198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 510663 Telephone: +86 (0) 20 82155555 Fax: +86 (0) 20 82075059 Email: ee.guangzhou@sgs.com Report No.: GZEM130300092101 Page: 1 of 79 IC: 3784A-CPLA40A # TEST REPORT | Application No.: | GZEM1303000921RF | | | | |------------------|--|--|--|--| | Applicant: | Corning Mobile Access Inc. | | | | | IC: | 3784A-CPLA40A | | | | | Product Name: | GX High Power DAS Remote Unit | | | | | Model No.: | GX-C85P19L70A17-40,GX-C85P19L70A17-40-DC * | | | | | * | Please refer to section 7.3 of this report for details | | | | | Trade Mark: | GX | | | | | Standards: | RSS-131 Issue 3: July 2003; | | | | | | RSS-Gen Issue 3: December 2010 | | | | | Date of Receipt: | 2013-03-13 and 2014-02-20 | | | | | Date of Test: | 2013-03-13 to 2014-02-14 | | | | | Date of Issue: | 2014-02-17 | | | | | Test Result : | Pass* | | | | ^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above. Please refer to section 3 of this report for further details. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sqs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms-e-document.htm. Alternation is devised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only Report No.: GZEM130300092101 Page: 2 of 79 IC: 3784A-CPLA40A ### 2 Version | Revision Record | | | | | | | |-----------------|---------|------------|----------|----------|--|--| | Version | Chapter | Date | Modifier | Remark | | | | 00 | | 2014-02-17 | | Original | Authorized for issue by: | | | |--------------------------|--------------------------------|--------------------------| | Tested By | Daniel He | 2013-03-13 to 2014-02-14 | | | (Daniel Hew) /Project Engineer | Date | | Prepared By | Daniel He | 2014-02-17 | | | (Daniel Hew) /Clerk | Date | | Checked By | Teffrey Chen | 2014-02-17 | | | (Jeffrey Chen) /Reviewer | Date | Report No.: GZEM130300092101 Page: 3 of 79 IC: 3784A-CPLA40A ## 3 Test Summary | Test Item | Test Requirement | Test Method | Result | |--|----------------------|----------------------|--------| | Amplifier Gain and Bandwidth | RSS-131 clause 6.1 | RSS-131 clause 4.2 | PASS | | Output Power | RSS-131 clause 6.2 | RSS-131 clause 4.3.1 | PASS | | Non-Linearity | RSS-131 clause 6.3.1 | RSS-131 clause 4.3.1 | PASS | | Conducted Spurious
Emissions | RSS-131 clause 6.4 | RSS-131 clause 4.4.1 | PASS | | Radiated Spurious Emissions | RSS-131 clause 6.4 | RSS-Gen clause 4.9 | PASS | | Frequency Stability of Band
Translators | RSS-131 clause 6.5 | RSS-131 clause 4.5 | PASS | #### Remark: Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver. No need to implement uplink test as it is cable connect to BTS (No air radiation), then the test about Uplink would be ignored. #### Model No.: GX-C85P19L70A17-40,GX-C85P19L70A17-40-DC According to the confirmation from the applicant, the only difference between above two models is the power supply unit(PSU). GX-C85P19L70A17-40 is with 100-240VAC power supply, while GX-C85P19L70A17-40-DC is with - 48VDC power supply. The electrical circuit design, RF modules and optical module used for above models are all identical, the output power and other RF specifications are the same. According to the above differences, the GX-C85P19L70A17-40 was performed full tests and the new model GX-C85P19L70A17-40-DC was tested the Radiated Spurious Emissions and Frequency Stability of Band Translators test in this report. Report No.: GZEM130300092101 Page: 4 of 79 IC: 3784A-CPLA40A ## 4 Contents | | | | Page | | | | | |---|---------|---|--|--|--|--|--| | 1 | COV | ER PAGE | 1 | | | | | | 2 | VERSION | | | | | | | | _ | · | | | | | | | | 3 | TES | T SUMMARY | 3 | | | | | | 4 | CON | TENTS | 1 | | | | | | 4 | CON | I EN I 3 | ······································ | | | | | | 5 | GEN | ERAL INFORMATION | 5 | | | | | | | 5.1 | CLIENT INFORMATION | 5 | | | | | | | 5.2 | GENERAL DESCRIPTION OF E.U.T. | 5 | | | | | | | 5.3 | DETAILS OF E.U.T. | | | | | | | | 5.4 | PRODUCT DESCRIPTION | 6 | | | | | | | 5.5 | STANDARDS APPLICABLE FOR TESTING | 6 | | | | | | | 5.6 | TEST LOCATION | | | | | | | | 5.7 | OTHER INFORMATION REQUESTED BY THE CUSTOMER | | | | | | | | 5.8 | TEST FACILITY | 7 | | | | | | 6 | EQU | IPMENT USED DURING TEST | 8 | | | | | | | | | | | | | | | 7 | TES | T RESULTS | 10 | | | | | | | 7.1 | E.U.T. TEST CONDITIONS | 10 | | | | | | | 7.2 | TEST PROCEDURE & MEASUREMENT DATA | | | | | | | | 7.2. | Amplifier Gain and Bandwidth | | | | | | | | 7.2.2 | | | | | | | | | 7.2.3 | · · · · · · · · · · · · · · · · · · · | | | | | | | | 7.2.4 | | | | | | | | | 7.2.5 | | | | | | | | | 7.2.6 | Frequency Stability of Band Translators | 76 | | | | | Report No.: GZEM130300092101 Page: 5 of 79 IC: 3784A-CPLA40A ### 5 General Information #### 5.1 Client Information Applicant Name: Corning Mobile Access Inc. Applicant Address: 8391 Old Courthouse Road, Suite 300 Vienna Virginia 22182 United States Manufacturer: Comba Telecom Technology (Guangzhou) Ltd. Address of Manufacturer: No.6 Jinbi Road, Economics and Technology Development District, Guangzhou Guangdong China ### 5.2 General Description of E.U.T. Product Name: GX High Power DAS Remote Unit Model No.: GX-C85P19L70A17-40, GX-C85P19L70A17-40-DC Power Supply: AC 100-240V 50/60Hz or DC -48V Test power: AC 120V 60Hz and DC -48V Operating Temperature: -40 °C to +70 °C Operating Humidity: ≤ 95% #### 5.3 Details of E.U.T. Type of Modulation CDMA & WCDMA & GSM & LTE GXW(GSM) F9W(CDMA), Emission Designator: F9W (WCDMA) G7D(LTE) Frequency Band: Downlink 728MHz to 756MHz include the Modulation:LTE Downlink 869MHz to 894MHz include the Modulation: GSM, CDMA, WCDMA, LTE Downlink 1930MHz to 1995MHz include the Modulation: GSM, CDMA, WCDMA, LTE Downlink 2110MHz to 2155MHz include the Modulation: CDMA, WCDMA, LTE Nominal Power Output: 46dBm for downlink Nominal System Gain: 68dB for downlink Report No.: GZEM130300092101 Page: 6 of 79 IC: 3784A-CPLA40A # 5.4 Product Description MobileAccessGX offers a scalable, cost-effective 20/40W (43/46dBm) high power remote outdoor coverage solution for Corning MobileAccess Distributed Antenna Systems (DAS). It is a fiber-fed, compact, multi-service, multi-operator remote designed to complement the MobileAccess1000 and MobileAccess2000 lower power, standard remotes or installable as a dedicated deployment solution in a new site, providing complete RF coverage options for open indoor, tunnel and adjacent outdoor spaces in larger venues such as stadiums, convention centers, metro-rails and malls. ## 5.5 Standards Applicable for Testing RSS-131 Issue 3: July 2003; RSS-Gen Issue 3: December 2010 #### 5.6 Test Location All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663 Tel: +86 20 82155555 Fax: +86 20 82075059 No tests were sub-contracted. ### **5.7** Other Information Requested by the Customer None. Report No.: GZEM130300092101 Page: 7 of 79 IC: 3784A-CPLA40A ### 5.8 Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### • NVLAP (Lab Code: 200611-0) SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0. #### ΔCMΔ SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation. #### SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES. #### CNAS (Lab Code: L0167) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories. #### • FCC
(Registration No.: 282399) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002. ### Industry Canada (Registration No.: 4620B-1) The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1. #### VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179) The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively. #### CBTL (Lab Code: TL129) SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01:2006-10 and Rules of procedure IECEE 02:2006-10, and the relevant IECEE CB-Scheme Operational documents. Report No.: GZEM130300092101 Page: 8 of 79 IC: 3784A-CPLA40A # 6 Equipment Used during Test | RE in Cha | amber | | | | | | |-----------|--|--|-------------|------------|------------------------------|-------------------------| | No. | Test Equipment | Manufacturer | Model No. | Serial No. | Cal.Due date
(YYYY-MM-DD) | Calibration
Interval | | EMC0525 | Compact Semi-
Anechoic Chamber | ChangZhou
ZhongYu | N/A | N/A | 2014-08-30 | 2Y | | EMC0522 | EMI Test Receiver | Rohde & Schwarz | ESIB26 | 100283 | 2014-05-06 | 1Y | | EMC0056 | EMI Test Receiver | Rohde & Schwarz | ESCI | 100236 | 2014-03-04 | 1Y | | EMC0528 | RI High frequency
Cable | SGS | 20 m | N/A | 2014-05-09 | 1Y | | EMC2025 | Trilog Broadband
Antenna 30-3000MHz | SCHWARZBECK
MESS-
ELEKTRONIK | VULB 9163 | 9163-450 | 2016-08-31 | 3Y | | EMC0524 | Bi-log Type Antenna | Schaffner -Chase | CBL6112B | 2966 | 2016-08-31 | 3Y | | EMC0519 | Bilog Type Antenna | Schaffner -Chase | CBL6143 | 5070 | 2014-06-02 | 2Y | | EMC2026 | Horn Antenna
1-18GHz | SCHWARZBECK
MESS-
ELEKTRONIK | BBHA 9120D | 9120D-841 | 2016-08-31 | 3Y | | EMC0518 | Horn Antenna | Rohde & Schwarz | HF906 | 100096 | 2014-07-01 | 2Y | | EMC0521 | 1 -26.5 GHz
Pre-Amplifier | Agilent | 8449B | 3008A01649 | 2014-03-04 | 1Y | | EMC2065 | Amplifier | HP | 8447F | N/A | 2014-08-31 | 1Y | | EMC2063 | 1-26GHz Pre Amplifier | Compliance
Direction System
Inc. | PAP-1G26-48 | 6279.628 | 2014-07-29 | 1Y | | EMC0075 | 310N Amplifier | Sonama | 310N | 272683 | 2014-03-04 | 1Y | | EMC0523 | Active Loop Antenna | EMCO | 6502 | 42963 | 2014-04-07 | 2Y | | EMC2041 | Broad-Band
Horn Antenna
(14)15-26.5(40)GHz | SCHWARZBECK
MESS-
ELEKTRONI | BBHA 9170 | 9170-375 | 2014-06-01 | 3Y | | EMC2069 | 2.4GHz filter | Micro-Tronics | BRM 50702 | 149 | 2014-06-05 | 1Y | | EMC0530 | 10m Semi-
Anechoic Chamber | ETS | N/A | N/A | 2014-04-27 | 2Y | | EMC2041 | Broad-Band Horn
Antenna(14)15-
26.5(40)GHz | SCHWARZBECK
MESS-
ELEKTRONIK | BBHA 9170 | 9170-375 | 2014/6/11 | 3Y | Report No.: GZEM130300092101 Page: 9 of 79 IC: 3784A-CPLA40A | | Other equipment | | | | | | | | |-----|----------------------|---------------------|-----------|------------|-----------------------------|--------------------------------|--|--| | No: | Test Equipment | Manufacturer | Model No. | Serial No. | Cal. Date
(dd-mm-
yy) | Cal. Due
Date
(dd-mm-yy) | | | | NA | Power Meter | Agilent | E4419B | MY45100856 | 2012.6.12 | 2014.6.11 | | | | NA | Signal Generator | Agilent | E4437B | US39260800 | 2012.6.17 | 2014.6.16 | | | | NA | Signal Generator | Agilent | E4438C | US39260800 | 2012.6.14 | 2014.6.14 | | | | NA | Spectrum
Analyzer | Agilent | N9020A | MY48011385 | 2012.6.14 | 2014.6.14 | | | | NA | Spectrum
Analyzer | Rohde&Schwarz | FSQ 8 | SN0805772 | 2012.6.14 | 2014.6.14 | | | | NA | Attenuator | SHX
manufacturer | 30dB/50W | 09031816 | | | | | | NA | Attenuator | SHX
manufacturer | 40dB/50W | 09031312 | | | | | | NA | Attenuator | SHX
manufacturer | 50dB/50W | 09053023 | | | | | | NA | Signal Generator | Rohde&Schwarz | SMU 200A | 08103303 | 2012.6.12 | 2014.6.11 | | | | General u | General used equipment | | | | | | | | |-----------|--|--------------|-----------|------------|--------------|-------------|--|--| | No. | . Test Equipment Manufacturer Model No. Serial No. | | | | | Calibration | | | | 140. | rest Equipment | wanulactulei | woder No. | Serial No. | (YYYY-MM-DD) | Interval | | | | EMC0006 | DMM | Fluke | 73 | 70681569 | 2014-09-13 | 1Y | | | | EMC0007 | DMM | Fluke | 73 | 70671122 | 2014-09-13 | 1Y | | | Report No.: GZEM130300092101 Page: 10 of 79 IC: 3784A-CPLA40A ### 7 Test Results #### 7.1 E.U.T. test conditions Input Voltage: AC 120V and DC -48V Operating Environment: Temperature: 22°C ~26°C Humidity: 46%~56% RH Atmospheric Pressure: 990~1005mbar Test Requirement: The RF output power of the EUT was measured at the antenna port, by adjusting the input power of signal generter to drive the EUT to get to maximum output power point and keep the EUT at maximum gain setteing for all tests. The device should be tested on downlink. For detail test Modulation and Frequency, please refer to 7.2. #### Remark: The GX system working principle: the RF signal coupled from BTS is transferred into optical signal, and then transmitted via a fiber to remote unit.the remote re-transfers the optical signal back to RF signal, through the frequency translation and after power amplifiers, can extend the BTS coverage to another desired area, the GX system is compliant with the description about band translators (Repeater) in RSS-131 rules. Report No.: GZEM130300092101 Page: 11 of 79 IC: 3784A-CPLA40A ### 7.2 Test Procedure & Measurement Data Test Modulation and Frequency Downlink: 728MHz to 756MHz | Modulation | Lowest frequency | Middle frequency | Highest frequency | |------------|------------------|------------------|-------------------| | LTE | 733 | 742 | 751 | Downlink: 869MHz to 894MHz | | _ | | | |------------|------------------|------------------|-------------------| | Modulation | Lowest frequency | Middle frequency | Highest frequency | | GSM | 869.6. | 881.5 | 893.4 | | CDMA | 871 | 881.5 | 892 | | WCDMA | 872 | 881.5 | 891 | | LTE | 874 | 881.5 | 889 | Downlink: 1930MHz to 1995MHz | Modulation | Lowest frequency | Middle frequency | Highest frequency | |------------|------------------|------------------|-------------------| | GSM | 1930.6 | 1962.5 | 1994.4 | | CDMA | 1932 | 1962.5 | 1993 | | WCDMA | 1933 | 1962.5 | 1992 | | LTE | 1935 | 1962.5 | 1990 | Downlink: 2110 MHzto 2155MHz | Modulation | Lowest frequency | Middle frequency | Highest frequency | |------------|------------------|------------------|-------------------| | CDMA | 2112 | 2132.5 | 2153 | | WCDMA | 2113 | 2132.5 | 2152 | | LTE | 2115 | 2132.5 | 2150 | #### Remark: 1) We test the downlink in the lowest band; the middle band; the hightest band and test the respective frequency as above table; Report No.: GZEM130300092101 Page: 12 of 79 IC: 3784A-CPLA40A #### General Test Setup: Report No.: GZEM130300092101 Page: 13 of 79 IC: 3784A-CPLA40A ### 7.2.1 Amplifier Gain and Bandwidth Test Requirement: RSS-131 clause 6.1 Test Limit The passband gain shall not exceed the nominal gain by more than 1.0 dB. The 20 dB bandwidth shall not exceed the nominal bandwidth that is stated by the manufacturer. Outside of the 20 dB bandwidth, the gain shall not exceed the gain at the 20 dB point. Test Method: RSS-131 clause 4.2 **EUT Operation:** Status: Drive the EUT to maximum output power. Conditions: Normal conditions Application: RF output ports **Test Configuration:** Report No.: GZEM130300092101 Page: 14 of 79 IC: 3784A-CPLA40A Test Procedure: - 1) Connect the equipment as illustrated, when the output power is over the max value of the Spectrum Analyzer, add the attenuator to avoid destroying the facility. - 2) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency, key the transmitter, and set the level of the carrier to the full scale reference line. - 3) Adjust the internal gain control of the equipment under test to the nominal gain for which equipment certification is sought. - 4) With the aid of a signal generator and spectrum analyser, measure the 20 dB bandwidth of the amplifier (i.e. at the point where the gain has fallen by 20 dB). Measure the gain-versus-frequency response of the amplifier from the midband frequency f0 of the pass band up to at least f0 ±250% of the 20 dB bandwidth. Report No.: GZEM130300092101 Page: 15 of 79 IC: 3784A-CPLA40A #### 7.2.1.1 Measurement Record: 1) Downlink: 728MHz to 756MHz | Test items | Test result | Test limit | Pass/Fail | |----------------|-------------|------------|-----------| | Passband gain | 67.25dB | ± 1dB | Pass | | 20dB Bandwidth | 30.24 | ?MHz | Pass | Remark: Input Power =-21dBm for downlink Nominal System Gain: 68dB Nominal Bandwidth is: ?MHz Report No.: GZEM130300092101 Page: 16 of 79 IC: 3784A-CPLA40A #### 2) Downlink: 869MHz to 894MHz | Test items | Test result | Test limit | Pass/Fail | |----------------|-------------|------------|-----------| | Passband gain | 67.56dB | ± 1dB | Pass | | 20dB Bandwidth | 33.27 | 36MHz | Pass | Remark: Input Power =-21dBm for downlink Nominal System Gain: 68dB Nominal Bandwidth is: 36MHz Report No.: GZEM130300092101 Page: 17 of 79 IC: 3784A-CPLA40A ### 3) Downlink: 1930MHz to 1995MHz | Test items | Test result | Test limit | Pass/Fail | |----------------|-------------|------------|-----------| | Passband gain | 67.03dB | ± 1dB | Pass | | 20dB Bandwidth | 77.35 | 82MHz |
Pass | Remark: Input Power =-21dBm for downlink Nominal System Gain: 68dB Nominal Bandwidth is: 82MHz Report No.: GZEM130300092101 Page: 18 of 79 IC: 3784A-CPLA40A #### 4) Downlink: 2110MHz to 2155MHz | Test items | Test result | Test limit | Pass/Fail | |----------------|-------------|------------|-----------| | Passband gain | 67.72dB | ± 1dB | Pass | | 20dB Bandwidth | 63.73 | 70MHz | Pass | Remark: Input Power =-21dBm for downlink Nominal System Gain: 68dB Nominal Bandwidth is: 70MHz Report No.: GZEM130300092101 Page: 19 of 79 IC: 3784A-CPLA40A ### 7.2.2 Output Power Test Requirement: RSS-131 clause 6.2 Test Limit The manufacturer's output power rating P rated MUST NOT be greater than P mean for all types of enhancers. Test Method: RSS-131 clause 4.3.1 **EUT Operation:** Status: Drive the EUT to maximum output power. Conditions: Normal conditions Application: RF output ports **Test Configuration:** Test Procedure: RF output power test procedure: 1. - a) Connect the equipment as illustrated, when the output power is over the max value of the Spectrum Analyzer, add the attenuator to avoid destroying the facility. - b) Set the center frequency of the spectrum analyzer to the assigned transmitter frequency, key the transmitter, and set the level of the carrier to the full scale reference line. - c) do not apply any tone to modulate the EUT. - d1) Adjust the spectrum analyzer for the following settings: - 1) Resolution Bandwidth >> the carrier bandwidth, - 2) Video Bandwidth refer to standard requirement. - d2) Use spectrum analyzer channel power measurement function; - e) Record the frequencies and levels of carrier power; - f) Calculate the signal link way loss and final power value. Or 2. - a) Connect the equipment as illustrated; - b) Read the value from the power meter; - c) Calculate the signal link way loss and final power value. Report No.: GZEM130300092101 Page: 20 of 79 IC: 3784A-CPLA40A #### 7.2.2.1 Measurement Record: Downlink: 728MHz ~ 757MHz | Per channel Power Input=-20dBm for downlink | | | | | | |--|----------------|----------------|----------------|--|--| | Modulation Lowest frequency Middle frequency Highest frequence | | | | | | | LTE | 46.3dBm | 46.4dBm | 46.2dBm | | | | LTE | (42657.9519mW) | (43651.5832mW) | (41686.9383mW) | | | Downlink: 869MHz ~ 894MHz Per channel Power Input=-20dBm for downlink Nominal Power Output= 46dBm | Normal Fower Output - Foubin | | | | | | |------------------------------|------------------|------------------|-------------------|--|--| | Modulation | Lowest frequency | Middle frequency | Highest frequency | | | | 0014 | 46.1dBm | 46.5dBm | 46.4dBm | | | | GSM | (40738.0277mW) | (44668.3592mW) | (43651.5832mW) | | | | 00144 | 46.2dBm | 46.4dBm | 46.5dBm | | | | CDMA | (41686.9383mW) | (43651.5832mW) | (44668.3592mW) | | | | | 46.3dBm | 46.2dBm | 46.5dBm | | | | WCDMA | (42657.9519mW) | (41686.9383mW) | (44668.3592mW) | | | | | 46.3dBm | 46.2dBm | 46.4dBm | | | | LTE | (42657.9519mW) | (41686.9383mW) | (43651.5832mW) | | | Downlink: 1930MHz ~ 1995MHz Per channel Power Input=-20dBm for downlink Nominal Power Output= 46dBm | Nominal Power Output= 460Bm | | | | | |-----------------------------|------------------|------------------|-------------------|--| | Modulation | Lowest frequency | Middle frequency | Highest frequency | | | COM | 46.4dBm | 46.3dBm | 46.5dBm | | | GSM | (43651.5832mW) | (42657.9519mW) | (44668.3592mW) | | | 00144 | 46.2dBm | 46.3dBm | 46.5dBm | | | CDMA | (41686.9383mW) | (42657.9519mW) | (44668.3592mW) | | | | 46.6dBm | 46.3dBm | 46.1dBm | | | WCDMA | (45708.8189mW) | (42657.9519mW) | (40738.0277mW) | | | | 46.2dBm | 46.4dBm | 46.5dBm | | | LTE | (41686.9383mW) | (43651.5832mW) | (44668.3592mW) | | Report No.: GZEM130300092101 Page: 21 of 79 IC: 3784A-CPLA40A Downlink: 2110MHz ~ 2155MHz Per channel Power Input=-20dBm for downlink Nominal Power Output= 46dBm | Normal Power Output= 460Bm | | | | | | |----------------------------|------------------|------------------|-------------------|--|--| | Modulation | Lowest frequency | Middle frequency | Highest frequency | | | | | 46.4dBm | 46.3dBm | 46.1dBm | | | | CDMA | (43651.5832mW) | (42657.9519mW) | (40738.0277mW) | | | | WCDMA | 46.2dBm | 46.3dBm | 46.4dBm | | | | | (41686.9383mW) | (42657.9519mW) | (43651.5832mW) | | | | | 46.3dBm | 46.2dBm | 46.1dBm | | | | LTE | (42657.9519mW) | (41686.9383mW) | (40738.0277mW) | | | Report No.: GZEM130300092101 Page: 22 of 79 IC: 3784A-CPLA40A ### 7.2.3 Non-Linearity Test Requirement: RSS-131 clause 6.3 Test Limit Transmitter signals amplified by a non-linear device (enhancer or translator) will alter the occupied bandwidth of the transmitted signals; therefore, the extent of non-linearity shall be tested. clause 6.3.1: For a multi-channel enhancer, any intermodulation product level must be attenuated, relative to P, by at least: 43 + 10 Log 10 P, or 70 dB, whichever is less stringent. (-13dBm is the less stringent value) where P is the total RF output power of the test tones in watts. Test Method: RSS-131 clause 4.3.1 **EUT Operation:** Status: Drive the EUT to maximum output power. Conditions: Normal conditions Application: RF output ports Test Configuration: Test Procedure: - 1. Connect the equipment as illustrated; - Test the background noise level with all the test facilities; - 3. Keep one transmitting path, all other connectors shall be connected by normal power or RF leads; - 4. The following subscript "o" denotes a parameter at the enhancer output point. - 5. Connect two signal generators to the input of the Device Under Test (DUT), via a proper impedance matching network (and preferably via a variable attenuator) so that the two input signals are equal sinusoids (and can be raised equally). - 6. Connect a dummy load of suitable load rating to the enhancer output point. Connect also a spectrum analyser to this output point via a coupling network and attenuator, so that only a portion of the output signal is coupled to the spectrum analyser. The coupling attenuation shall be stated in the test report. - 7. Set the two generator frequencies f1 and f2 such that they and their third-order intermodulation product frequencies, f3 = 2f1 f2 and f4 = 2f2 f1, are all within the pass band of the DUT. - 8 Raise the input level to the DUT while observing the output tone levels, Po1 and Po2, and the intermodulation product levels, Po3 and Po4.. Report No.: GZEM130300092101 Page: 23 of 79 IC: 3784A-CPLA40A #### Remark: - · At maximum drive level, for each modulation: one test with three tones, or two tests (high-, low-band edge) with two tones - · Limit usually is -13dBm conducted. - · Not needed for Single Channel systems. Report No.: GZEM130300092101 Page: 24 of 79 IC: 3784A-CPLA40A #### 7.2.3.1 Measurement Record: #### 1.Downlink: 728MHz to 756MHz(LTE Mode) 1.1 two signal input —Lower Edge 1.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 25 of 79 IC: 3784A-CPLA40A #### 1.3 intermodulation spurious emissioins #### 1.3.1 Input frequency: - 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=733MHz,f2=743MHz - 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=741MHz,f2=751MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - a) in lower edge test, $F1=2f1-(f1+\Delta f)=f1-\Delta f=lower$ edge frequency; - b) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. F1=728MHz,F2=756MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - a) in lower edge test, F1=3f1-2(f1+ Δ f)=f1-2 Δ f=lower edge frequency; - b) in higher edge test, F2=3f2-2(f2-∆f)=f2+2∆f=higher edge frequency. #### F1=718MHz,F2=766MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - a) in lower edge test, F1=4f1-3(f1+∆f)=f1-3∆f=lower edge frequency; - b) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. F1=708MHz,F2=776MHz #### 1.3.2 Input power:-20dBm | meas | sure frequency | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-----------------|----------------|------------------------|----------------|---------------| | o rd | Lower:728MHz | -14.23 | 40.15 | 1.23 | | 3 rd | Higher:756MHz | -16.19 | -13dBm | 3.19 | | _rd | Lower:718MHz | -39.14 | 1 | 26.14 | | 5 rd | Higher:766MHz | -35.49 | -13dBm | 22.49 | | -rd | Lower:708MHz | -39.75 | 1 | 26.75 | | 7 rd | Higher:776MHz | -35.63 | -13dBm | 22.63 | ### Remark: No other intermodulation spurious emissioins of above 7^{rd} have been found, so only record the test data about the 3^{rd} , 5^{rd} and 7^{rd} Report No.: GZEM130300092101 Page: 26 of 79 IC: 3784A-CPLA40A #### 2.Downlink: 869MHz to 894MHz(GSM,CDMA,WCDMA,LTE) 2.1 GSM Mode: 2.1.1 two signal input —Lower Edge #### 2.1.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 27 of 79 IC: 3784A-CPLA40A #### 2.2 CDMA Mode: #### 2.2.1 two signal input —Lower Edge #### 2.2.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 28 of 79 IC: 3784A-CPLA40A #### 2.3 WDMA Mode: #### 2.3.1 two signal input —Lower Edge #### 2.3.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 29 of 79 IC: 3784A-CPLA40A #### 2.4 LTE Mode: #### 2.4.1 two signal input —Lower Edge #### 2.4.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 30 of 79 IC: 3784A-CPLA40A #### 2.5 intermodulation spurious emissioins #### 2.5.1 For GSM mode: #### Input frequency: - 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=869.6MHz.f2=870.2MHz - 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=892.8MHz.f2=893.4MHz base the 3rd product frequency F1= 2f1-f2 and
F2=2f2-f1, when the f1 and f2 frequency select above, - c) in lower edge test, F1=2f1-(f1+ Δ f)=f1- Δ f=lower edge frequency; - d) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. #### F1=869MHz,F2=894MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - c) in lower edge test, F1=3f1-2(f1+ Δ f)=f1-2 Δ f=lower edge frequency; - d) in higher edge test, F2=3f2-2(f2- Δ f)=f2+2 Δ f=higher edge frequency. #### F1=868.4MHz,F2=894.6MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - c) in lower edge test, F1=4f1-3(f1+ Δ f)=f1-3 Δ f=lower edge frequency; - d) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. #### F1=867.8MHz,F2=895.2MHz #### Input power:-20dBm | mea | sure frequency | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-----------------|-----------------|------------------------|----------------|---------------| | ord | Lower:869MHz | -14.42 | 40.15 | 1.42 | | 3 rd | Higher:894MHz | -15.01 | -13dBm | 2.01 | | 5 rd | Lower:868.4MHz | -18.35 | 40 10 | 5.35 | | 5 | Higher:894.6MHz | -18.49 | -13dBm | 5.49 | | 7 rd | Lower:867.8MHz | -19.47 | 40.15 | 6.47 | | 7.0 | Higher:895.2MHz | -19.53 | -13dBm | 6.53 | Report No.: GZEM130300092101 Page: 31 of 79 IC: 3784A-CPLA40A #### 2.5.2 For CDMA mode: #### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=871MHz.f2=873MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=890MHz.f2=892MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - e) in lower edge test, F1=2f1-(f1+ Δ f)=f1- Δ f=lower edge frequency; - f) in higher edge test, F2=2f2-(f2-Δf)=f2+Δf=higher edge frequency. #### F1=869MHz,F2=894MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - e) in lower edge test, F1=3f1-2(f1+∆f)=f1-2∆f=lower edge frequency; - f) in higher edge test, F2=3f2-2(f2-Δf)=f2+2Δf=higher edge frequency. #### F1=867MHz,F2=896MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - e) in lower edge test, F1=4f1-3(f1+Δf)=f1-3Δf=lower edge frequency; - f) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. #### F1=865MHz,F2=898MHz #### Input power:-20dBm | meas | sure frequency | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |--------------------|----------------|------------------------|----------------|---------------| | ord | Lower:869MHz | -23.04 | 40.15 | 10.04 | | 3 rd Hi | Higher:894MHz | -23.27 | -13dBm | 10.27 | | 5 rd | Lower:867MHz | -26.48 | 40 JD | 13.48 | | 5.0 | Higher:896MHz | -27.12 | -13dBm | 14.12 | | →rd | Lower:865MHz | -28.59 | 40.15 | 15.59 | | 7 rd | Higher:898MHz | -29.04 | -13dBm | 16.04 | Report No.: GZEM130300092101 Page: 32 of 79 IC: 3784A-CPLA40A #### 2.5.3 For WCDMA mode: #### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=872MHz.f2=875MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=888MHz.f2=891MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - g) in lower edge test, F1=2f1-(f1+ Δ f)=f1- Δ f=lower edge frequency; - h) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. #### F1=869MHz,F2=894MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - g) in lower edge test, F1=3f1-2(f1+ Δ f)=f1-2 Δ f=lower edge frequency; - h) in higher edge test, F2=3f2-2(f2-∆f)=f2+2∆f=higher edge frequency. #### F1=866MHz,F2=897MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - g) in lower edge test, F1=4f1-3(f1+ Δ f)=f1-3 Δ f=lower edge frequency; - h) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. #### F1=863MHz,F2=900MHz #### Input power:-20dBm | meas | ure frequency | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-----------------|---------------|------------------------|----------------|---------------| | ord | Lower:869MHz | -22.55 | 40.15 | 9.55 | | 3 rd | Higher:894MHz | -21.46 | -13dBm | 8.46 | | _rd | Lower:866MHz | -27.42 | (0.15 | 14.42 | | 5 rd | Higher:897MHz | -28.09 | -13dBm | 15.09 | | -rd | Lower:863MHz | -29.64 | (2.15 | 16.64 | | 7 rd | Higher:900MHz | -29.58 | -13dBm | 16.58 | Report No.: GZEM130300092101 Page: 33 of 79 IC: 3784A-CPLA40A #### 2.5.4 For LTE mode: #### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=874MHz,f2=884MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=879MHz,f2=889MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - i) in lower edge test, $F1=2f1-(f1+\Delta f)=f1-\Delta f=lower$ edge frequency; - j) in higher edge test, F2=2f2-(f2-Δf)=f2+Δf=higher edge frequency. F1=869MHz,F2=894MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - i) in lower edge test, F1=3f1-2(f1+∆f)=f1-2∆f=lower edge frequency; - j) in higher edge test, F2=3f2-2(f2-Δf)=f2+2Δf=higher edge frequency. #### F1=859MHz,F2=904MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - i) in lower edge test, F1=4f1-3(f1+ \triangle f)=f1-3 \triangle f=lower edge frequency; - j) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. F1=849MHz,F2=914MHz #### Input power:-20dBm | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|---------------|------------------------|----------------|---------------| | 3 rd | Lower:869MHz | -22.06 | -13dBm | 9.06 | | | Higher:894MHz | -22.32 | | 9.32 | | 5 rd | Lower:859MHz | -33.59 | -13dBm | 20.59 | | | Higher:904MHz | -33.65 | | 20.65 | | 7 rd | Lower:849MHz | -34.67 | -13dBm | 21.67 | | | Higher:914MHz | -34.89 | | 21.89 | #### Remark: No other intermodulation spurious emissioins of above 7^{rd} have been found, so only record the test data about the 3^{rd} , 5^{rd} and 7^{rd} Report No.: GZEM130300092101 Page: 34 of 79 IC: 3784A-CPLA40A #### 3.Downlink: 1930MHz to 1995MHz(GSM,CDMA,WCDMA,LTE) - 3.1 GSM Mode: - 3.1.1 two signal input —Lower Edge #### 3.1.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 35 of 79 IC: 3784A-CPLA40A #### 3.2 CDMA Mode: ### 3.2.1 two signal input —Lower Edge #### 3.2.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 36 of 79 IC: 3784A-CPLA40A #### 3.3 WDMA Mode: #### 3.3.1 two signal input —Lower Edge #### 3.3.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 37 of 79 IC: 3784A-CPLA40A #### 3.4 LTE Mode: ### 3.4.1 two signal input —Lower Edge ### 3.4.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 38 of 79 IC: 3784A-CPLA40A ### 3.5 intermodulation spurious emissioins ### 3.5.1 For GSM mode: ### Input frequency: - 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=1930.6MHz,f2=1931.2MHz - 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=1994MHz.f2=1994.6MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - k) in lower edge test, F1=2f1-(f1+ Δ f)=f1- Δ f=lower edge frequency; - I) in higher edge test, F2=2f2-(f2-Δf)=f2+Δf=higher edge frequency. F1=1930MHz,F2=1995MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - k) in lower edge test, F1=3f1-2(f1+ Δ f)=f1-2 Δ f=lower edge frequency; - I) in higher edge test, F2=3f2-2(f2- Δ f)=f2+2 Δ f=higher edge frequency. F1=1929.4MHz,F2=1995.6MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - k) in lower edge test, F1=4f1-3(f1+ Δ f)=f1-3 Δ f=lower edge frequency; - I) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. F1=1928.8MHz,F2=1996.2MHz | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|-------------------------|------------------------|----------------|---------------| | ord. | Lower:1930MHz | -15.39 | 40.15 | 2.39 | | 3 rd | Higher:1995MHz | -17.28 | -13dBm | 4.28 | | 5 rd | Lower:1929.4MHz | -25.43 | 40 10 | 12.43 | | 5" | Higher:1995.6MHz | -23.49 | -13dBm | 10.49 | | →rd | Lower:1928.8MHz -29.98 | | 40 JD | 16.98 | | 7 rd | Higher:1996.2MHz -29.84 | | -13dBm | 16.84 | Report No.: GZEM130300092101 Page: 39 of 79 IC: 3784A-CPLA40A ### 3.5.2 For CDMA mode: ### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=1930MHz.f2=1932MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=1991MHz.f2=1993MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - m) in lower edge test, $F1=2f1-(f1+\Delta f)=f1-\Delta f=lower$ edge frequency; - n) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. F1=1930MHz,F2=1995MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - m) in lower edge test, F1=3f1-2(f1+Δf)=f1-2Δf=lower edge frequency; - n) in higher edge test, F2=3f2-2(f2-∆f)=f2+2∆f=higher edge frequency. F1=1928MHz,F2=1997MHz base the 7rd product frequency F1= 4f1-3f2 and
F2=4f2-3f1, when the f1 and f2 frequency select above, - m) in lower edge test, F1=4f1-3(f1+ Δ f)=f1-3 Δ f=lower edge frequency; - n) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. F1=1926MHz,F2=1999MHz | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|----------------|------------------------|----------------|---------------| | ord | Lower:1930MHz | -15.61 | 40.15 | 2.61 | | 3 rd | Higher:1995MHz | -18.78 | -13dBm | 5.78 | | 5 rd | Lower:1928MHz | -27.59 | 40 JD | 14.59 | | 5. | Higher:1997MHz | -26.84 | -13dBm | 13.84 | | ⊸rd | Lower:1926MHz | -29.04 | 40.15 | 16.04 | | 7 rd | Higher:1999MHz | -29.13 | -13dBm | 16.13 | Report No.: GZEM130300092101 Page: 40 of 79 IC: 3784A-CPLA40A ### 3.5.3 For WCDMA mode: ### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=1933MHz.f2=1936MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=1989MHz.f2=1992MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - o) in lower edge test, F1=2f1-(f1+ Δ f)=f1- Δ f=lower edge frequency; - p) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. F1=1930MHz,F2=1995MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - o) in lower edge test, F1=3f1-2(f1+∆f)=f1-2∆f=lower edge frequency; - p) in higher edge test, F2=3f2-2(f2- Δ f)=f2+2 Δ f=higher edge frequency. F1=1927MHz,F2=1998MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - o) in lower edge test, F1=4f1-3(f1+Δf)=f1-3Δf=lower edge frequency; - p) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. F1=1924MHz,F2=2001MHz | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|----------------|------------------------|----------------|---------------| | ord | Lower:1930MHz | -18.91 | 40.15 | 5.91 | | 3 rd | Higher:1995MHz | -21.62 | -13dBm | 8.62 | | 5 rd | Lower:1927MHz | -26.84 | 10 dD | 13.84 | | 5 | Higher:1998MHz | -26.95 | -13dBm | 13.95 | | ⊸rd | Lower:1924MHz | -28.56 | 40.15 | 15.56 | | 7 rd | Higher:2001MHz | -29.41 | -13dBm | 16.41 | Report No.: GZEM130300092101 Page: 41 of 79 IC: 3784A-CPLA40A #### 3.5.4 For LTE mode: ### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=1935MHz,f2=1945MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=1980MHz,f2=1990MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - q) in lower edge test, $F1=2f1-(f1+\Delta f)=f1-\Delta f=lower$ edge frequency; - r) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. F1=1930MHz,F2=1995MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - q) in lower edge test, $F1=3f1-2(f1+\Delta f)=f1-2\Delta f=lower$ edge frequency; - r) in higher edge test, F2=3f2-2(f2-∆f)=f2+2∆f=higher edge frequency. ### F1=1920MHz,F2=2005MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - q) in lower edge test, F1=4f1-3(f1+ \triangle f)=f1-3 \triangle f=lower edge frequency; - r) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. F1=1910MHz,F2=2015MHz ### Input power:-20dBm | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|----------------|------------------------|----------------|---------------| | ord | Lower:1930MHz | -22.96 | 40.15 | 9.96 | | 3 rd | Higher:1995MHz | -23.12 | -13dBm | 10.12 | | -rd | Lower:1920MHz | -34.58 | | 21.58 | | 5 rd | Higher:2005MHz | -29.94 | -13dBm | 16.94 | | 7 rd | Lower:1920MHz | -35.36 | | 22.36 | | | Higher:2015MHz | -34.85 | -13dBm | 21.85 | #### Romark: No other intermodulation spurious emissioins of above 7^{rd} have been found, so only record the test data about the 3^{rd} , 5^{rd} and 7^{rd} Report No.: GZEM130300092101 Page: 42 of 79 IC: 3784A-CPLA40A ### 4.Downlink: 2110MHz to 2155MHz(CDMA,WCDMA,LTE) - 4.1 CDMA Mode: - 4.1.1 two signal input —Lower Edge 4.1.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 43 of 79 IC: 3784A-CPLA40A #### 4.2 WDMA Mode: 4.2.1 two signal input —Lower Edge 4.2.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 44 of 79 IC: 3784A-CPLA40A #### 4.3 LTE Mode: ### 4.3.1 two signal input —Lower Edge ### 4.3.2 two signal input —Upper Edge Report No.: GZEM130300092101 Page: 45 of 79 IC: 3784A-CPLA40A ### 4.4 intermodulation spurious emissioins #### 4.4.1 For CDMA mode: ### Input frequency: - 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=2112MHz,f2=2114MHz - 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=2151MHz,f2=2153MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - s) in lower edge test, $F1=2f1-(f1+\Delta f)=f1-\Delta f=$ lower edge frequency; - t) in higher edge test, $F2=2f2-(f2-\Delta f)=f2+\Delta f=higher$ edge frequency. #### F1=2110MHz,F2=2155MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - s) in lower edge test, F1=3f1-2(f1+ Δ f)=f1-2 Δ f=lower edge frequency; - t) in higher edge test, F2=3f2-2(f2-∆f)=f2+2∆f=higher edge frequency. ### F1=2108MHz,F2=2157MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - s) in lower edge test, F1=4f1-3(f1+ Δ f)=f1-3 Δ f=lower edge frequency; - t) in higher edge test, F2=4f2-3(f2-∆f)=f2+3∆f=higher edge frequency. #### F1=2106MHz,F2=2159MHz | mea | sure frequency | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-----------------|----------------|------------------------|----------------|---------------| | - rd | Lower:2110MHz | -20.39 | | 7.39 | | 3 rd | Higher:2155MHz | -13dBm
-20.97 | | 7.97 | | 5 rd | Lower:2108MHz | wer:2108MHz -21.36 | | 8.36 | | 5." | Higher:2157MHz | -22.48 | -13dBm | 9.48 | | Lower:2106MH | | -25.48 | 40.15 | 12.48 | | 7 rd | Higher:2159MHz | -24.96 | -13dBm | 11.96 | Report No.: GZEM130300092101 Page: 46 of 79 IC: 3784A-CPLA40A #### 4.4.2 For WCDMA mode: ### Input frequency: 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=2113MHz,f2=2116MHz 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=2149MHz,f2=2152MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - u) in lower edge test, $F1=2f1-(f1+\Delta f)=f1-\Delta f=lower$ edge frequency; - v) in higher edge test, F2=2f2-(f2-∆f)=f2+∆f=higher edge frequency. F1=2110MHz,F2=2155MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - u) in lower edge test, F1=3f1-2(f1+∆f)=f1-2∆f=lower edge frequency; - v) in higher edge test, F2=3f2-2(f2- Δ f)=f2+2 Δ f=higher edge frequency. ### F1=2107MHz,F2=2158MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - u) in lower edge test, $F1=4f1-3(f1+\Delta f)=f1-3\Delta f=lower$ edge frequency; - v) in higher edge test, F2=4f2-3(f2-Δf)=f2+3Δf=higher edge frequency. ### F1=2104MHz,F2=2161MHz | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|----------------|------------------------|----------------|---------------| | o rd | Lower:2110MHz | -21.77 | 40.15 | 8.77 | | 3 rd | Higher:2155MHz | -20.81 | -13dBm | 7.81 | | _rd | Lower:2107MHz | -22.35 | 40.15 | 9.35 | | 5 rd | Higher:2158MHz | -22.46 | -13dBm | 9.46 | | —rd | Lower:2104MHz | Lower:2104MHz -23.14 | | 10.14 | | 7 rd | Higher:2161MHz | -23.53 | -13dBm | 10.53 | Report No.: GZEM130300092101 Page: 47 of 79 IC: 3784A-CPLA40A #### 4.4.3 For LTE mode: ### Input frequency: - 1)in lower edge test:f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency f1=2115MHz.f2=2125MHz - 2)in higher edge test:f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency f1=2140MHz.f2=2150MHz base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - w) in lower edge test, F1=2f1-(f1+ Δ f)=f1- Δ f=lower edge frequency; - x) in higher edge test, $F2=2f2-(f2-\Delta f)=f2+\Delta f=higher$ edge frequency. F1=2110MHz,F2=2155MHz base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - w) in lower edge test, F1=3f1-2(f1+ Δ f)=f1-2 Δ f=lower edge frequency; - x) in higher edge test, F2=3f2-2(f2- Δ f)=f2+2 Δ f=higher edge frequency. ### F1=2100MHz,F2=2165MHz base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - w) in lower edge test, $F1=4f1-3(f1+\Delta f)=f1-3\Delta f=lower$ edge frequency; - x) in higher edge test, $F2=4f2-3(f2-\Delta f)=f2+3\Delta f=$ higher edge frequency. ### F1=2090MHz,F2=2175MHz #### Input power:-20dBm | measure frequency | | product Value
(dBm) | Limit
(dBm) | Magin
(dB) | |-------------------|----------------|------------------------|----------------|---------------| | ord | Lower:2110MHz | -21.57 | 40.15 | 8.57 | | 3 rd | Higher:2155MHz | -13dBm
-21.83 | | 8.83 | | 5 rd | Lower:2100MHz | -27.36 | 40.40 | 14.36 | | 5 | Higher:2165MHz | -25.34 | -13dBm | 12.34 | | 7 rd | Lower:2090MHz | -33.47 | 40.15 | 20.47 | | 7 rd | Higher:2175MHz | -31.98 | -13dBm | 18.98
| #### Remark: No other intermodulation spurious emissioins of above 7^{rd} have been found, so only record the test data about the 3^{rd} , 5^{rd} and 7^{rd} Report No.: GZEM130300092101 Page: 48 of 79 IC: 3784A-CPLA40A #### Remark: For the test in two signal input or intermodulation, test input signal f1 and f2 will consider as follows conditions: - 2) EUT frequency band span and the amount of channels; - 3) f1 is the frequency lower, f2 is the frequency higher, $\triangle f$ is the channel spacing; - 4) in lower edge test, f1 is the lower edge frequency +1 channel frequency, and f2 is +2 channel frequency; - 5) in higher edge test, f1 is the higher edge frequency -2 channel frequency, and f2 is -1 channel frequency; - 6) according to the amplifier characteristic, the 3rd product will appear when two signals input; - 7) base the 3rd product frequency F1= 2f1-f2 and F2=2f2-f1, when the f1 and f2 frequency select above, - a) in lower edge test, F1=2f1-(f1+ \triangle f)=f1- \triangle f=lower edge frequency; - b) in higher edge test, F2=2f2-(f2- \triangle f)=f2+ \triangle f=higher edge frequency. - 8) base the 5rd product frequency F1= 3f1-2f2 and F2=3f2-2f1, when the f1 and f2 frequency select above, - a) in lower edge test, F1=3f1-2(f1+ \triangle f)=f1-2 \triangle f=lower edge frequency; - b) in higher edge test, F2=3f2-2(f2- \triangle f)=f2+2 \triangle f=higher edge frequency. - 9) base the 7rd product frequency F1= 4f1-3f2 and F2=4f2-3f1, when the f1 and f2 frequency select above, - a) in lower edge test, F1=4f1-3(f1+ \triangle f)=f1-3 \triangle f=lower edge frequency; - b) in higher edge test, F2=4f2-3(f2- \triangle f)=f2+3 \triangle f=higher edge frequency. Report No.: GZEM130300092101 Page: 49 of 79 IC: 3784A-CPLA40A ### 7.2.4 Conducted Spurious Emissions Test Requirement: RSS-131 clause 6.4 Test Limit Spurious emissions of zone enhancers and translators shall be suppressed as much as possible. Spurious emissions shall be attenuated below the rated power of the enhancer by at least: 43 + 10 Log 10 (P rated in watts), or 70 dB, whichever is less stringent. (-13dBm is the less stringent value) Test Method: RSS-131 clause 4.4.1 **EUT Operation:** Status: Drive the EUT to maximum output power. Conditions: Normal conditions Application: RF output ports **Test Configuration:** Test Procedure: Conducted Emissions test procedure: - 1. The spurious emissions of the equipment under test shall be measured using the two-tone method in section 4.3.1, with the two tones Po1 and Po2 set to the required levels. - 2. Using a spectrum analyser with a resolution bandwidth set at 100 kHz, search for spurious emissions from 30 MHz to at least 5 times the highest RF pass band frequency. The search may omit the band that contains the test tones and intermodulation products. Report No.: GZEM130300092101 Page: 50 of 79 IC: 3784A-CPLA40A #### 7.2.4.1 Measurement Record: 1.Downlink: 728MHz ~ 756MHz(LTE) 1.1 lowest frequency: 9KHz to 1GHz Report No.: GZEM130300092101 Page: 51 of 79 IC: 3784A-CPLA40A ### 1.2 Middle frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 52 of 79 IC: 3784A-CPLA40A ### 1.3 highest frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 53 of 79 IC: 3784A-CPLA40A 2.Downlink: 869MHz ~ 894MHz 2.1 For LTE mode: 1)lowest frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 54 of 79 IC: 3784A-CPLA40A ### 2)Middle frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 55 of 79 IC: 3784A-CPLA40A ### 3)highest frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 56 of 79 IC: 3784A-CPLA40A # 2.2 For GSM mode: 1)lowest frequency: | Measurement Record: | | | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------|--|--| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | | | 9KHz to 1GHz | RBW=100KHz | -39.98 | -13.0 | -26.98 | | | | 1GHz to 10GHz | RBW=1MHz | -26.21 | -13.0 | -13.21 | | | 2)Middle frequency: | Measurement Record: | | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------|--| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | | 9KHz to 1GHz | RBW=100KHz | -39.96 | -13.0 | -26.96 | | | 1GHz to 10GHz | RBW=1MHz | -26.34 | -13.0 | -13.34 | | | Measurement Record: | | | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------|--|--| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | | | 9KHz to 1GHz | RBW=100KHz | -40.01 | -13.0 | -27.01 | | | | 1GHz to 10GHz | RBW=1MHz | -26.32 | -13.0 | -13.32 | | | Report No.: GZEM130300092101 Page: 57 of 79 IC: 3784A-CPLA40A # 2.3 For CDMA mode: 1)lowest frequency: | Measurement Record: | | | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------|--|--| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | | | 9KHz to 1GHz | RBW=100KHz | -39.97 | -13.0 | -26.97 | | | | 1GHz to 10GHz | RBW=1MHz | -26.13 | -13.0 | -13.13 | | | ### 2)Middle frequency: | Measurement Record: | | | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------|--|--| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | | | 9KHz to 1GHz | RBW=100KHz | -40.12 | -13.0 | -27.12 | | | | 1GHz to 10GHz | RBW=1MHz | -26.04 | -13.0 | -13.04 | | | | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -39.99 | -13.0 | -26.99 | | 1GHz to 10GHz | RBW=1MHz | -26.17 | -13.0 | -13.17 | Report No.: GZEM130300092101 Page: 58 of 79 IC: 3784A-CPLA40A # 2.4 For WCDMA mode: 1)lowest frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -40.15 | -13.0 | -27.15 | | 1GHz to 10GHz | RBW=1MHz | -25.69 | -13.0 | -12.69 | ### 2) Middle frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -39.97 | -13.0 | -26.97 | | 1GHz to 10GHz | RBW=1MHz | -26.31 | -13.0 | -13.31 | | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -40.25 | -13.0 | -27.25 | | 1GHz to 10GHz | RBW=1MHz | -26.47 | -13.0 | -13.47 | Report No.: GZEM130300092101 Page: 59 of 79 IC: 3784A-CPLA40A 3.Downlink: 1930MHz ~ 1995MHz 3.1 For LTE mode: 1)lowest frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 60 of 79 IC: 3784A-CPLA40A ### 2) Middle frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 61 of 79 IC: 3784A-CPLA40A ### 3) highest frequency 9KHz to 1GHz Report No.: GZEM130300092101 Page: 62 of 79 IC: 3784A-CPLA40A # 3.2 For GSM mode: 1)lowest frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.12 | -13.0 | -33.12 | | 1GHz to 20GHz | RBW=1MHz | -35.32 | -13.0 | -22.32 | ### 2)Middle frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.34 | -13.0 | -33.34 | | 1GHz to 20GHz | RBW=1MHz | -36.79 | -13.0 | -23.79 | | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.48 | -13.0 | -33.48 | | 1GHz to 20GHz | RBW=1MHz | -35.98 | -13.0 | -22.98 | Report No.: GZEM130300092101 Page: 63 of 79 IC: 3784A-CPLA40A # 3.3 For CDMA mode: 1)lowest frequency: | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.94 | -13.0 | -33.94 | | 1GHz to 20GHz | RBW=1MHz | -35.62 | -13.0 | -22.62 | ### 2)Middle frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.48 | -13.0 | -33.48 | | 1GHz to 20GHz | RBW=1MHz | -35.24 | -13.0 | -22.24 | | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz |
-46.76 | -13.0 | -33.76 | | 1GHz to 20GHz | RBW=1MHz | -36.15 | -13.0 | -23.15 | Report No.: GZEM130300092101 Page: 64 of 79 IC: 3784A-CPLA40A ### 3.4 For WCDMA mode: ### 1)lowest frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.47 | -13.0 | -33.47 | | 1GHz to 20GHz | RBW=1MHz | -35.64 | -13.0 | -22.64 | ### 2) Middle frequency: | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.98 | -13.0 | -33.98 | | 1GHz to 20GHz | RBW=1MHz | -36.21 | -13.0 | -23.21 | | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.89 | -13.0 | -33.89 | | 1GHz to 20GHz | RBW=1MHz | -36.79 | -13.0 | -23.79 | Report No.: GZEM130300092101 Page: 65 of 79 IC: 3784A-CPLA40A 4.Downlink: 2110MHz ~ 2155MHz **4.1 For LTE mode: 1)lowest frequency**9KHz to 1GHz #### 1GHz to 22GHz Report No.: GZEM130300092101 Page: 66 of 79 IC: 3784A-CPLA40A ### 2)Middle frequency 9KHz to 1GHz #### 1GHz to 22GHz Report No.: GZEM130300092101 Page: 67 of 79 IC: 3784A-CPLA40A ### 3)highest frequency 9KHz to 1GHz ### 1GHz to 22GHz Report No.: GZEM130300092101 Page: 68 of 79 IC: 3784A-CPLA40A # 4.2 For CDMA mode: 1)lowest frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -45.76 | -13.0 | -32.76 | | 1GHz to 22GHz | RBW=1MHz | -33.45 | -13.0 | -20.45 | ### 2)Middle frequency: | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.29 | -13.0 | -33.29 | | 1GHz to 22GHz | RBW=1MHz | -34.21 | -13.0 | -21.21 | | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.93 | -13.0 | -33.93 | | 1GHz to 22GHz | RBW=1MHz | -34.18 | -13.0 | -21.18 | Report No.: GZEM130300092101 Page: 69 of 79 IC: 3784A-CPLA40A # 4.3 For WCDMA mode: 1)lowest frequency: | Measurement Record: | | | | | |---------------------|-----------------------|---------------------------------|------------|----------------| | Frequency range | Measurement bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -45.96 | -13.0 | -32.96 | | 1GHz to 22GHz | RBW=1MHz | -34.52 | -13.0 | -21.52 | ### 2)Middle frequency: | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.75 | -13.0 | -33.75 | | 1GHz to 22GHz | RBW=1MHz | -35.21 | -13.0 | -22.21 | | Measurement Record: | | | | | |---------------------|--------------------------|---------------------------------|------------|----------------| | Frequency range | Measurement
bandwidth | Spurious Emission
Level(dBm) | Limit(dBm) | Over Limit(dB) | | 9KHz to 1GHz | RBW=100KHz | -46.35 | -13.0 | -33.35 | | 1GHz to 22GHz | RBW=1MHz | -36.34 | -13.0 | -23.34 | Report No.: GZEM130300092101 Page: 70 of 79 IC: 3784A-CPLA40A ### 7.2.5 Radiated Spurious Emissions Test Requirement: RSS-131 clause 6.4 Test Limit Spurious emissions of zone enhancers and translators shall be suppressed as much as possible. Spurious emissions shall be attenuated below the rated power of the enhancer by at least: 43 + 10 Log 10 (P rated in watts), or 70 dB, whichever is less stringent. (-13dBm is the less stringent value) Test Method: RSS-Gen clause 4.9 **EUT Operation:** Status: Drive the EUT to maximum output power. Conditions: Normal conditions Application: Enclosure **Test Configuration:** 9 kHz to 30 MHz emissions: Report No.: GZEM130300092101 Page: 71 of 79 IC: 3784A-CPLA40A ### 30MHz to 1GHz emissions: ### 1GHz to 40GHz emissions: Test Procedure: - 1. Test the background noise level with all the test facilities; - 2. Keep one transmitting path, all other connectors shall be connected by normal power or RF leads; - 3. Select the suitable RF notch filter to avoid the test receiver or spectrum Report No.: GZEM130300092101 Page: 72 of 79 IC: 3784A-CPLA40A analyzer produce unwanted spurious emissions; - 4. Keep the EUT continuously transmitting in max power; - 5. Read the radiated emissioins of the EUT enclosure. Radiated Emissions Test Procedure: Report No.: GZEM130300092101 Page: 73 of 79 IC: 3784A-CPLA40A - a) Connect the equipment as illustrated. - b) Adjust the spectrum analyzer for the following settings: - 1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz. - 2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz. - 3) Sweep Speed slow enough to maintain measurement calibration. - 4) Detector Mode = Positive Peak. - c) Place the transmitter to be tested on the turntable in the standard test site, The transmitter is transmitting into a nonradiating load that is placed on the turntable. The RF cable to this load should be of minimum length. - d) Measurements shall be made from 30 MHz to 10 tims of fundamental carrier, except for the region close to the carrier equal to \pm the carrier bandwidth. - e) Key the transmitter without modulation or normal modulation base the standard. - f) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable should be rotated 360° to determine the maximum reading. Repeat this procedure to obtain the highest possible reading. Record this maximum reading. - g) Repeat step f) for each spurious frequency with the test antenna polarized vertically. Report No.: GZEM130300092101 Page: 74 of 79 IC: 3784A-CPLA40A - h) Reconnect the equipment as illustrated. - i) Keep the spectrum analyzer adjusted as in step b). - j) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. k) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. - I) Repeat step k) with both antennas vertically polarized for each spurious frequency. - m) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB) where: Pd is the dipole equivalent power and *Pg* is the generator output power into the substitution antenna. NOTE: It is permissible to use other antennas provided they can be referenced to a dipole. NOTE: Effective radiated power (e.r.p) refers to the radiation of a half wave tuned dipole instead of an isotropic antenna. There is a constant difference of 2.15 dB between e.i.r.p. and e.r.p. e.r.p (dBm) = e.i.r.p. (dBm) - 2.15 Report No.: GZEM130300092101 Page: 75 of 79 IC: 3784A-CPLA40A #### 7.2.5.1 Measurement Record: No emissions were detected within 20dB below the limit for the Downlink direction. #### Remark: The cabinet radiation was measured with the equipment transmitting a CW signal into a non-radiating 50 Ohm load at maximum output power on a signal frequency . Measured were performed in the lowest, middle and hightest frequency for : the Downlink. The spectrum was searched from 9KHz to 26GHz (10th Harmonic) for downlink; Report No.: GZEM130300092101 Page: 76 of 79 IC: 3784A-CPLA40A ### 7.2.6 Frequency Stability of Band Translators Test Requirement: RSS-131 clause 6.5 Test Limit A band translator is essentially a repeater station and should introduce as little frequency error as possible. The frequency stability should therefore meet the objectives of the overall land mobile or cellular service for which it serves. Better frequency stability than the minimum standard cited below
will therefore be required in some cases. The frequency stability shall be within \pm 1.5 parts per million (0.00015%). Test Method: RSS-Gen clause 4.5 **EUT Operation:** Status: Drive the EUT to maximum output power. Conditions: Temperature conditions, voltage conditions Application: RF output ports Test Procedure: 1. Temperature conditions: a) The RF output port of the EUT was connected to Frequency Meter; b) Set the working Frequency in the middle channel; c) record the 20 °C and norminal voltage frequency value as reference point; d) vary the temperature from -30 °C to 50 °C with step 10 °C e) when reach a temperature point, keep the temperature banlance at least 1 hour to make the product working in this status; f) read the frequency at the relative temperature. #### 2. Voltage conditions: - a) record the 20 ℃ and norminal voltage frequency value as reference point: - b) vary the voltage from -15% norminal voltage to +15% voltage; - c) read the frequency at the relative voltage. Report No.: GZEM130300092101 Page: 77 of 79 IC: 3784A-CPLA40A #### 7.2.6.1 Measurement Record: ### 1) Frequency Stability vs temperature: 1.1) Test for Downlink: 728~756MHz (middle channel 742MHz) | Temperature(°C) | Frequency(MHz) | Tolerance(ppm) | |-----------------|----------------|----------------| | 50 | 742.0000027 | 0.000404313 | | 40 | 742.0000025 | 0.000134771 | | 30 | 742.0000023 | -0.000134771 | | 20 | 742.0000024 | Reference | | 10 | 742.0000026 | 0.000269542 | | 0 | 742.0000024 | 0 | | -10 | 742.0000027 | 0.000404313 | | -20 | 742.0000028 | 0.000539084 | | -30 | 742.0000029 | 0.000673855 | | -40 | 742.0000026 | 0.000269542 | ### 1.2) Test for Downlink: 869~894MHz (middle channel 881.5MHz) | Temperature(°C) | Frequency(MHz) | Tolerance(ppm) | |-----------------|----------------|----------------| | 50 | 881.5000038 | 0.000794101 | | 40 | 881.5000036 | 0.000567215 | | 30 | 881.5000034 | 0.000340329 | | 20 | 881.5000031 | Reference | | 10 | 881.5000028 | -0.000340329 | | 0 | 881.5000035 | 0.000453772 | | -10 | 881.5000041 | 0.00113443 | | -20 | 881.5000032 | 0.000113443 | | -30 | 881.5000027 | -0.000453772 | | -40 | 881.5000038 | 0.000794101 | ### 1.3) Test for Downlink: 1930~1995MHz (middle channel 1962.5MHz) | Temperature(°C) | Frequency(MHz) | Tolerance(ppm) | |-----------------|----------------|----------------| | 50 | 1962.5000025 | -0.000203822 | | 40 | 1962.5000027 | -0.000101911 | | 30 | 1962.5000032 | 0.000152866 | | 20 | 1962.5000029 | Reference | | 10 | 1962.5000043 | 0.000713376 | | 0 | 1962.5000034 | 0.000254777 | | -10 | 1962.5000031 | 0.000101911 | | -20 | 1962.5000033 | 0.000203822 | | -30 | 1962.5000034 | 0.000254777 | | -40 | 1962.5000035 | 0.000305732 | Report No.: GZEM130300092101 Page: 78 of 79 IC: 3784A-CPLA40A ### 1.4) Test for Downlink: 2110~2155MHz (middle channel 2132.5MHz) | Temperature(°C) | Frequency(MHz) | Tolerance(ppm) | |-----------------|----------------|----------------| | 50 | 2132.5000034 | 0.0000937867 | | 40 | 2132.5000032 | 0.00000 | | 30 | 2132.5000039 | 0.000328253 | | 20 | 2132.5000032 | Reference | | 10 | 2132.5000029 | -0.00014068 | | 0 | 2132.5000028 | -0.000187573 | | -10 | 2132.5000035 | 0.00014068 | | -20 | 2132.5000037 | 0.000234467 | | -30 | 2132.5000028 | -0.000187573 | | -40 | 2132.5000034 | 0.0000937867 | ### 2) Frequency Stability vs voltage: ### 2.1) For AC supplied: ### 2.1.1) Test for Downlink:728~757MHz (middle channel 742MHz) | Voltage(V AC) | Frequency(MHz) | Tolerance(ppm) | |-------------------|----------------|----------------| | 102
(120*0.85) | 742.0000025 | 0.000134771 | | 120 | 742.0000024 | Reference | | 138
(120*1.15) | 742.0000026 | 0.000268542 | ### 2.1.2) Test for Downlink: 869~894MHz (middle channel 881.5MHz) | Voltage(V AC) | Frequency(MHz) | Tolerance(ppm) | |-------------------|----------------|----------------| | 102
(120*0.85) | 881.5000032 | 0.000113443 | | 120 | 881.5000031 | Reference | | 138
(120*1.15) | 881.5000029 | -0.000226886 | ### 2.1.3) Test for Downlink: 1930~1995MHz (middle channel 1962.5MHz) | Voltage(V AC) | Frequency(MHz) | Tolerance(ppm) | |-------------------|----------------|----------------| | 102
(120*0.85) | 1962.5000032 | 0.000152866 | | 120 | 1962.5000029 | Reference | | 138
(120*1.15) | 1962.5000035 | 0.000305732 | ### 2.1.4) Test for Downlink: 2110~2155MHz (middle channel 2132.5MHz) | Voltage(V AC) | Frequency(MHz) | Tolerance(ppm) | |-------------------|----------------|----------------| | 102
(120*0.85) | 2132.5000033 | 0.0000468935 | | 120 | 2132.5000032 | Reference | | 138
(120*1.15) | 2132.5000034 | 0.0000937867 | Report No.: GZEM130300092101 Page: 79 of 79 IC: 3784A-CPLA40A ### 2.2) For DC supplied: ### 2.2.1) Test for Downlink:728~757MHz (middle channel 742.5MHz) | Voltage(V DC) | Frequency(MHz) | Tolerance(ppm) | |-----------------------|----------------|----------------| | -40.8
(-48.0*0.85) | 742.0000023 | -0.000134771 | | -48.0 | 742.0000024 | Reference | | -55.2
(-48.0*1.15) | 742.0000025 | 0.000134771 | ### 2.2.2) Test for Downlink: 869~894MHz (middle channel 881.5MHz) | Voltage(V DC) | Frequency(MHz) | Tolerance(ppm) | |-----------------------|----------------|----------------| | -40.8
(-48.0*0.85) | 881.5000034 | 0.000340329 | | -48.0 | 881.5000031 | Reference | | -55.2
(-48.0*1.15) | 881.5000028 | -0.000340329 | ### 2.2.3) Test for Downlink: 1930~1995MHz (middle channel 1962.5MHz) | Voltage(V DC) | Frequency(MHz) | Tolerance(ppm) | |-----------------------|----------------|----------------| | -40.8
(-48.0*0.85) | 1962.5000027 | -0.000101911 | | -48.0 | 1962.5000029 | Reference | | -55.2
(-48.0*1.15) | 1962.5000043 | 0.000713376 | ### 2.2.4) Test for Downlink: 2110~2155MHz (middle channel 2132.5MHz) | Voltage(V DC) | Frequency(MHz) | Tolerance(ppm) | |-----------------------|----------------|----------------| | -40.8
(-48.0*0.85) | 2132.5000029 | -0.00014068 | | -48.0 | 2132.5000032 | Reference | | -55.2
(-48.0*1.15) | 2132.5000028 | -0.000187573 | -- The End of Report--