

Product: Wireless portable speaker

Trade mark : ONKYO

Model/Type reference : OKAT3X/ZZ

("X"=A-Z or Nil, "ZZ" = 00-99)

Serial Number : N/A

Report Number : EED32I00153602 FCC ID : 2AANUOKAT3X Date of Issue : Jun. 06, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Gibson Innovations Limited
5/F Philips Electronics Building, 5 Science Park East Ave, HK Science
Park, Shatin, NT, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Approved by Report Seal

Lon You

Reviewed by:

Eman-Li

Luo Date:

Jun. 06, 2016

Sheek Luo Lab supervisor

Check No.: 2384369953

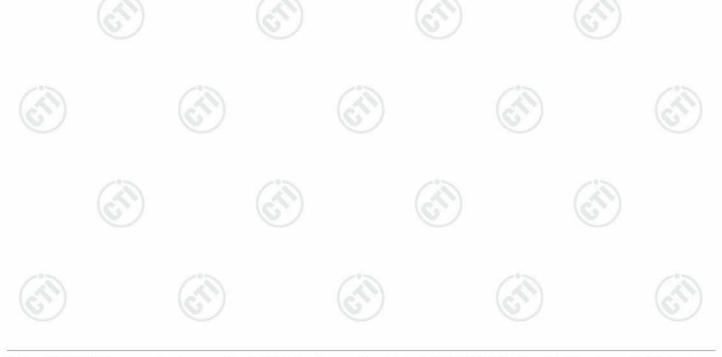
2 Version

Version No.	Date	(6)	Description	9
00	Jun. 06, 2016		Original	
		100	75	/05
((%)	(642)	(67)

Report No. : EED32I00153602 Page 3 of 49

3 Test Summary

rest Gairmary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

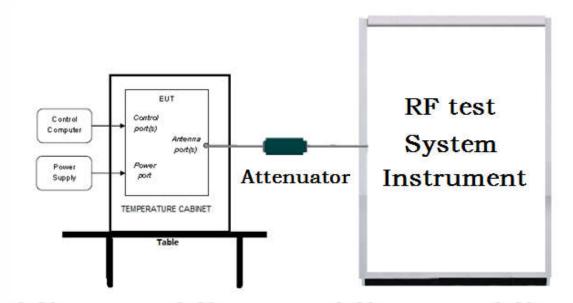
Model No.: OKAT3X/ZZ("X"=A-Z or Nil, "ZZ" = 00-99)

Only the model OKAT3W/37 was tested, since the electrical circuit design, layout, components used and internal wiring are identical for the above models, with difference being model number and color of cabinet.

Report No.: EED32I00153602 Page 4 of 49

4 Content

1 C	OVER PAGE		•••••			1
2 VE	ERSION		•••••		•••••	2
3 TE	EST SUMMARY	•••••	•••••		•••••	3
4 C(ONTENT	•••••				4
5 TE	ST REQUIREMENT				•••••	5
5 5	.1 TEST SETUP	setupsions test setup issions test setup	0			5
3 GI	ENERAL INFORMATION		•••••	•••••	•••••	7
6 6 6 6 6 6 6	.1 CLIENT INFORMATION	SUBJECTIVE TO TO SUBJECTIVE TO TO SUBJECTIVE TO TO SUBJECTIVE TO TO SUBJECTIVE SUBJECTIVE TO SUBJECTIVE SUBJECTIVE SUBJECTIVE SUBJECTIVE SUBJE	THIS STANDARD			
7 E	QUIPMENT LIST	•••••		•••••		11
B R	ADIO TECHNICAL REQUI	REMENTS SPE	CIFICATION			13
	Appendix A): 6dB Occupi Appendix B): Conducted Appendix C): Band-edge Appendix D): RF Conduct Appendix E): Power Spec Appendix F): Antenna Re Appendix G): AC Power I Appendix H): Restricted I Appendix I): Radiated Sp	Peak Output Pofor RF Conducted Spurious Enter Densityequirementbline Conducted pands around fur	ed Emissionsnissions	cy (Radiated)		
PHC	TOGRAPHS OF TEST SI	ETUP		•••••	•••••	35
PHC	TOGRAPHS OF EUT CO	NSTRUCTIONA	AL DETAILS			37



Report No.: EED32I00153602 Page 5 of 49

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

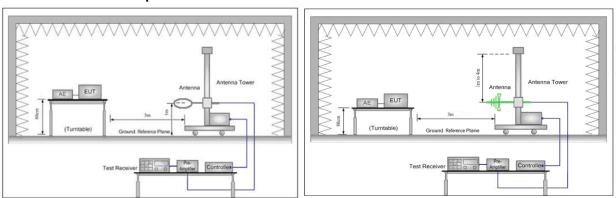


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

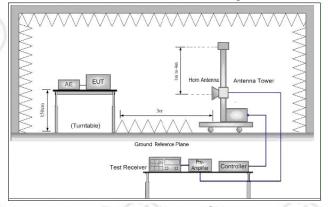
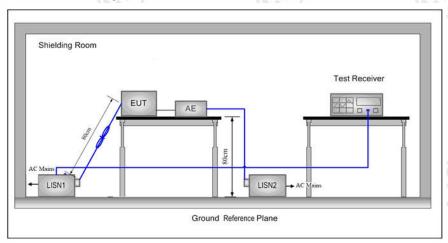
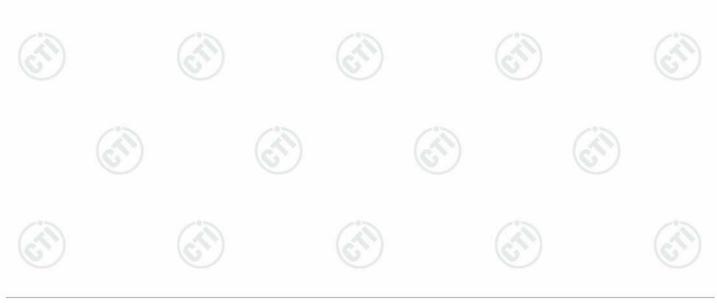



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			100
Temperature:	21°C		
Humidity:	54% RH	David Sand	
Atmospheric Pressure:	1010mbar		\

5.3 Test Condition

Test channel:

	Test Mode	Tx	RF Channel			
١	rest Mode	1X	Low(L)	Middle(M)	High(H)	
ŀ	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	

6 General Information

6.1 Client Information

Applicant:	Gibson Innovations Limited		
Address of Applicant:	5/F Philips Electronics Building, 5 Science Park East Ave, HK Science Park, Shatin, NT, Hong Kong		
Manufacturer:	Gibson Innovations Limited		
Address of Manufacturer:	5/F Philips Electronics Building, 5 Science Park East Ave, HK Science Park, Shatin, NT, Hong Kong		
Factory:	Shenzhen 3NOD Digtal Technology Co., Ltd.		
Address of Factory:	Building D Park, 8# Langhui Road, Tangxiayong Village Industrial Zone, Songgang Town, Baoan, Shenzhen, Guangdong, China		

6.2 General Description of EUT

	110				
Product Name:	Wireless portable speaker				
Model No.:	OKAT3X/ZZ("X"=A-Z or Nil, "ZZ" = 00-	OKAT3X/ZZ("X"=A-Z or Nil, "ZZ" = 00-99)			
Test Mode No.:	OKAT3W/37			(2)	
Trade mark:	ONKYO	(0,		(0,	
EUT Supports Radios application:	Bluetooth V4.0 BLE				
Power Supply:	- PL 305050*3 Li-ion 11.1V 800mAh 8.88wh + 150928 BPI		(1)		
Sample Received Date:	May 19, 2016				
Sample tested Date:	May 19, 2016 to Jun. 06, 2016				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	2
Bluetooth Version:	4.0	
Modulation Technique:	DSSS	
Modulation Type:	GFSK	
Number of Channel:	40	
Sample Type:	Portable production	
Test Power Grade:	50 (manufacturer declare)	
Test Software of EUT:	CSR (manufacturer declare)	P
Antenna Type and Gain:	Type: Internal antenna	3
	Gain: 0.54dBi	
Test Voltage:	AC 120V/60Hz	

Report No. : EED32I00153602 Page 8 of 49

100		700		100	_	-/	_
Operation F	requency eac	h of channe		(25)		(65))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below. : FCC DOC approved

Description	Manufacturer	Model No.	Supplied by	
Mouse	L.Selectron	M004	СТІ	
laptop	lenovo	E46L	СТІ	

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories...

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Report No.: EED32I00153602 Page 9 of 49

Centre Testing International (Shenzhen) Corporation. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Corporation. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Corporation., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer

None.



Report No. : EED32I00153602 Page 10 of 49

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
_	DE navven conducted	0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
2	Dedicted Occurious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
		3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Report No. : EED32I00153602 Page 11 of 49

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(3)	01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(0.)	01-12-2016	01-11-2017
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(3)	01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

	Cor	nducted distur	bance Test		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017
		The state of the s			

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-02-2014	06-01-2017
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-25-2015	05-23-2016
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(4)	01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	<u> </u>	01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

cot ilcouito Elot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

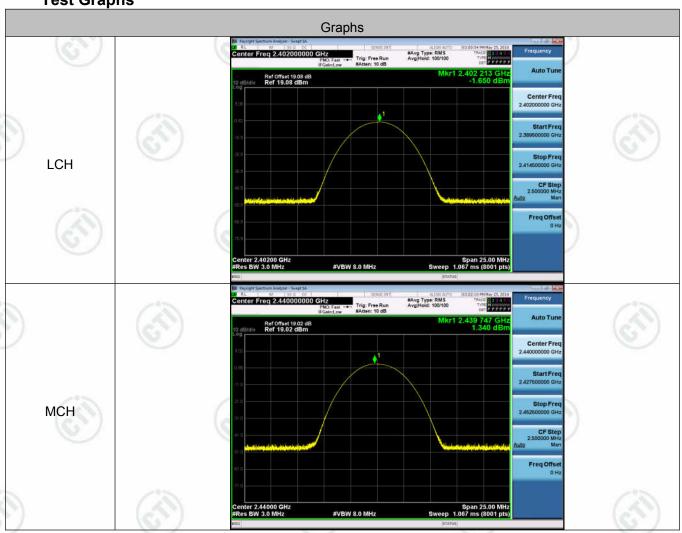
Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
	BLE	LCH	0.6955	1.0458	PASS	133
(C)	BLE	MCH	0.6840	1.0407	PASS	Peak
-	BLE	нсн	0.6869	1.0406	PASS	detector

Test Graphs

Page 15 of 49

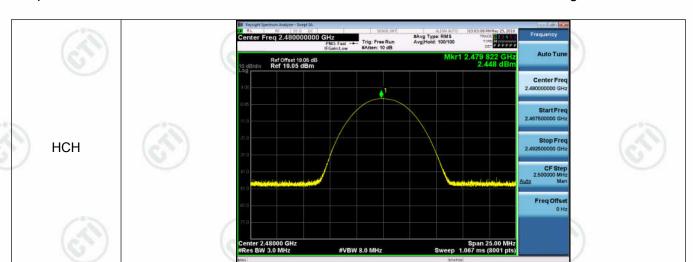

Report No. : EED32I00153602 Page 16 of 49

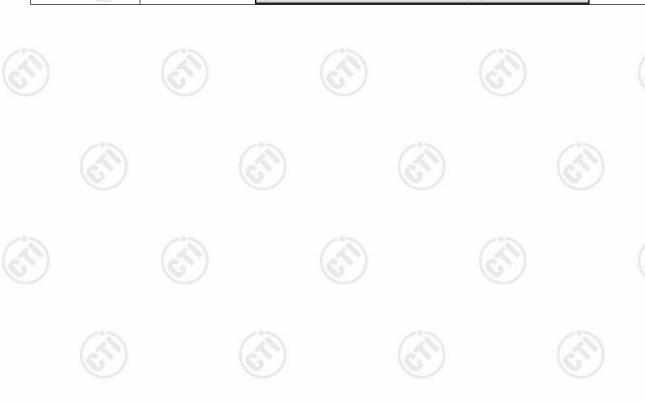
Appendix B): Conducted Peak Output Power

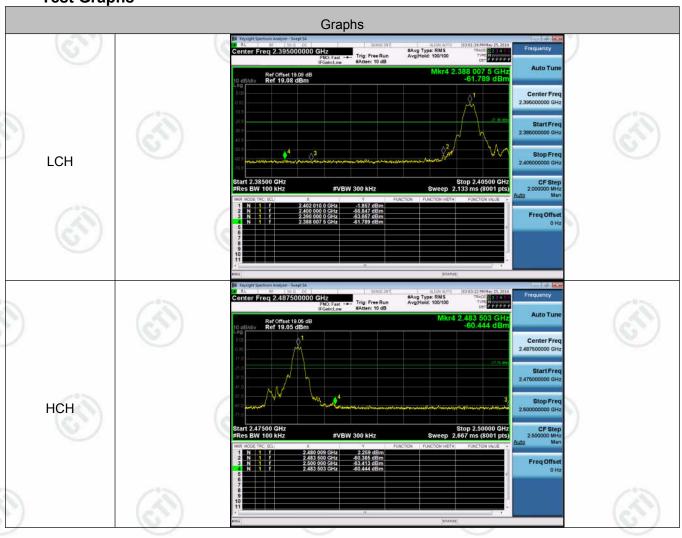
Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.650	PASS
BLE	MCH	1.340	PASS
BLE	HCH	2.448	PASS

Test Graphs





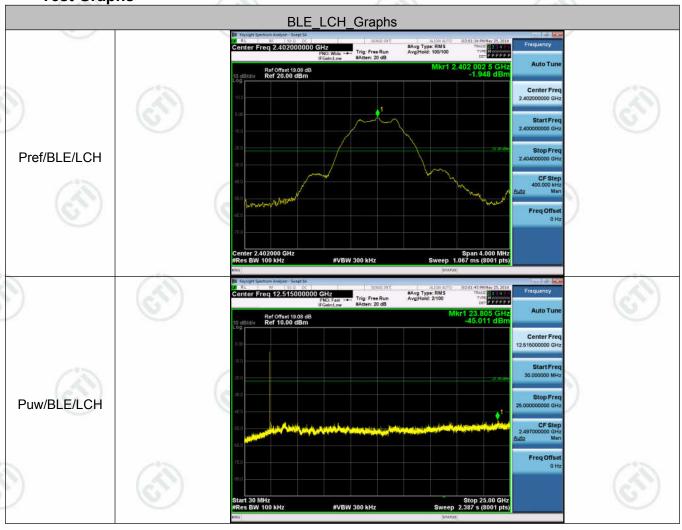

Report No.: EED32I00153602 Page 18 of 49

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	-1.857	-61.789	-21.86	PASS
	BLE	НСН	2.259	-60.444	-17.74	PASS

Test Graphs

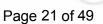

Report No. : EED32I00153602 Page 19 of 49

Appendix D): RF Conducted Spurious Emissions

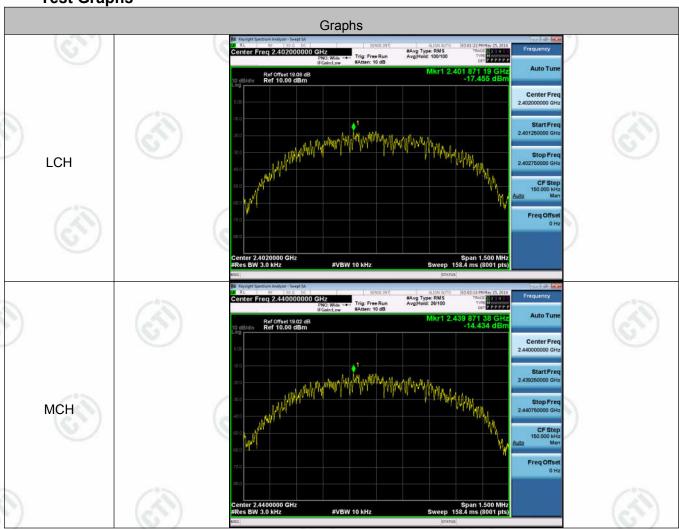
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.948	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	0.99	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	2.093	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs





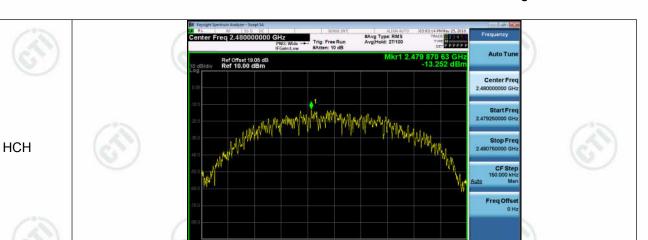

Report No. : EED32I00153602 Page 22 of 49

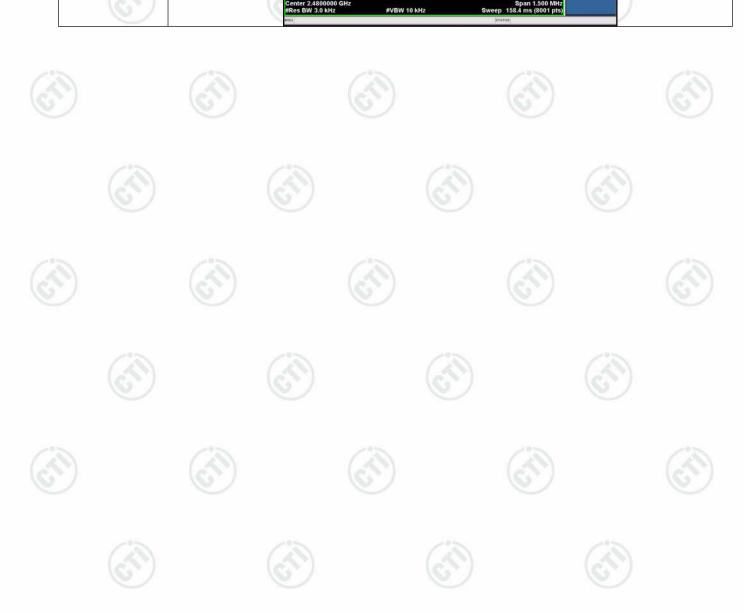
Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-17.455	PASS
BLE	MCH	-14.434	PASS
BLE	НСН	-13.252	PASS

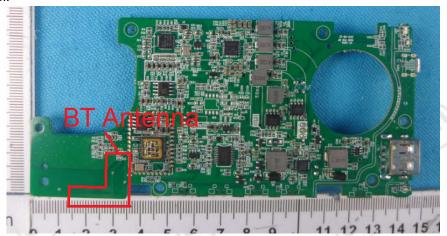
Test Graphs





Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.54dBi.

Report No.: EED32I00153602 Page 25 of 49

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz 1)The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the

- reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The USN
- EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fragues et range (MIII-)	Limit (c	lBμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

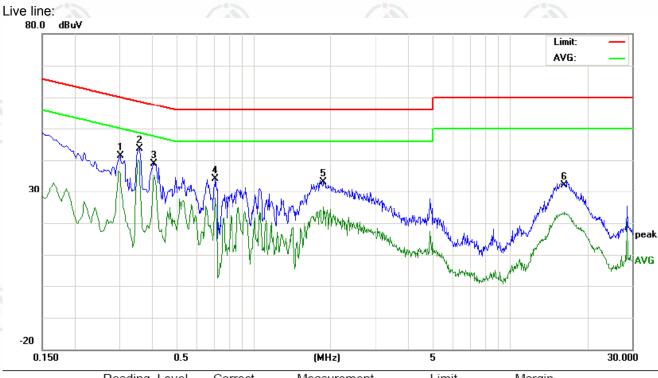
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 26 of 49

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBu∀)		Lin (dB			rgin dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2980	30.29	29.15	26.83	9.80	40.09	38.95	36.63	60.30	50.30	-21.35	-13.67	Р	
	2	0.3540	33.09	31.56	30.47	9.85	42.94	41.41	40.32	58.87	48.87	-17.46	-8.55	Р	
	3	0.4100	28.78	27.49	25.24	9.90	38.68	37.39	35.14	57.65	47.65	-20.26	-12.51	Р	
þ	4	0.7100	24.19	21.16	17.64	9.90	34.09	31.06	27.54	56.00	46.00	-24.94	-18.46	Р	
	5	1.8860	23.21	20.72	13.41	10.00	33.21	30.72	23.41	56.00	46.00	-25.28	-22.59	Р	
	6	16.3500	21.86	18.45	12.27	10.21	32.07	28.66	22.48	60.00	50.00	-31.34	-27.52	Р	

Neutral line: 80.0 dBuV Limit: AVG: -20 0.150 0.5 (MHz) 30.000 5 Reading_Level Correct Measurement Limit Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) MHz Peak QΡ AVG dB peak QΡ AVG AVG P/F Comment 1 0.1660 36.23 34.74 25.05 9.80 46.03 44.54 34.85 65.15 55.15 -20.61 -20.30 Р 2 29.36 25.73 9.80 -21.03 0.3020 31.01 40.81 39.16 35.53 60.19 50.19 -14.66

Notes:

4

5

6

0.3540

33.64

0.4100 28.20 26.35

16.6340 23.79 20.62

0.7100 23.64

31.04

21.25

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

30.90

24.85

20.01

13.90

9.85

9.90

9.90

10.23

43.49

38.10

33.54

34.02

40.89

36.25

31.15

30.85

40.75

34.75

29.91

24.13

58.87

57.65

56.00

60.00

48.87

47.65

46.00

50.00

-17.98

-21.40

-24.85

-29.15

-8.12

-12.90

-16.09

-25.87

Ρ

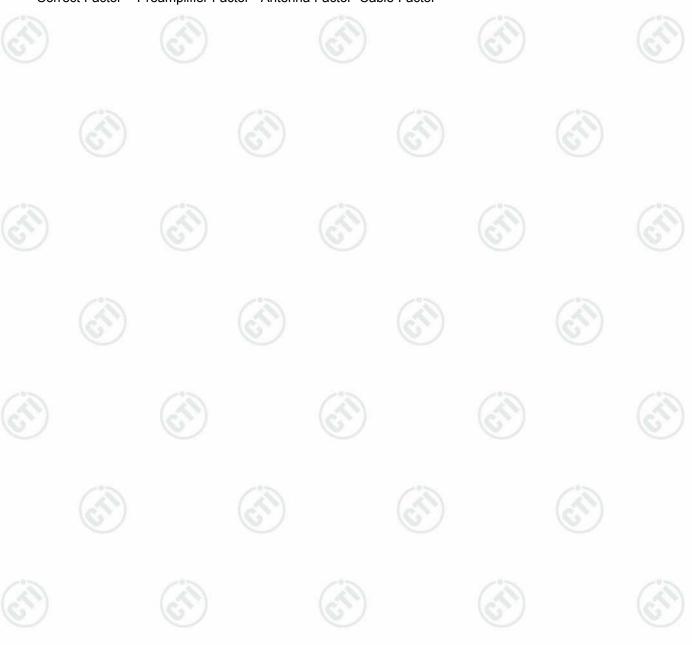
Р

Ρ


Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	AL 4011	Peak	1MHz	3MHz	Peak	-05
•)	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proced a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 meters was mounted on the total control of the antenna height is determine the maximum polarizations of the antenna was tuned was turned from 0 degree. The test-receiver systems and the and the antenna was turned from 10 degree. The test-receiver systems and the and the antenna was turned from 10 degree. The test-receiver systems and the antenna was turned from 10 degree.	ure as below: on the top of a rechoic camber. To of the highest ra eters away from op of a variable-h varied from one om value of the fi tenna are set to mission, the EUT d to heights from grees to 360 deg em was set to Pe	otating table he table was adiation. the interfer neight anter meter to fould strength make the nake the nake the nake the nake the nake to find	e 0.8 meter ence-receinna tower. our meters n. Both hor neasurement ged to its 4 meters a	rs above the gases to ving antenna, above the gro- rizontal and versity of the contract of the rotata and the rotata num reading.	which
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	npliance. Also m rum analyzer plo channel	easure any	emission:	s in the restric	
	frequency to show cor bands. Save the spect	npliance. Also manument analyzer place channel ure as below: ve is the test site of the change form of the channel owest channel, aments are perford found the X axis.	e, change fin table 0.8 le is 1.5 method in X, kis positioni	rom Semi- meter to 1 ter). t channel Y, Z axis p	s in the restrict ower and mode Anechoic Cha .5 meter(Aborositioning for t is worse cas	ulatio ambe
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the lit. The radiation measure Transmitting mode, ar	npliance. Also manument analyzer place channel ure as below: ve is the test site of the change form of the channel owest channel, aments are perford found the X axis.	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioniuencies me	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i	s in the restrict ower and mode Anechoic Cha .5 meter(Aborositioning for t is worse cas	ulatio ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Charals the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above procedures.	npliance. Also marum analyzer plochannel ure as below: ve is the test site of the change form of the channel owest channel, ements are performed found the X are until all frequires until all frequires analyzer.	e, change fin table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	rom Semi-meter to 1 ter). t channel Y, Z axis ping which is easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Charal 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above procedure. Frequency	npliance. Also marum analyzer plochannel ure as below: ve is the test site of the site of the performance of the site of the	e, change fin table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies met med	rom Semi- meter to 1 ter). t channel Y, Z axis ping which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Charals 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above procedure Frequency 30MHz-88MHz	npliance. Also marum analyzer plochannel ure as below: ve is the test site of the change form of the company o	e, change from table 0.8 le is 1.5 method in X, kis positioni uencies med/m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also marum analyzer place channel ure as below: ve is the test site of the change form of the change form of the channel of the ch	e, change fin table 0.8 le is 1.5 method in X, kis positioni uencies method (m. @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo oositioning for t is worse cas as complete. mark eak Value	ulatio ambe ove
imit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Charals 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also marum analyzer place channel ure as below: ve is the test site of the change form of the change form of the channel of the ch	e, change from table 0.8 le is 1.5 mer the Highest rmed in X, kis positioniquencies med	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value eak Value	ulatio ambe ove

Test plot as follows:


Report No.: EED32I00153602

	us lonow	<u> </u>	2. 2.			A 100 A				
Worse case	e mode:	GFSK								
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	32.53	4.28	34.39	43.47	45.89	74	-28.11	Н	PK	Lowest
2390.00	32.53	4.28	34.39	45.35	47.77	74	-26.23	V	PK	Lowest
2483.50	32.71	4.51	34.41	45.75	48.56	74	-25.44	Н	PK	Highest
2483.50	32.71	4.51	34.41	47.01	49.82	74	-24.18	V	PK	Highest

Note:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

¹⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	6.
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
CIL	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

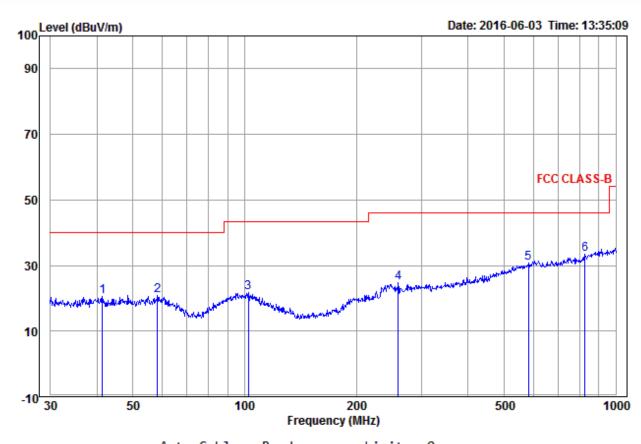
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	- 20-		300	
0.490MHz-1.705MHz	24000/F(kHz)	-		30	
1.705MHz-30MHz	30	-		30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	

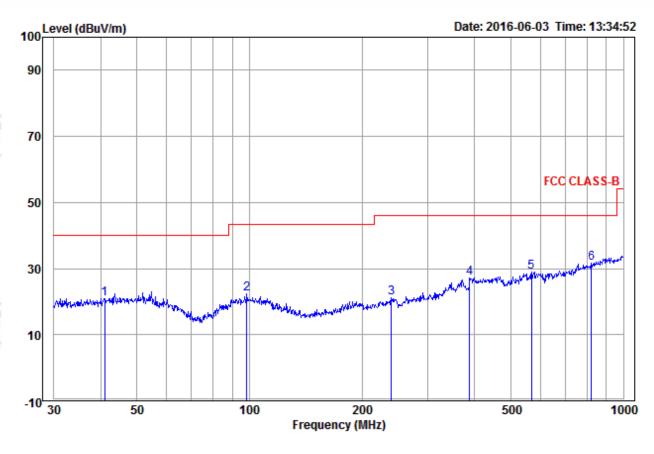
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
	•									
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			_
		•								
1	41.422	14.67	0.67	5.10	20.44	40.00	-19.56	Horizontal		
2	58.203	13.94	1.42	5.59	20.95	40.00	-19.05	Horizontal		
3	102.360	14.03	1.57	6.03	21.63	43.50	-21.87	Horizontal		
4	259.234	13.32	2.36	9.06	24.74	46.00	-21.26	Horizontal		
5	582.743	19.52	3.41	7.86	30.79	46.00	-15.21	Horizontal		
6 рр	827.493	21.75	4.03	7.70	33.48	46.00	-12.52	Horizontal		



		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	40.988	14.67	0.63	5.71	21.01	40.00	-18.99	Vertical	
2	98.487	14.08	1.57	6.60	22.25	43.50	-21.25	Vertical	
3	239.987	13.34	2.32	5.55	21.21	46.00	-24.79	Vertical	
4	387.992	16.11	2.78	8.30	27.19	46.00	-18.81	Vertical	
5	568.613	19.26	3.32	6.32	28.90	46.00	-17.10	Vertical	
6 рр	821.710	21.69	3.98	6.02	31.69	46.00	-14.31	Vertical	

Transmitter Emission above 1GHz

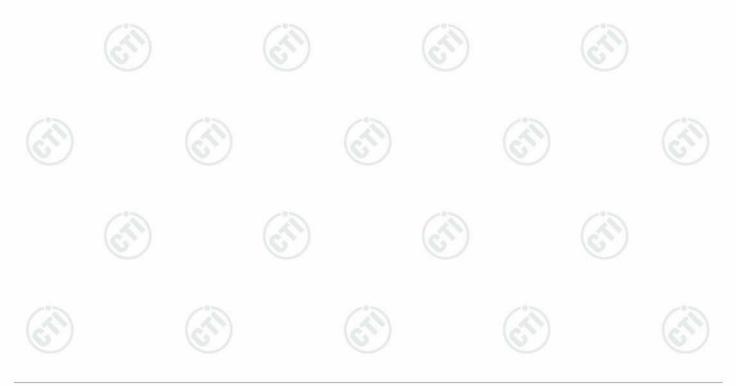
\Morae asse			VC TOTIL	Toot obon	nal	Lowest				
Worse case	mode.	GFSK		Test chan	nei.	Lowest				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1118.517	30.02	2.34	35.05	48.46	45.77	74	-28.23	Pass	Н	
1668.044	31.18	2.70	34.54	48.59	47.93	74	-26.07	Pass	Н	
3738.129	32.99	5.83	34.58	45.99	50.23	74	-23.77	Pass	Н	
4804.000	34.69	6.72	34.35	41.23	48.29	74	-25.71	Pass	Н	
7206.000	36.42	8.35	34.90	37.53	47.40	74	-26.60	Pass	Н	
9608.000	37.88	7.67	35.08	36.14	46.61	74	-27.39	Pass	Н	
1025.782	29.77	2.26	35.17	48.06	44.92	74	-29.08	Pass	V	
1453.818	30.78	2.57	34.71	49.14	47.78	74	-26.22	Pass	V	
3766.785	32.97	5.91	34.58	44.69	48.99	74	-25.01	Pass	V	
4804.000	34.69	6.72	34.35	41.69	48.75	74	-25.25	Pass	V	
7206.000	36.42	8.35	34.90	38.43	48.30	74	-25.70	Pass	V	
9608.000	37.88	7.67	35.08	37.71	48.18	74	-25.82	Pass	V	

Worse case	mode:	GFSK		Test chan	nel:	Middle				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1118.517	30.02	2.34	35.05	47.95	45.26	74	-28.74	Pass	/° #	
1668.044	31.18	2.70	34.54	47.74	47.08	74	-26.92	Pass	(H)	
4880.000	34.85	6.74	34.33	42.88	50.14	74	-23.86	Pass	H	
6017.064	35.91	6.01	34.31	43.36	50.97	74	-23.03	Pass	Н	
7320.000	36.43	8.45	34.90	38.52	48.50	74	-25.50	Pass	Н	
9760.000	38.05	7.54	35.05	34.17	44.71	74	-29.29	Pass	Н	
1364.182	30.6	2.52	34.80	48.51	46.83	74	-27.17	Pass	V	
3757.208	32.97	5.88	34.58	44.68	48.95	74	-25.05	Pass	V	
4880.000	34.85	6.74	34.33	41.25	48.51	74	-25.49	Pass	V	
6047.776	35.93	6.08	34.33	42.48	50.16	74	-23.84	Pass	V	
7320.000	36.43	8.45	34.90	38.61	48.59	74	-25.41	Pass	V	
9760.000	38.05	7.54	35.05	36.97	47.51	74	-26.49	Pass	V	

(ii)

Report No.: EED32I00153602 Page 34 of 49

200		200	2000			20%				
Worse case	mode:	GFSK		Test chan	Test channel:					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1668.044	31.18	2.70	34.54	48.80	48.14	74	-25.86	Pass	~ H	
3747.656	32.98	5.86	34.58	44.85	49.11	74	-24.89	Pass	(H)	
4960.000	35.02	6.75	34.31	40.50	47.96	74	-26.04	Pass	H	
6078.644	35.94	6.16	34.35	42.72	50.47	74	-23.53	Pass	Н	
7440.000	36.45	8.55	34.90	38.03	48.13	74	-25.87	Pass	Н	
9920.000	38.22	7.41	35.02	34.58	45.19	74	-28.81	Pass	Н	
1364.182	30.60	2.52	34.80	50.02	48.34	74	-25.66	Pass	V	
3738.129	32.99	5.83	34.58	45.08	49.32	74	-24.68	Pass	V	
4960.000	35.02	6.75	34.31	41.11	48.57	74	-25.43	Pass	V	
6017.064	35.91	6.01	34.31	42.54	50.15	74	-23.85	Pass	V	
7440.000	36.45	8.55	34.90	37.64	47.74	74	-26.26	Pass	V	
9920.000	38.22	7.41	35.02	34.60	45.21	74	-28.79	Pass	V	

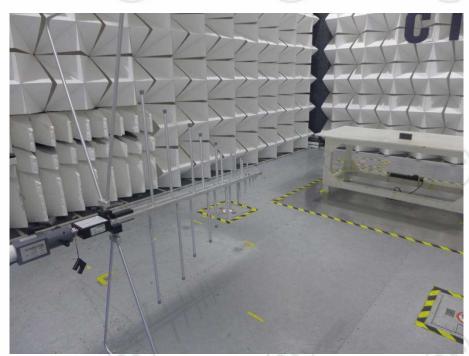

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Report No.: EED32I00153602 Page 35 of 49

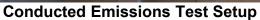
PHOTOGRAPHS OF TEST SETUP

Test mode No.: OKAT3W/37

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



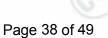


Report No.: EED32I00153602 Page 37 of 49

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: OKAT3W/37

View of Product-1


Report No.: EED32I00153602

:cm

11 12 13 14 15 16 17 18

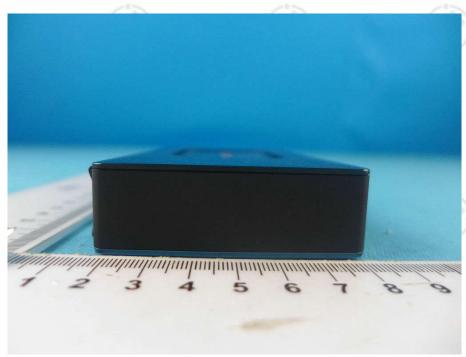
View of Product-3

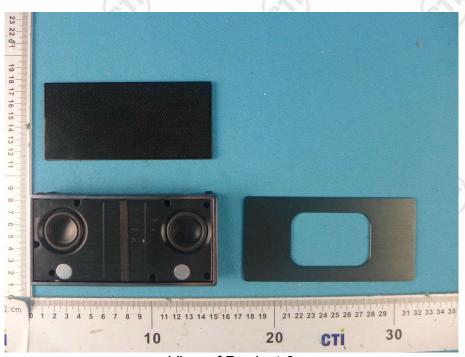
View of Product-4

Report No.: EED32I00153602

View of Product-5

View of Product-6





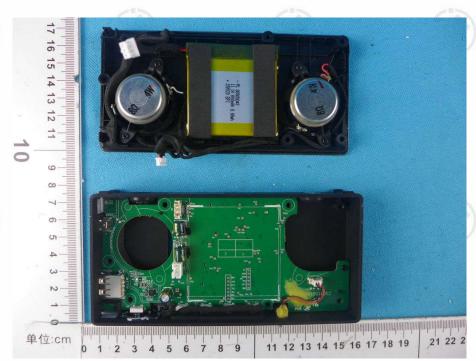
Report No.: EED32I00153602 Page 40 of 49

View of Product-7

View of Product-8

Page 41 of 49 Report No.: EED32I00153602

View of Product-9



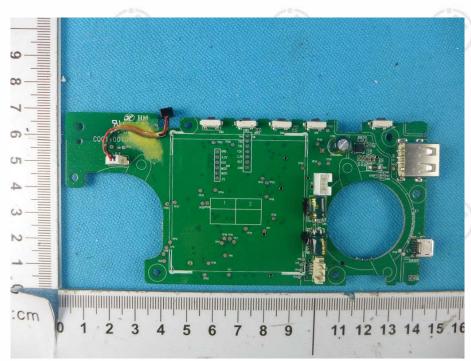
Report No.: EED32I00153602 Page 42 of 49

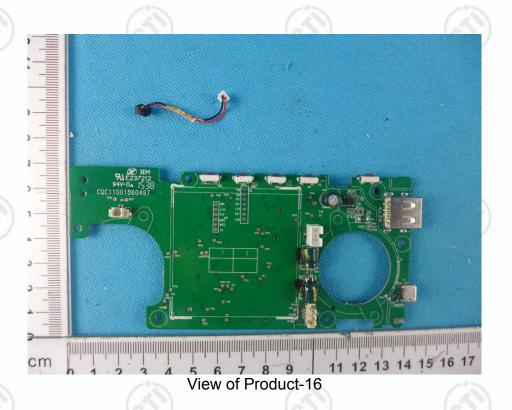
View of Product-11

Report No. : EED32I00153602 Page 43 of 49

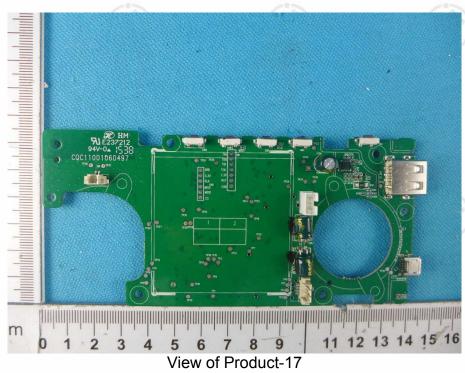
View of Product-13

View of Product-14





Report No. : EED32I00153602 Page 44 of 49


View of Product-15

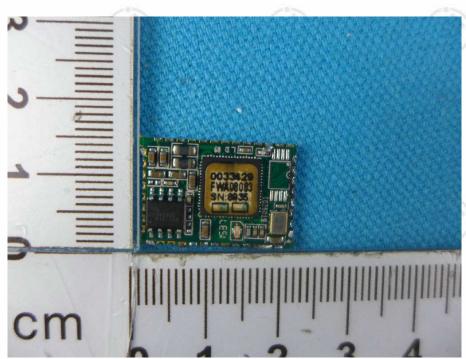
Page 45 of 49 Report No.: EED32I00153602

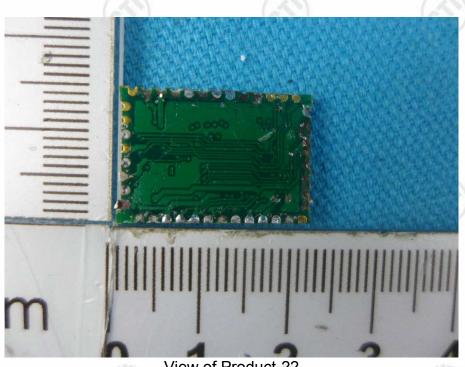
View of Product-18

Report No. : EED32I00153602 Page 46 of 49

View of Product-19

View of Product-20





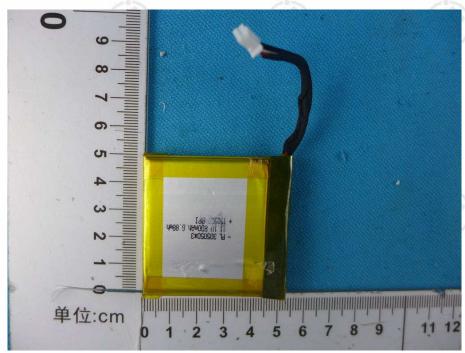
Report No.: EED32I00153602 Page 47 of 49

View of Product-21

View of Product-22

Page 48 of 49 Report No.: EED32I00153602

View of Product-24



Report No.: EED32I00153602 Page 49 of 49

View of Product-25

71011 01 1 10ddot 20

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com