

Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 27 of 71
FCC ID: 2AANUSHB4305

7.6 Dwell Time

Test Requirement:

Test Method:

Test Status:

FCC Part 15 C section 15.247
(a)(1)(iii) Frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

ANSI C63.10: Clause 7.8.4

Test the EUT in hopping mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in hopping mode with EDR mode (3DH1, 3DH3 and 3DH5 data packet with 8DPSK modulation type) as the worst case was found.
Pre-test the EUT in B/O mode and charging mode find the worst case is B/O Mode.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
2. Set spectrum analyzer span $=0$. centered on a hopping channel;
3. Set RBW $=1 \mathrm{MHz}$ and VBW $=1 \mathrm{MHz}$. Sweep $=$ as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = Max hold;
4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g.. data rate. modulation format. etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 28 of 71
FCC ID: 2AANUSHB4305

Test Result:

The test period: $\mathrm{T}=0.4$ Second/Channel $\times 79$ Channel $=31.6 \mathrm{~s}$

1. Channel 0: 2.402 GHz
3DH1 time slot $=0.410(\mathrm{~ms}) * 33 *(31.6 / 3.16)=135.300 \mathrm{~ms}$
3DH3 time slot $=1.652(\mathrm{~ms}) * 16 *(31.6 / 3.16)=264.320 \mathrm{~ms}$
3DH5 time slot $=2.915(\mathrm{~ms}) * 11 *(31.6 / 3.16)=320.650 \mathrm{~ms}$
2. Channel 39: 2.441 GHz
3DH1 time slot $=0.400(\mathrm{~ms}) * 33 *(31.6 / 3.16)=132.000 \mathrm{~ms}$
3DH3 time slot $=1.662(\mathrm{~ms}) * 16 *(31.6 / 3.16)=265.920 \mathrm{~ms}$
3DH5 time slot $=2.895(\mathrm{~ms}) * 11 *(31.6 / 3.16)=318.450 \mathrm{~ms}$
3. Channel 78: 2.480 GHz
3DH1 time slot $=0.390(\mathrm{~ms}) * 33 *(31.6 / 3.16)=128.700 \mathrm{~ms}$
3DH3 time slot $=1.642(\mathrm{~ms}) * 16 *(31.6 / 3.16)=262.720 \mathrm{~ms}$
3DH5 time slot $=2.915(\mathrm{~ms}) * 11 *(31.6 / 3.16)=320.650 \mathrm{~ms}$

The average time of occupancy in the specified 31.6 second period is equal to pulse width*(\# of pulse in observation period)*(test period / observation period)

The results are not greater than 0.4 seconds.
The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 29 of 71
FCC ID: 2AANUSHB4305
Result plot as follows:

1. Lowest channel (2.402 GHz):
(1). 3DH1

Pulse Width:

| | Delta 1 [T1] | RBW | 1 MHz | RF Att | 30 dB | |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Ref Lvl | -1.06 dB | VBW | 1 MHz | | | |
| 20 dBm | 409.819639 | Vs | SWT | 5 ms | Unit | dBm |

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 30$ of 71
FCC ID: 2AANUSHB4305
(2) 3DH3

Pulse Width:

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 31$ of 71
FCC ID: 2AANUSHB4305
(3) 3DH5

Pulse Width:

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 32$ of 71
FCC ID: 2AANUSHB4305

2. Middle Channel (2.441 GHz):

(1). 3DH1

Pulse Width:

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 33$ of 71
FCC ID: 2AANUSHB4305
(2) 3DH3

Pulse Width:

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 34$ of 71
FCC ID: 2AANUSHB4305
(3) 3DH5

Pulse Width:

Number of Pulses in 3.16 S observation period:

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 35$ of 71
FCC ID: 2AANUSHB4305
3. Highest Channel (2.480 GHz):
(1). 3DH1

Pulse Width:

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 36$ of 71
FCC ID: 2AANUSHB4305
(2) 3DH3

Pulse Width:

Number of Pulses in 3.16 S observation period:

Report No.: GZEM170600318001
Page: $\quad 37$ of 71
FCC ID: 2AANUSHB4305
(3) 3DH5

Pulse Width:

Number of Pulses in 3.16 S observation period:

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 38$ of 71
FCC ID: 2AANUSHB4305

7.7 Pseudorandom Frequency Hopping Sequence

7.7.1 Standard requirement

15.247(a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW . The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 39$ of 71
FCC ID: 2AANUSHB4305

7.7.2 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: $\quad 47$ CFR Part 15C Section 15.247 (a)(1), (h) requirement:
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^{9}-1=511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 40$ of 71
FCC ID: 2AANUSHB4305

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.
According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 41$ of 71
FCC ID: 2AANUSHB4305

7.8 Maximum Peak Output Power

Test Requirement: FCC Part 15 C section 15.247
(b)(1)For frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the $5725-5850 \mathrm{MHz}$ band: 1 watt. For all other frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band: 0.125 watts.
Refer to the result "Hopping channel number" of this document. The 1 watt (30.0 dBm) limit applies.
Test Method: \quad ANSI C63.10: Clause 7.8.5
Test mode:
Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest $(2480 \mathrm{MHz}$) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5 data packet with GFSK modulation type) and EDR mode (3DH5 data packet with 8DPSK modulation type) as the worst case was found.
Pre-test the EUT in B/O mode and charging mode find the worst case is B / O Mode.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW $>20 \mathrm{~dB}$ bandwidth of the emission being measured, VBW $>=$ RBW. Sweep = auto; Detector Function = Peak.
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 42$ of 71
FCC ID: 2AANUSHB4305

Test Result:

Normal mode (DH5 data packet with GFSK modulation type)

Test Channel	Fundamental Frequency (MHz)	Output Power $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Result
Lowest	2402	-2.15	21	Pass
Middle	2441	-2.15	21	Pass
Highest	2480	-2.51	21	Pass

EDR mode (3DH5 data packet with 8DPSK modulation type)

Test Channel	Fundamental Frequency (MHz)	Output Power $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Result
Lowest	2402	-3.36	21	Pass
Middle	2441	-3.47	21	Pass
Highest	2480	-3.94	21	Pass

Remark: cable lose $=1.5 \mathrm{~dB}$
Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 43 of 71
FCC ID: 2AANUSHB4305

Result plot as follows:

Normal mode (DH5 data packet with GFSK modulation type):

Lowest Channel (2.402 MHz):

Middle Channel(2.441 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 44$ of 71
FCC ID: 2AANUSHB4305

Highest Channel(2.480 GHz):

EDR mode (3DH5 data packet with 8DPSK modulation type):
Lowest channel(2.402 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 45$ of 71
FCC ID: 2AANUSHB4305

Middle channel(2.441 GHz):

Highest channel(2.480 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 46$ of 71
FCC ID: 2AANUSHB4305

7.9 Conducted Spurious Emissions

Test Requirement: FCC Part15 C section 15.247
(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Method:
Test Status:

ANSI C63.10: Clause 7.8.8
Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), middle (2441 MHz) and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with Normal mode (DH5 data packet with GFSK modulation type) as the worst case was found.
Pre-test the EUT in B/O mode and charging mode find the worst case is B/O Mode.

Test Configuration:

Ground Reference Plane

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
2. Set the spectrum analyzer: RBW $=100 \mathrm{kHz} . \mathrm{VBW}=300 \mathrm{KHz}$. Sweep $=$ auto; Detector Function $=$ Peak (Max. hold).

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 47$ of 71
FCC ID: 2AANUSHB4305

Result plot as follows:
Lowest Channel: 30MHz to 1 GHz

Lowest Channel: 1 GHz to 5 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 48$ of 71
FCC ID: 2AANUSHB4305

Lowest Channel: 5 GHz to 25 GHz

Middle Channel: 30 MHz to 1 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 49 of 71
FCC ID: 2AANUSHB4305

Middle Channel: 1 GHz to 5 GHz

Middle Channel: 5 GHz to 25 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 50$ of 71
FCC ID: 2AANUSHB4305

Highest Channel: 30 MHz to 1 GHz

Highest Channel: 1 GHz to 5 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 51 of 71
FCC ID: 2AANUSHB4305

Highest Channel: 5 GHz to 25 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 52 of 71
FCC ID: 2AANUSHB4305

7.10 Radiated Spurious Emissions

Test Requirement:
Test Method:
Test Site:

Receiver Setup:

47 CFR Part 15C Section 15.209 and 15.205
ANSI C63.10: 2013
Measurement Distance:3m (Semi-Anechoic Chamber below 1GHz, Full Anechoic Chamber above 1GHz)

Frequency	Detector	RBW	VBW	Remark
$0.009 \mathrm{MHz}-0.090 \mathrm{MHz}$	Peak	10 kHz	30 kHz	Peak
$0.009 \mathrm{MHz}-0.090 \mathrm{MHz}$	Average	10 kHz	30 kHz	Average
$0.090 \mathrm{MHz}-0.110 \mathrm{MHz}$	Quasi-peak	10 kHz	30 kHz	Quasi-peak
$0.110 \mathrm{MHz}-0.490 \mathrm{MHz}$	Peak	10 kHz	30 kHz	Peak
$0.110 \mathrm{MHz}-0.490 \mathrm{MHz}$	Average	10 kHz	30 kHz	Average
$0.490 \mathrm{MHz}-30 \mathrm{MHz}$	Quasi-peak	10 kHz	30 kHz	Quasi-peak
$30 \mathrm{MHz-1GHz}$	Quasi-peak	100 kHz	300 kHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
	Peak	1 MHz	10 Hz	Average

Limit:

Frequency	Field strength (microvolt/meter)	Limit $(\mathrm{dBuV} / \mathrm{m})$	Remark	Measurement distance (m)
$0.009 \mathrm{MHz}-0.490 \mathrm{MHz}$	$2400 / \mathrm{F}(\mathrm{kHz})$	-	-	300
$0.490 \mathrm{MHz}-1.705 \mathrm{MHz}$	$24000 / \mathrm{F}(\mathrm{kHz})$	-	-	30
$1.705 \mathrm{MHz}-30 \mathrm{MHz}$	30	-	-	30
$30 \mathrm{MHz-88MHz}$	100	40.0	Quasi-peak	3
$88 \mathrm{MHz}-216 \mathrm{MHz}$	150	43.5	Quasi-peak	3
$216 \mathrm{MHz}-960 \mathrm{MHz}$	200	46.0	Quasi-peak	3
$960 \mathrm{MHz}-1 \mathrm{GHz}$	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 53$ of 71
FCC ID: 2AANUSHB4305

Test Setup:

Below 30MHz

30 MHz to 1 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 54$ of 71
FCC ID: 2AANUSHB4305

Above 1 GHz

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 55$ of 71
FCC ID: 2AANUSHB4305

Test Procedure:	a. For below 1 GHz , the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 and 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1 GHz , the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30 MHz , the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degree to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402 MHz), the middle channel (2441 MHz), the Highest channel (2480 MHz)
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode (B/O), Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pre-test the EUT in B/O mode and charging mode find the worst case is B / O Mode. For below 1 GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
	Refer to section 6 for details Pass

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 56$ of 71
FCC ID: 2AANUSHB4305

Test Result:

1. Lowest Channel

9KHz~30 MHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement
The measurements with Loop antenna and the amplitude of spurious emissions from the radiator are attenuated more than 20dB below the limit, so the test data were not recorded in the test report.
30MHz~1GHz Field Strength of Unwanted Emissions. Quasi-Peak Measurement
The measurements with Log antenna.
Lowest channel/ Vertical:

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 57$ of 71
FCC ID: 2AANUSHB4305

Lowest channel /Horizontal:

31.289	24.05	14.07
47.994	23.78	14.41
59.649	23.70	14.11
144.842	24.40	13.14
193.095	33.19	11.62
919.287	24.50	23.58

40.00 -27.88 HORIZONTAL QP
1.26
27.00
27.00
26.81
26.61
$27.70 \quad 26.35$
5.97
26.35
$40.00-27.55$ HORIZONTAL QP $40.00-27.80$ HORIZONTAL QP 43.50-30.50 HORIZONTAL QP 43.50-22.64 HORIZONTAL QP 46.00-19.65 HORIZONTAL QP

Report No.: GZEM170600318001
Page: $\quad 58$ of 71
FCC ID: 2AANUSHB4305

Above 1GHz Field Strength of Unwanted Emissions. Peak \& Average Measurement Lowest channel

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Remark	Pol/Phase
4893.675	47.55	30.95	10.02	40.22	48.30	54.00	-5.70	Average	Horizontal
4893.675	70.09	30.95	10.02	40.22	70.84	74.00	-3.16	Peak	Horizontal
6526.373	29.28	34.32	11.72	39.50	35.82	54.00	-18.18	Average	Horizontal
6526.373	40.47	34.32	11.72	39.50	47.01	74.00	-26.99	Peak	Horizontal
7428.936	33.05	35.92	13.04	39.20	42.81	54.00	-11.19	Average	Horizontal
7428.936	51.54	35.92	13.04	39.20	61.30	74.00	-12.70	Peak	Horizontal
9585.684	23.38	37.48	14.49	37.97	37.38	54.00	-16.62	Average	Horizontal
9585.684	34.44	37.48	14.49	37.97	48.44	74.00	-25.56	Peak	Horizontal
11400.910	21.97	39.26	15.65	38.02	38.86	54.00	-15.14	Average	Horizontal
11400.910	33.60	39.26	15.65	38.02	50.49	74.00	-23.51	Peak	Horizontal
14491.960	19.39	42.10	18.30	38.44	41.35	54.00	-12.65	Average	Horizontal
14491.960	32.48	42.10	18.30	38.44	54.44	74.00	-19.56	Peak	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Remark	Pol/Phase
4857.497	45.25	30.90	10.00	40.21	45.94	54.00	-8.06	Average	Vertical
4857.497	57.60	30.90	10.00	40.21	58.29	74.00	-15.71	Peak	Vertical
6756.708	28.37	34.75	12.15	39.39	35.88	54.00	-18.12	Average	Vertical
6756.708	40.82	34.75	12.15	39.39	48.33	74.00	-25.67	Peak	Vertical
9809.916	22.63	37.79	14.44	37.88	36.98	54.00	-17.02	Average	Vertical
9809.916	34.27	37.79	14.44	37.88	48.62	74.00	-25.38	Peak	Vertical
12290.700	22.64	39.09	16.15	38.11	39.77	54.00	-14.23	Average	Vertical
12290.700	33.74	39.09	16.15	38.11	50.87	74.00	-23.13	Peak	Vertical
14533.910	19.40	41.97	18.30	38.44	41.23	54.00	-12.77	Average	Vertical
14533.910	31.88	41.97	18.30	38.44	53.71	74.00	-20.29	Peak	Vertical
17690.530	18.40	42.87	19.95	38.64	42.58	54.00	-11.42	Average	Vertical
17690.530	31.59	42.87	19.95	38.64	55.77	74.00	-18.23	Peak	Vertical

Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 59$ of 71
FCC ID: 2AANUSHB4305

7.11 Radiated Emissions which fall in the restricted bands

Test Requirement: FCC Part15 C Section 15.247
(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Method:

ANSI C63.10: Clause 6.3, 6.5 and 6.6

Test Status:

Measurement
Distance:
Limit:

Detector:

Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), and highest (2480 MHz) channel with different data packet. Compliance test in continuous transmitting mode with normal mode (DH5 data packet with GFSK modulation type) as the worst case was found.

Pre-test the EUT in B/O mode and charging mode find the worst case is B / O Mode.

3m (Semi-Anechoic Chamber below 1GHz, Full Anechoic Chamber above 1 GHz)

Section 15.209(a)

Frequency	Limit (dBuV/m @3m)	Remark
$30 \mathrm{MHz}-88 \mathrm{MHz}$	40.0	Quasi-peak Value
$88 \mathrm{MHz}-216 \mathrm{MHz}$	43.5	Quasi-peak Value
$216 \mathrm{MHz}-960 \mathrm{MHz}$	46.0	Quasi-peak Value
$960 \mathrm{MHz}-1 \mathrm{GHz}$	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

For PK value:
RBW $=1 \mathrm{MHz}$ for $\mathrm{f} \geq 1 \mathrm{GHz}, 100 \mathrm{kHz}$ for $\mathrm{f}<1 \mathrm{GHz}$
VBW \geq RBW
Sweep = auto
Detector function = peak
Trace = max hold
For AV value:
RBW $=1 \mathrm{MHz}$ for $\mathrm{f} \geq 1 \mathrm{GHz}$,
VBW $=10 \mathrm{~Hz}$
Sweep = auto
Detector function = peak
Trace = max hold

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 60$ of 71
FCC ID: 2AANUSHB4305

Test Configuration:

1) 30 MHz to 1 GHz emissions:

2) Above 1 GHz emissions:

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 61 of 71
FCC ID: 2AANUSHB4305

Test Procedure:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2010 was used to perform radiated emission test above 1 GHz .
The receiver scanned from the lowest frequency generated within the EUT to 25 GHz . When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. The worst case emissions were reported.

From 30 MHz to 1 GHz , read the Quasi-Peak field strength of the emissions with receiver QP detector RBW $=120 \mathrm{KHz}$.

Above 1 GHz , read the Peak field strength and Average field strength.
Read the Peak field strength through $\mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ in spectrum analyzer setting;
Read the Average field strength through $\mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=10 \mathrm{~Hz}$ in spectrum analyzer setting;
While maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms , then the average field strength reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from $20 \log$ (dwell time $/ 100 \mathrm{~ms}$), in an effort to demonstrate compliance with the 15.209 limit.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 62 of 71
FCC ID: 2AANUSHB4305

Section 15.205 Restricted bands of operation.
(a) Except as shown in paragraph (d) of this section. only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	$\mathbf{M H z}$	GHz
$0.090-0.110$	$16.42-16.423$	$399.9-410$	$4.5-5.15$
${ }^{1} 0.495-0.505$	$16.69475-16.69525$	$608-614$	$5.35-5.46$
$2.1735-2.1905$	$16.80425-16.80475$	$960-1240$	$7.25-7.75$
$4.125-4.128$	$25.5-25.67$	$1300-1427$	$8.025-8.5$
$4.17725-4.17775$	$37.5-38.25$	$1435-1626.5$	$9.0-9.2$
$4.20725-4.20775$	$73-74.6$	$1645.5-1646.5$	$9.3-9.5$
$6.215-6.218$	$74.8-75.2$	$1660-1710$	$10.6-12.7$
$6.26775-6.26825$	$108-121.94$	$1718.8-1722.2$	$13.25-13.4$
$6.31175-6.31225$	$123-138$	$2200-2300$	$14.47-14.5$
$8.291-8.294$	$149.9-150.05$	$2310-2390$	$15.35-16.2$
$8.362-8.366$	$156.52475-$	$2483.5-2500$	$17.7-21.4$
$8.37625-8.38675$	156.52525	$2655-2900$	$22.01-23.12$
$8.41425-8.41475$	$156.7-156.9$	$3260-3267$	$23.6-24.0$
$12.29-12.293$	$162.0125-167.17$	$3332-3339$	$31.2-31.8$
$12.51975-12.52025$	$167.72-173.2$	$3345.8-3358$	$36.43-36.5$
$12.57675-12.57725$	$240-285$	$3600-4400$	
$13.36-13.41$	$322-335.4$		

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 63$ of 71
FCC ID: 2AANUSHB4305

Test Result:

30 MHz to 1 GHz Measurement

The measurements with Log antenna were greater than 20 dB below the limit, so the test data were not recorded in the test report.

Above 1GHz Measurement

Lowest channel

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Remark	Pol/Phase
2310.000	30.52	26.25	6.80	39.07	24.50	54.00	-29.50	Average	Horizontal
2310.000	41.92	26.25	6.80	39.07	35.90	74.00	-38.10	Peak	Horizontal
2390.000	33.01	26.43	6.87	39.10	27.21	54.00	-26.79	Average	Horizontal
2390.000	46.38	26.43	6.87	39.10	40.58	74.00	-33.42	Peak	Horizontal
2483.500	44.18	26.58	7.07	39.14	38.69	54.00	-15.31	Average	Horizontal
2483.500	61.11	26.58	7.07	39.14	55.62	74.00	-18.38	Peak	Horizontal
2500.000	36.20	26.60	7.10	39.14	30.76	54.00	-23.24	Average	Horizontal
2500.000	47.08	26.60	7.10	39.14	41.64	74.00	-32.36	Peak	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Remark	Pol/Phase
2310.000	30.48	26.25	6.80	39.07	24.46	54.00	-29.54	Average	Vertical
2310.000	42.44	26.25	6.80	39.07	36.42	74.00	-37.58	Peak	Vertical
2390.000	30.80	26.43	6.87	39.10	25.00	54.00	-29.00	Average	Vertical
2390.000	43.10	26.43	6.87	39.10	37.30	74.00	-36.70	Peak	Vertical
2483.500	44.17	26.58	7.07	39.14	38.68	54.00	-15.32	Average	Vertical
2483.500	54.79	26.58	7.07	39.14	49.30	74.00	-24.70	Peak	Vertical
2500.000	31.85	26.60	7.10	39.14	26.41	54.00	-27.59	Average	Vertical
2500.000	42.33	26.60	7.10	39.14	36.89	74.00	-37.11	Peak	Vertical

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 64 of 71
FCC ID: 2AANUSHB4305

Highest channel

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Remark	Pol/Phase
2310.000	28.94	26.25	6.80	39.07	22.92	54.00	-31.08	Average	Horizontal
2310.000	40.82	26.25	6.80	39.07	34.80	74.00	-39.20	Peak	Horizontal
2390.000	29.18	26.43	6.87	39.10	23.38	54.00	-30.62	Average	Horizontal
2390.000	42.35	26.43	6.87	39.10	36.55	74.00	-37.45	Peak	Horizontal
2483.500	39.98	26.58	7.07	39.14	34.49	54.00	-19.51	Average	Horizontal
2483.500	61.09	26.58	7.07	39.14	55.60	74.00	-18.40	Peak	Horizontal
2500.000	35.48	26.60	7.10	39.14	30.04	54.00	-23.96	Average	Horizontal
2500.000	48.65	26.60	7.10	39.14	43.21	74.00	-30.79	Peak	Horizontal

Frequency (MHz)	Read Level (dBuV)	Antenna Factor $(\mathrm{dB} / \mathrm{m})$	Cable Loss (dB)	Preamp Factor (dB)	Level $(\mathrm{dBuV} / \mathrm{m})$	Limit Line $(\mathrm{dBuV} / \mathrm{m})$	Over Limit (dB)	Remark	Pol/Phase
2310.000	27.58	26.25	6.80	39.07	21.56	54.00	-32.44	Average	Vertical
2310.000	42.53	26.25	6.80	39.07	36.51	74.00	-37.49	Peak	Vertical
2390.000	29.99	26.43	6.87	39.10	24.19	54.00	-29.81	Average	Vertical
2390.000	41.84	26.43	6.87	39.10	36.04	74.00	-37.96	Peak	Vertical
2483.500	38.83	26.58	7.07	39.14	33.34	54.00	-20.66	Average	Vertical
2483.500	59.93	26.58	7.07	39.14	54.44	74.00	-19.56	Peak	Vertical
2500.000	30.57	26.60	7.10	39.14	25.13	54.00	-28.87	Average	Vertical
2500.000	41.40	26.60	7.10	39.14	35.96	74.00	-38.04	Peak	Vertical

Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 65$ of 71
FCC ID: 2AANUSHB4305

7.12 Band Edges Requirement

Test Requirement:

Frequency Band:
Test Method: Test Status:

FCC Part15 C section 15.247
(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

2400 MHz to 2483.5 MHz
ANSI C63.10: Clause 6.10
Pre-test the EUT in continuous transmitting mode at the lowest (2402 MHz), and highest $(2480 \mathrm{MHz})$ channel and hopping mode with different data packet. Through Pre-scan, find the DH5 data packet with GFSK modulation type is the worst case Pre-test the EUT in B/O mode and charging mode find the worst case is B / O Mode.

Test Configuration:

Test Procedure: Use the following spectrum analyzer settings:
Span $=10 \mathrm{MHz}$ (wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.)
RBW $=100 \mathrm{kHz}$ and VBW $=300 \mathrm{kHz}$
Sweep = auto
Detector function = peak
Trace $=$ max hold

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 66$ of 71
FCC ID: 2AANUSHB4305

Test Result:

Compare with the output power of the lowest frequency, the Lower Edges attenuated more than 20dB Compare with the output power of the highest frequency, the Upper Edges attenuated more than 20 dB .
Non-hopping mode:
Lowest channel(2.402 GHz):

Highest Channel(2.480 GHz):

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 67 of 71
FCC ID: 2AANUSHB4305

Hopping mode:
Lowest channel(2.402 GHz):

Highest Channel(2.480 GHz):

Test result: The unit does meet the FCC requirements.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 68 of 71
FCC ID: 2AANUSHB4305

7.13 Conducted Emissions at Mains Terminals 150 kHz to $\mathbf{3 0} \mathbf{~ M H z}$

Test Requirement:
Test Method:
Frequency Range:
Detector:

FCC Part 15 C section 15.207
ANSI C63.10: Clause 6.2
150 kHz to 30 MHz
Peak for pre-scan (9 kHz Resolution Bandwidth)

Test Limit

Limits for conducted disturbance at the mains ports of class B

Frequency Range (MHz)	Class B Limit dB($\boldsymbol{\mu} \mathbf{V})$	
	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50
NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range $0,15 \mathrm{MHz}$ to 0,50 MHz.		

EUT Operation:
Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 69 of 71
FCC ID: 2AANUSHB4305

Test Configuration:

Test procedure:

1. The mains terminal disturbance voltage test was conducted in a shielded room.
2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \Omega / 50 \mu \mathrm{H}+5 \Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
3. The tabletop EUT was placed upon a non-metallic table 0.8 m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1 m of insulation.
4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be $0,4 \mathrm{~m}$ from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed $0,8 \mathrm{~m}$ from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least $0,8 \mathrm{~m}$ from the LISN 2.

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: $\quad 70$ of 71
FCC ID: 2AANUSHB4305

7.13.1 Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.
The following Quasi-Peak and Average measurements were performed on the EUT:
Test Result:
Neutral Line
Level($\mathrm{dB} \mu \mathrm{V}$)

Pol No Model	NEUTR						
Frequency $M H z 2$ 0.17		Cable Loss 0.10	LISN Factor ${ }_{9.67}^{\mathrm{dB}}$	Measured level dBuV 29.09	Limit Line dBuV 65,08	$\begin{gathered} \text { Over } \\ \text { I imit } \\ \text { dB } \\ -35.99 \end{gathered}$	Remark QP
0,17	14,80	0,10	9,67	24,57	55,08	-30,51	AVERáge
0.26	16.44	0.13	9,66	26.23	61.29	-35.06	QP
0.26	8.89	0.13	9,66	18,68	51.29	-32.61	AVERAGE
0.39	15.10	0.17	9.67	24.94	58.03	-33,09	QP
0,39	5,44	0.17	9,67	15,28	48,03	-32,75	AVERAGE
1.09	8.94	0.30	9,68	18,92	56,00	-37.08	QP
1.09	5.91	0.30	9,68	15,89	46,00	-30.11	AVERAGE
1.89	3.77	0.38	9,68	13.83	46.00	-32.17	AVERAGE
1,89	8,74	0,38	9,68	18,80	56,00	-37,20	QP
5,25	2.96	0.69	9.74	13.39	50.00	-36.61	AVERAGE
5,25	10.20	0,69	9.74	20,63	60.00	-39,37	QP

SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch

Report No.: GZEM170600318001
Page: 71 of 71
FCC ID: 2AANUSHB4305

Live Line

Pol No Model	LIVE						
$\begin{gathered} \text { Frequency } \\ \mathrm{MHz} \\ 0.22 \end{gathered}$	$\begin{aligned} & \text { read } \\ & \text { revel } \\ & \text { dBuw } \\ & 19.30 \end{aligned}$	Cable Loss 0.11	LISN Factor 9.64	Measured level dBuy 29.05	Limit Line dBuy 62.74	$\begin{gathered} \text { Over } \\ \text { I imit } \\ \text { dB } \\ -33.69 \end{gathered}$	Remark QP
0.22	12.91	0.11	9.64	22,66	52.74	-30.08	AVERAGE
0.46	14.18	0.19	9.64	24.01	56.67	-32.66	QP
0.46	8.77	0.19	9.64	18.60	46.67	-28.07	AVERAGE
1.08	7.39	0.30	9.66	17.35	46.00	-28.65	AVERAGE
1.08	9.52	0.30	9,66	19.48	56.00	-36.52	QP
2.14	9.86	0.42	9.66	19.95	56.00	-36.05	QP
2.14	3.89	0.42	9.66	13.98	46.00	-32.02	AVERAGE
5.25	10.88	0.69	9.71	21.28	60.00	-38.72	QP
5.25	6.70	0.69	9.71	17.10	50.00	-32.90	AVERAGE
10.07	9,58	0.60	9.80	19.98	60.00	-40.02	QP
10.07	4.37	0.60	9.80	14.77	50.00	-35.23	RVERAGE

--End of Report--

