Test Report

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS

Report No	EO0675-1
Client	Powercast Corporation Charlie Greene
Address	566 Alpha Drive Pittsburgh, PA 15238
Phone	412-436-4077
Items tested FCC ID IC FRN	SCD1000 AND SCLED1000 2AAMXSCD1000 11250A-SCD1000 0002862225
Equipment Type Equipment Code	Part 15.247 Digitally Modulated DTS
FCC/IC Rule Parts	47 CFR 15.247, RSS-210 Issue 8, RSS GEN Issue 3
Test Dates	May 7 – 9 and June 11, 2014
Results	As detailed within this report
Prepared by	Tuyen Truong A. – Test Engineer
Authorized by	Christopher Reynolds – EMC Supervisor
Issue Date	6/30/2014
Conditions of Issue	This Test Report is issued subject to the conditions stated in the ' <i>Conditions of Testing</i> ' section on page 27 of this report.

Curtis-Straus LLC is accredited by the American Association for Laboratory Accreditation for the specific scope of accreditation under Certificate Number 1627-01. This report may contain data which is not covered by the A2LA accreditation.

section on page 27 of this report.

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

page 1 of 28

Contents

Contents	2
Summary	3
Test Methodology	4
Product Tested - Configuration Documentation	5
Statement of Conformity	6
Test Results	7
Bandwidth	7
Fundamental Emission Output Power	
Radiated Spurious Emissions	13
Conducted Spurious Emissions	16
Power Spectral Density	18
AC Line Conducted Emissions	21
Occupied Bandwidth	23
Measurement Uncertainty	26
Conditions Of Testing	
-	

Form Final Report REV 7-20-07 (DW)

Summary

This test report supports an application for certification of a transmitter operating pursuant to 47 CFR 15.247. The products are the SCD1000 AND SCLED1000. They are digitally modulated transmitters that operate in the range 902-928MHz. Products were tested with an on board antenna with a gain of 4.55dBi.

We found that the products met the above requirements without modification. Charlie Greene from Powercast Corporation was present during the testing. The test samples were received in good condition.

Please note that The SCD1000 and SCLED1000 differ only in where the dimming wires (purple and gray) exit the enclosure. The SCD1000 has all wires exiting through the nipple. The SCLED1000 has the purple and gray dimming wires exiting away from the high voltage wires but does not cross the board. Therefore, Radiated Spurious Emissions and AC Line Conducted Emissions testing were separately performed for each model. Only conducted testing at the Antenna port was performed once.

page 3 of 28

Test Methodology

Radiated emission and AC Line conducted testing were performed according to the procedures specified in FCC Guidance for performing compliance measurement on DTS operating under section 15.247, April 19, 2013 and ANSI C63.10 (2009) and C63.4 (2003). Radiated Emissions were maximized by rotating the device around its axes as well as varying the test antenna's height and polarity. The antenna was maximized separately.

Conducted emissions at the antenna port were performed, as required by rule section.

The EUT operating voltage is 120VAC, 60Hz

Low operating channel frequency = 902.7MHz Mid operating channel frequency = 915MHz High operating channel frequency = 927.3MHz

The following bandwidths were used during radiated spurious and line conducted emissions.

Frequency	RBW	VBW
0.15-30MHz	9kHz	30kHz
30-1000MHz	120kHz	1MHz
1-10GHz	1MHz	3MHz

page 4 of 28

Product Tested - Configuration Documentation

Work Ord	er: 00675									
Compa	ny: Powercast Corpora	ation								
Company Addre	ss: 566 Alpha Drive									
	Pittsburgh, PA 15	238								
Conta	ct: Charlie Greene									
		MN						SN		Comment
E	JT:	SCD1000						Sample 1		EMI-Radiated
		SCLED1000	D					Sample 1		EMI-Radiated
	SCD	1000/SCLEE	D1000					Sample 2		Conducted tests or
EUT Max Frequen EUT ISM Frequen										
Support Equipment:		MN						SN		
none										
EUT Ports:		No. of	No.			Ferrites	Length	Max Length	In/Out NEBS Type	Unpopulated Reas
EUT Ports: Port Label	Port Type	ports	Populated	Cable Type	Shielded	rennes				
	Port Type Power	ports 1	Populated 1	Cable Type 2-wires	Shielded No	No	1.5m	>3m	Indoor	
Port Label			Populated 1 1							
Port Label AC Mains	Power		Populated 1 1 1	2-wires	No	No	1.5m	>3m	Indoor	

page 5 of 28

Statement of Conformity

The SCD1000 AND SCLED1000 has been found to conform to the following parts of 47 CFR and as detailed below:

RSS-GEN	RSS 210	Part 15	Comments
5.3		15.15(b)	There are no controls accessible to the user that
			varies the output power above specified limits.
5.2		15.19	The label is shown in the label exhibit.
7.1.5		15.21	Information to the user is shown in the instruction
			manual exhibit.
		15.27	No special accessories are required for
			compliance.
		15.31	The EUT was tested in accordance with the
			measurement standards in this section.
		15.33	Frequency range was investigated according to
			this section, unless noted in specific rule section
			under which the equipment operates.
		15.35	The EUT emissions were measured using the
			measurement detector and bandwidth specified in
			this section, unless noted in specific rule section
			under which the equipment operates.
7.1.4		15.203	EUT employs a permanently connected antenna.
	2.6	15.205	The fundamental is not in a Restricted band and
		15.209	the spurious and harmonic emissions in the
			Restricted bands comply with the general emission
			limits of 15.209.
7.2.2		15.207	EUT meets the AC Line conducted emissions
			requirements of 15.207.
	Annex 8	15.247	The unit complies with the requirements of 15.247
4.6.1		15.247	Occupied Bandwidth measurements were made.

Test Results

Bandwidth

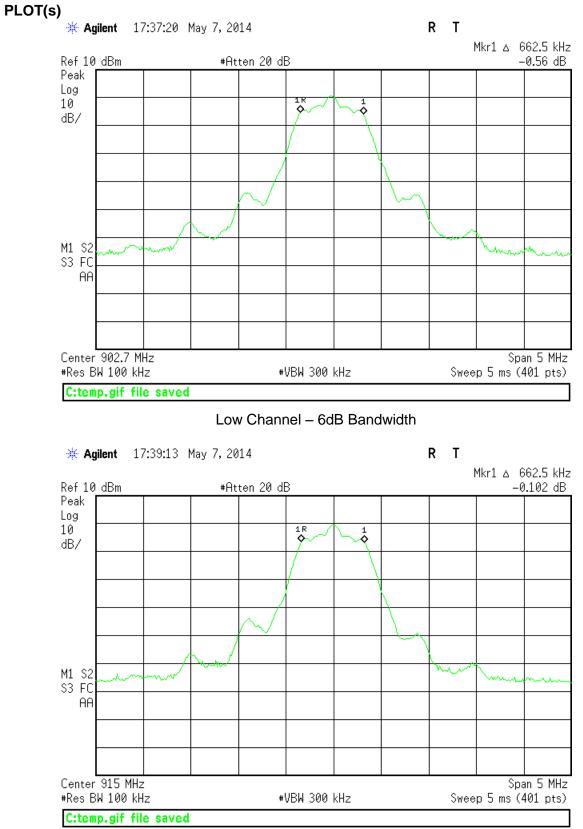
LIMIT

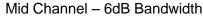
The minimum 6 dB bandwidth shall be at least 500 kHz. [15.247(a) (2)]

MEASUREMENTS / RESULTS

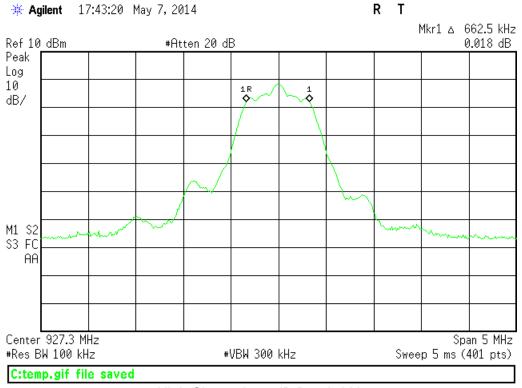
Engineer	Tuyen Truong A.
Date	5/7/2014
Site	CEMI6
Environmental	22.4°C, 34%, 1013mb
Conditions	

	6dB Bandwidth										
Frequency (MHz)	Mode	6dB Bandwidth (KHz)									
902.7	DMSS	662.5									
915	DMSS	662.5									
927.3	DMSS	662.5									
Tested by:	Tuyen Truong	RBW = 100KHz VBW = 300KHz									
Date:	5/7/2014	Analyzer: GOLD SA									
Company:	Powercast Corporation	Attenuator: PE7019-20									
EUT:	SCD1000 and SCLED1000										


Measured 6dB bandwidth = 662.5 KHz


Rev. 5/4/2014 Spectrum Analyzers / Receivers / Preselectors Range MN Mfr SN Asset Cat Calibration Due Calibrated on 100Hz-26.5 GHz Gold E4407B Agilent MY45113816 1284 Т 3/28/2015 3/28/2014 FCC Code VCCI Code Conducted Test Sites (Mains / Telco) Cat Calibration Due Calibrated on CEMI 6 719150 A-0015 Ш NA N/A Meteorological Meters SN Calibration Due Calibrated on MN Mfr Cat Asset Temp./Humidity/Atm. Pressure Gauge 7400 Perception II Davis N/A 965 5/29/2014 5/29/2013 1 TH A#1831 35519-044 Control Company 130319991 1831 П 6/13/2015 6/13/2013 Preamps /Couplers Attenuators / Filters Range MN Mfr SN Asset Cat Calibration Due Calibrated on HF 20dB 50W Attenuator 0.009-18 GHz PE 7019-20 Pasternack 1 791 Ш 7/13/2014 7/13/2013

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.



Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

High Channel – 6 dB Bandwidth

Fundamental Emission Output Power

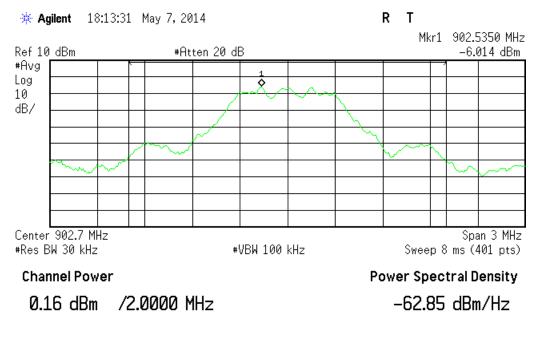
LIMIT Conducted Output Power 1 Watt [15.247(b) (3)]

MEASUREMENTS / RESULTS

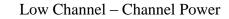
Engineer	Tuyen Truong
Date	5/7/2014
Site	CEMI6
Environmental	22.4°C, 34%, 1013mb
Conditions	

DTS Method 9.2.2.2 Method AVGSA-1 (Trace averaging with the EUT transmitting at full

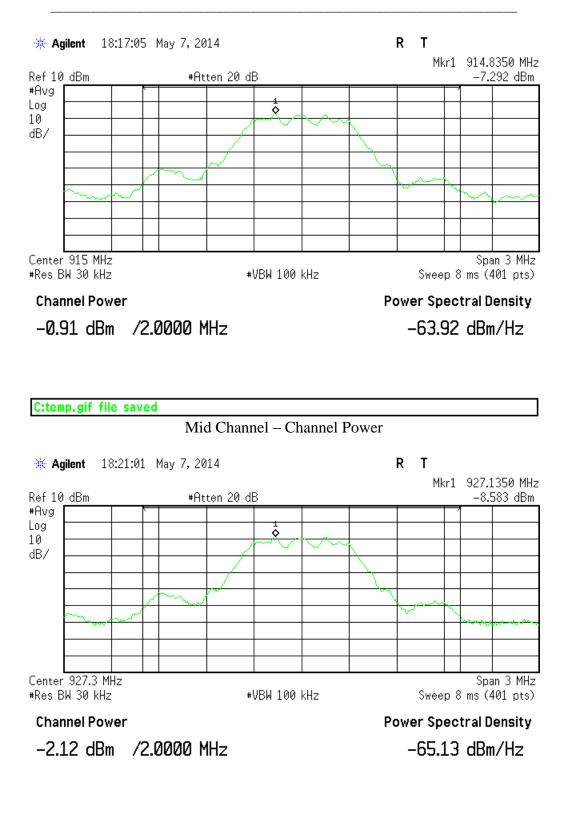
power throughout each sweep)


Tested by: Tuyen	Truong					WC): O0675				
Date: 5/7/20		Ana	Analyzer: GOLD				RBW = 30KHz				
Company: Power	cast Corporation	Atten	VBW = 100KHz								
EUT: SCD10		Operating V	Operating Voltage: 120Vac/60Hz				Limit = 1Watt or 30dBm				
TX Mode: DMSS		• •									
Channel	Measured Channel power		Attenuator Adjusted power factor measurement				Margin				
(MHz)	(dBm)	(dB)	((dBm)			(dB)	Result			
902.7	0.16	19.29		19.45 18.38			-10.55	pass			
915	-0.91	19.29					-11.62	pass			
927.3	-2.12	19.29		17.17	30		-12.83	pass			
ev. 5/4/2014 Dectrum Analyzers / Receivers / Preselec	tors Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated o			
Gold	100Hz-26.5 GHz		Agilent	MY45113816	1284	I	3/28/2015	3/28/2014			
Conducted Test Sites (Mains / Telco) CEMI 6	FCC Code 719150		VCCI Code A-0015			Cat ∭	Calibration Due NA	Calibrated o N/A			
Meteorological Meters		MN	Mfr	SN	Asset	Cat	Calibration Due				
Temp./Humidity/Atm. Pressure Gauge TH A#1831		7400 Perception II 35519-044	Davis Control Company	N/A 130319991	965 1831	I II	5/29/2014 6/13/2015	5/29/2013 6/13/2013			
Preamps /Couplers Attenuators / Filters	s Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated o			
Freamps/Couplers Attenuators/ Filters	, nunge			••••							

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.



PLOTS


C:temp.gif file saved

page 11 of 28

C:temp.gif file saved

High Channel – Channel Power

Radiated Spurious Emissions

LIMITS

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). [15.247(d)]

MEASUREMENTS / RESULTS

SCD1000

Date	: 07-May-14		Company:	Powercast	Corpora	tion					v	Vork Orde	r: 00675
Engineer	: Tuyen Truong		EUT Desc:	SCD1000				E	UT Opera	ating \	/oltage/	Frequency	120Vac/60
Temp	: 25°C		Humidity:	4%		Pressur	e: 1013mBar						
	Freque	ncy Range:	30 to 1000	MHz				N	leasurem	ent Di	stance:	3 m	
Notes	: TX on low char	inel							EL	JT Ma	x Freq:	<108MHz	
	All orientations	of EUT were	e investigate	ed.					1	EUT T	X Freq:	902-928MF	lz
											e	-CFR §15.	209
Antenna			Preamp	Antenna	Cable	Adjusted							
Polarization	Frequency	Reading	Factor	Factor	Factor	Reading	Limit	Margin	Result		.im it	Margin	Result
(H/V)	(MHz)	(dBµV)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(Pass/Fail)	_	3μV/m)	(dB)	(Pass/Fai
v	54.33	47.7	25.6	7.0	0.7	29.8					40.0	-10.2	Pass
v	55.83	50.4	25.6	6.9	0.7	32.4					40.0	-7.6	Pass
h	55.91 108.7	45.3 41.8	25.6	6.9 12.2	0.7 0.9	27.3 29.3					40.0	-12.7 -14.2	Pass Pass
v h	108.7	41.8 38.7	25.6 25.6	12.2	0.9	29.3 27.8					43.5 43.5	-14.2	Pass
v	188.0	40.8	25.8	11.0	1.2	27.2					+3.5 43.5	-16.3	Pass
v	245.7	40.0	25.8	11.8	1.2	28.7					46.0	-17.3	Pass
ĥ	389.9	46.9	25.8	15.1	1.7	37.9					46.0	-8.1	Pass
v	411.6	41.8	25.7	16.1	1.8	34.0					46.0	-12.0	Pass
v	846.7	25.9	25.7	21.8	2.6	24.6					46.0	-21.4	Pass
v	958.0	32.4	25.3	22.9	2.6	32.6					46.0	-13.4	Pass
Tabl	e Result:	Pass	by	-7.6	dB				И	Vorst	Freq:	55.8	3 MHz
Test Site:	: EMI Chamber	1	Cable 1:	Asset #15	05			Cable 2: /	sset #150)7	-	Cable 3	3:
Analyzer	Gold		Preamp:	Orange				Antenna: F	Red-Black		F	reselecto	r:
ev. 5/4/2014													
Spectrum	n Analyzers/Re		selectors	Rai		MN	Mfr	SN	Asset	Cat		tion Due	Calibrated
	Gold	i .		100Hz-2	6.5 GHz	E4407B	Agilent	MY45113816	1284	I	3/28	/2015	3/28/2014
	Radiated Emis	sions Sites		FCC	Code	IC Code	VCCI Code	Range		Cat	Calibra	tion Due	Calibrated
Radiated Emissions Sites EMI Chamber 1				719		2762A-6		•		1		/2015	5/17/2013
	EIVII GHAH						A-0015	>1GHz					
Pream		tenuatore / F	iltore						Assot	·	Calibra	tion Due	Calibrated
Prean	nps /Couplers At Orang		ilters	Rai	nge	MN ZFL-1000-LN	A-0015 Mfr CS	SN N/A	Asset 765	Cat		tion Due 2015	
Prean	nps /Couplers At	e	ilters	Rai	nge D00MHz	MN	Mfr	SN		Cat	2/4/		Calibrated 2/4/2014 Calibrated
Prean	nps /Couplers At Orang	le nas	-ilters	Rai 0.009-20	nge DOOMHz nge	MN ZFL-1000-LN	Mfr CS	SN N/A	765	Cat II	2/4/ Calibra	2015	2/4/2014
	nps /Couplers At Orang Antenr Red-Black Meteorologic	je nas ∷ Bilog al Meters		Rai 0.009-20 Rai	nge D00MHz nge D0MHz	MN ZFL-1000-LN MN JB1 MN	Mfr CS Mfr Sunol Mfr	SN N/A SN A091604-2 SN	765 Asset 1106 Asset	Cat II Cat I Cat	2/4/ Calibra 1/28 Calibra	2015 tion Due 5/2015 tion Due	2/4/2014 Calibrated 1/28/2013 Calibrated
	nps /Couplers At Orang Antenr Red-Black	ie nas : Bilog al Meters Pressure Gau		Rai 0.009-20 Rai	nge D00MHz nge D0MHz	MN ZFL-1000-LN MN JB1	Mfr CS Mfr Sunol	SN N/A SN A091604-2	765 Asset 1106	Cat II Cat	2/4/ Calibra 1/28 Calibra 5/29	2015 tion Due 4/2015	2/4/2014 Calibrated 1/28/2013
	nps /Couplers At Orang Antenr Red-Black Meteorologic p./Humidity/Atm.	ie n as : Bilog al Meters Pressure Gau 832		Rai 0.009-20 Rai	nge DOOMHz nge DOMHz 74	MN ZFL-1000-LN MN JB1 MN 100 Perception	Mfr CS Mfr Sunol Mfr Davis	SN N/A SN A091604-2 SN N/A	765 Asset 1106 Asset 965	Cat II Cat I Cat	2/4/ Calibra 1/28 Calibra 5/29 6/13	2015 tion Due 2015 tion Due 2014	2/4/2014 Calibrated 1/28/201 Calibrated 5/29/201
	nps /Couplers At Orang Antenr Red-Black Meteorologic p./Humidity/Atm. TH A#10	nas : Bilog al Meters Pressure Gau 832 es		Rai 0.009-20 Rai 30-200	nge DOOMHz nge DOMHz 74 nge	MN ZFL-1000-LN MN JB1 MN 100 Perception	Mfr CS Mfr Sunol Mfr Davis Control Company	SN N/A SN A091604-2 SN N/A	765 Asset 1106 Asset 965	Cat II Cat I Cat I II	2/4/ Calibra 1/28 Calibra 5/29 6/13 Calibra	2015 tion Due /2015 tion Due /2014 /2015	2/4/2014 Calibrated 1/28/201 Calibrated 5/29/201 6/13/201

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

page 13 of 28

June 16, 2014

Engineer: Temp:				Company:	Powercast	Corporatio	on						v	Vork Ord	er: 00675
Temp:	Tuyen Truong			EUT Desc:	EUT Desc: SCD1000 EUT Operating Voltage/Frequency: 120Vac/60H										
	24°C			Humidity:	5%			Pressure: 1	1000mBar						
		Freque	ncy Range:	1-10GHz							Measure	emen	t Distance:	3 m	
Notes:												EUT	Max Freq:	<108MHz	2
Antenna		Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	e-CFR §15.20)9 High F Peak	requenc	у-		.209 Hig Avera	h Frequency - ge
olarization (H/V)	Frequency (MHz)	Reading (dBµV)	(dBµV)	Factor (dB)	Factor (dB/m)	Factor (dB)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Resul (Pass/F		Limit (dBµV/m)	Margin (dB)	Result (Pass/Fail)
v	1805.0	43.71	36.6	21.1	27.1	2.7	52.4	45.3	74.0	-21.6	Pass	-	54.0	-8.7	Pass
h	1805.0	48.59	43.8	21.1	27.1	2.7	57.3	52.5	74.0	-16.7	Pass	5	54.0	-1.5	Pass
v	1830.0	39.43	32.4	21.1	27.3	2.7	48.3	41.3	74.0	-25.7	Pass		54.0	-12.7	Pass
h	1830.0	44.9	39.0 31.1	21.1 21.1	27.3 27.4	2.7 2.7	53.8	47.9	74.0	-20.2 -29.3	Pass Pass		54.0 54.0	-6.1	Pass
v h	1854.0 1854.0	35.7 37.93	32.2	21.1	27.4	2.7	44.7 46.9	40.1 41.2	74.0 74.0	-29.3 -27.1	Pass		54.0 54.0	-13.9 -12.8	Pass Pass
Table	e Result:		Pass	by	-1.5	dB						Wo	rst Freq:	1805	5.0 MHz
Test Site:	1DCC-OATS-3	IM-I		Cable 1:	EMIR-HIGH	1-22				Cable 2:			-	Cable	3:
ev. 5/4/2014 Spectru	i m Analyzer SA EMI			ectors		nge	MN	Mfr	SN	As		at	Calibratio		0-111-11-1
Radiated Emissions Sites 1DCC-OATS-3M-I					9kHz-1	3.2 GHz	E4405B	Agilent	MY44210				1/13/20		Calibrated o 1/13/2014
		Emission	s Sites		FCC	3.2 GHz Code 9150	E4405B IC Code 2762A-8	Agilent VCCI Code A-0015		241 13 e		at		015	1/13/2014
Prea		Emission: C-OATS-3N	s Sites /-I	ers	FCC 719	Code	IC Code	VCCI Code	MY44210 Range	241 13 e	28 Ca	at	1/13/20 Calibratio	015 0 n Due 015	1/13/2014 Calibrated o
Prea	1DC0 mps/Coupl	Emission: C-OATS-3N	s Sites ¹⁻¹ lators / Filt	ers	FCC 719 Ra	Code 9150	IC Code 2762A-8	VCCI Code A-0015	MY44210 Range 30-1000M	241 13 9 //Hz	28 I Ca J Set Ca	at I	1/13/20 Calibratio 5/17/20	015 on Due 015 015 on Due	1/13/2014 Calibrated c 5/17/2013
Prea	1DC0 1DC0 1mps /Coupl 1517	Emission: C-OATS-3N ers Attenu	s Sites ¹⁻¹ nators / Filt	ers	FCC 719 Ra 1-20	Code 9150 nge	IC Code 2762A-8 MN	VCCI Code A-0015 Mfr	MY44210 Rango 30-1000M	241 13 e //Hz As	28 Ca I set Ca 17	at I at	1/13/20 Calibratio 5/17/20 Calibratio	on Due 015 015 015 on Due 014	1/13/2014 Calibrated of 5/17/2013 Calibrated of
Prea	1DC0 1 mps /Coupl 1517 High	Emissions C-OATS-3M ers Attenue HF Pream	s Sites ¹⁻¹ nators / Filt	ers	FCC 719 Ra 1-20 0.03-	Code 9150 nge DGHz	IC Code 2762A-8 MN CS	VCCI Code A-0015 Mfr CS	MY 44210 Range 30-1000M SN N/A	241 13 e /Hz 15	28 C: Set C: 17 38	at at 	1/13/20 Calibratio 5/17/20 Calibratio 9/11/20	on Due 015 015 015 014 15	1/13/2014 Calibrated of 5/17/2013 Calibrated of 9/11/2013
Prea	1DCC 1DCC 1517 High A	Emission: C-OATS-3N ers Attenu HF Pream Pass Filte	s Sites ¹⁻¹ nators / Filt	ers	FCC 719 Ra 1-20 0.03- Ra	Code 9150 n ge 0GHz 9 GHz	IC Code 2762A-8 MN CS VHP-16	VCCI Code A-0015 Mfr CS Mini-Circuits	MY44210 Range 30-1000M SN N/A NA	241 13 MHz As 15 12 As	28 Ca 1 Set Ca 17 B8 Set Ca	at I at I I	1/13/20 Calibratio 5/17/20 Calibratio 9/11/20 1/8/20	on Due 015 on Due 014 15 on Due	1/13/2014 Calibrated 5/17/2013 Calibrated 9/11/2013 1/8/2014 Calibrated Calibrated Calib
Prea	1DCC 1DCC 1517 1517 High A Or	Emission: C-OATS-3M ers Attenu HF Pream Pass Filte	s Sites ^{A-I} nators / Filt ap	ers	FCC 719 Ra 1-20 0.03- Ra	Code 9150 nge DGHz 9 GHz nge	IC Code 2762A-8 MN CS VHP-16 MN	VCCI Code A-0015 Mfr CS Mini-Circuits Mfr	MY44210 Rang 30-1000M SN N/A NA SN	241 13 MHz As 15 12 As	28 C: Set C: 17 88 188 90	at at at	1/13/20 Calibratio 5/17/20 Calibratio 9/11/20 1/8/20 Calibratio	n Due 015 015 015 014 15 014 15 n Due 014	1/13/2014 Calibrated o 5/17/2013 Calibrated o 9/11/2013 1/8/2014 Calibrated o 10/2/2013
	1DCC 1517 1517 High Or Meteoro mp./Humidity	Emission C-OATS-3M ers Attenuu HF Pream Pass Filte ange Horn blogical M /Atm. Pres	s Sites A-I nators / Filt ap er		FCC 719 Ra 1-20 0.03- Ra	Code 9150 nge 0GHz 9 GHz nge 3GHz	IC Code 2762A-8 MN CS VHP-16 MN 3115 MN 00 Perceptioi	VCCI Code A-0015 Mfr CS Mini-Circuits Mfr EMCO Mfr Davis	MY44210 Rang 30-1000M N/A NA SN 0004-61 SN N/A	241 13 MHz As 15 12 As 23 30	28 Ci 38et Ci 38 38et Ci 35	at at at at	1/13/20 Calibratio 5/17/20 Calibratio 9/11/20 1/8/20 Calibratio 10/2/20 Calibratio 5/29/20	n Due n Due 015 n Due 014 15 n Due 014 014 014 014	1/13/2014 Calibrated 5/17/2013 Calibrated 9/11/2013 1/8/2014 Calibrated 10/2/2013 Calibrated 5/29/2013
	1DCC 1517 1517 High Or Meteoro mp./Humidity	Emission: C-OATS-3M ers Attenue HF Pream Pass Filte ntennas ange Horn	s Sites A-I nators / Filt ap er		FCC 719 Ra 1-20 0.03- Ra	Code 9150 nge 0GHz 9 GHz nge 3GHz	IC Code 2762A-8 MN CS VHP-16 MN 3115 MN 00 Perceptioi	VCCI Code A-0015 Mfr CS Mini-Circuits Mfr EMCO Mfr	MY44210 Rang 30-1000M N/A NA SN 0004-61 SN N/A	241 13 MHz As 15 15 12 23 36	28 Ci 38et Ci 38 38et Ci 35	at at at at	1/13/20 Calibratio 5/17/20 Calibratio 9/11/20 1/8/20 Calibratio 10/2/20 Calibratio	n Due n Due 015 n Due 014 15 n Due 014 014 014 014	1/13/2014 Calibrated o 5/17/2013 Calibrated o 9/11/2013 1/8/2014

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

SCLED1000

Date:	09-May-14		Company:	Powercast	Corporati	on				v	Vork Order:	O0675
Engineer:	Tuyen Truong		EUT Desc:	SCLED100	00				EUT Operat	ing Voltage/	Frequency:	120Vac/60H
Temp:	29°C		Humidity:	5%		Pressure	1013mBar					
	Freque	ncy Range:	30 to 1000	MHz					Measureme	nt Distance:	3 m	
Notes:									EU	ſ Max Freq:	<108MHz	
Antenna			Preamp	Antenna	Cable	Adjusted					e-CFR §15.2	09
Polarization (H/V)	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Factor (dB/m)	Factor (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result (Pass/Fail)	Limit (dBµV/m)	Margin (dB)	Result (Pass/Fail)
(11/ V) V	55.31	(dbµV) 44.1	22.5	7.8	0.6	30.0	(ubµv/iii)	(ub)	(1 a33/1 all)	40.0	-10.0	Pass
v h	67.97	41.2	22.5	8.4	0.6	27.7				40.0	-12.3	Pass
v	85.24	46.9	22.5	8.0	0.7	33.1				40.0	-6.9	Pass
v	162.8	40.4	22.6	12.7	1.1	31.6				43.5	-11.9	Pass
h	264.4	38.9	22.5	13.1	1.3	30.8				46.0	-15.2	Pass
h	408.4	42.2	22.5	16.4	1.5	37.6				46.0	-8.4	Pass
v	463.3	33.6	22.4	17.4	1.6	30.2				46.0	-15.8	Pass
v	837.0	28.7	21.6	22.3	2.2	31.6				46.0	-14.4	Pass
v	934.5	28.8	22.0	23.2	2.3	32.3				46.0	-13.7	Pass
v	958.0	25.4	22.1	23.4	2.3	29.0				46.0	-17.0	Pass
Tabl	e Result:	Pass	by	-6.9	dB				We	orst Freq:	85.24	MHz

Rev. 5/4/2014

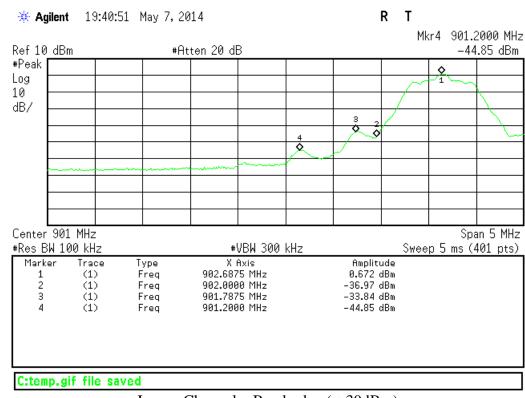
Rev. 5/4/2014								
Spectrum Analyzers / Receivers / Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Rental SA #2 (1860)	9kHz-26.5 GHz	E7405A	Agilent	MY45104916	1860	I	5/15/2014	4/15/2013
Radiated Emissions Sites	FCC Code	IC Code	VCCI Code	Range		Cat	Calibration Due	Calibrated on
EMI Chamber 2	719150	2762A-7	A-0015	>1GHz		I.	5/16/2015	5/16/2013
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Blue	0.009-2000MHz	ZFL-1000-LN	CS	N/A	759	Ш	5/31/2014	5/31/2013
Antennas	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Red-White Bilog	30-2000MHz	JB1	Sunol	A091604-1	1105	I.	7/24/2015	7/24/2013
Meteorological Meters		MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Temp./Humidity/Atm. Pressure Gauge	7	400 Perception	Davis	N/A	965	1	5/29/2014	5/29/2013
TH A#1831		35519-044	Control Company	130319991	1831	Ш	6/13/2015	6/13/2013
Cables	Range		Mfr			Cat	Calibration Due	Calibrated on
Asset #1506	9kHz - 18GHz		Florida RF			Ш	3/7/2015	3/7/2014
Asset #1786	9kHz - 18GHz		Florida RF			П	3/15/2015	3/15/2014

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

	08-May-14			Company:	Powercast	Corporati	on						١	Vork Ord	er: 00675
Engineer:	Tuyen Truong			EUT Desc:	SCLED10	00					EUT	Operati	ing Voltage/	Frequen	cy: 120Vac/60H
Temp:	24°C			Humidity:	5%			Pressure: 1	000mBar						
		Freque	ncy Range:	1-10GHz							Mea	sureme	nt Distance:	3 m	
Notes:												EUT	Г Max Freq:	<108MHz	2
Antenna		Peak	Average	Preamp	Antenna	Cable	Adjusted	Adjusted	e-CFR §15.	209 High Peak	Frequ	iency -		5.209 Hig Avera	h Frequency - ge
Polarization	Frequency	Reading	Reading	Factor	Factor	Factor	Peak Reading	Avg Reading	Limit	Margin		Result	Limit	Margin	
(H/V)	(MHz)	(dBµV)	(dBµV)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	ì	ass/Fail)	(dBµV/m)	(dB)	(Pass/Fail)
v	1805.0	37.8	28.4	21.1	27.1	2.7	46.5	37.1	74.0	-27.5		Pass	54.0	-16.9	Pass
h	1805.0	37.16	28.2	21.1	27.1	2.7	45.9	36.9	74.0	-28.1		Pass	54.0	-17.1	Pass
h	1830.0	39.8	33.8	21.1	27.3	2.7	48.7	42.7	74.0	-25.3		Pass	54.0	-11.3	Pass
v	1830.0	42.78	36.8	21.1	27.3	2.7	51.7	45.7	74.0	-22.3		Pass	54.0	-8.3	Pass
v	1854.6	43.96	37.9	21.1	27.4	2.7	53.0	46.9	74.0	-21.0		Pass	54.0	-7.1	Pass
h	1854.6	43.05	37.4	21.1	27.4	2.7	52.1	46.4	74.0	-21.9	1	Pass	54.0	-7.6	Pass
	e Result:		Pass	by	-7.1	dB						Wo	orst Freq:	1854	1.6 MHz
	Test Site: 1DCC-OATS-3M-I Cable														
	1DCC-OATS-3 Asset #1328	BM-I			EMIR-HIG Asset #15					Cable 2 Antenna		nge Horn		Cable Preselect	e 3: or:
Analyzer: ev. 5/4/2014	Asset #1328 1 um Analyzer			Preamp:	Asset #15		MN E4405B	Mfr Agilent	SN MY4421	Antenna		nge Horn Cat	Calibratio	Preselect	or:
Analyzer: ev. 5/4/2014	Asset #1328 4 um Analyzer SA EMI	r s / Receiv Chamber (1328)	Preamp:	Asset #15 Ra 9kHz-1	17 I nge 13.2 GHz	E4405B	Agilent	MY4421	Antenna A 0241 1	:Orai	Cat	Calibratic 1/13/2	on Due	or: Calibrated o 1/13/2014
Analyzer:	Asset #1328 um Analyzer SA EMI Radiated	s/Receiv	1328) sSites	Preamp:	Asset #15 Ra 9kHz-1 FCC	17 Inge				Antenna A 0241 1 ge	:Orai	Cat	Calibratio	Preselect on Due 015 on Due	or: Calibrated o 1/13/2014
Analyzer: ev. 5/4/2014 Spectro	Asset #1328 um Analyzer SA EMI Radiated	r s / Receiv Chamber (I Emission : C-OATS-3N	1328) s Sites 1-I	Preamp:	Asset #15 Ra 9kHz-1 FCC 71	17 Inge I3.2 GHz S Code	E4405B IC Code	Agilent VCCI Code A-0015 Mfr	MY4421 Rang	Antenna A 0241 1 ge MHz	:Orai	Cat I Cat	Calibratio 1/13/2 Calibratio	Preselect on Due 015 on Due 015	Calibrated o 1/13/2014 Calibrated o 5/17/2013
Analyzer: ev. 5/4/2014 Spectro	Asset #1328 4 um Analyzer SA EMI Radiated 1DC0 amps /Coupl	r s / Receiv Chamber (I Emission : C-OATS-3N	1328) s Sites ¹⁻¹ nators / Filt	Preamp:	Asset #15 Ra 9kHz-1 FCC 71 Ra	17 Inge 13.2 GHz 5 Code 9150	E4405B I C Code 2762A-8	Agilent VCCI Code A-0015	MY4421 Rang 30-1000	Antenna A 0241 1: ge MHz A	sset	Cat I Cat	Calibratio 1/13/2 Calibratio 5/17/2	Preselect on Due 015 on Due 015 015 on Due	Calibrated o 1/13/2014 Calibrated o
Analyzer: ev. 5/4/2014 Spectro	Asset #1828 4 um Analyzer SA EMI Radiated 1DC0 amps /Coupl 1517	rs / Receiv Chamber (Emission C-OATS-3N Iers Attenu	1328) s Sites 1-I nators / Filt	Preamp:	Asset #15 Ra 9kHz-1 FCC 71: Ra 1-2	17 Inge 13.2 GHz 5 Code 9150 Inge	E4405B IC Code 2762A-8 MN	Agilent VCCI Code A-0015 Mfr	MY4421 Rang 30-1000	Antenna A 0241 1 ge MHz A 1	sset	Cat I Cat II Cat	Calibratic 1/13/2 Calibratic 5/17/2 Calibratic	Preselect on Due 015 on Due 015 on Due 014	Calibrated o 1/13/2014 Calibrated o 5/17/2013 Calibrated o
Analyzer: ev. 5/4/2014 Spectro	Asset #1328 um Analyzer SA EMI Radiated 1DC0 amps /Coupl 1517 Higt	rs / Receiv Chamber (Emission C-OATS-3N Iers Attenu 7 HF Pream	1328) s Sites 1-I nators / Filt	Preamp:	Asset #15 Ra 9kHz-1 FCC 71 Ra 1-2 0.03	17 13.2 GHz Code 9150 1nge 0GHz	E4405B IC Code 2762A-8 MN CS	Agilent VCCI Code A-0015 Mfr CS	MY4421 Rang 30-1000 SN	Antenna A 0241 1 ge MHz A 1	sset 328 sset 517	Cat I Cat II Cat II	Calibratic 1/13/2 Calibratic 5/17/2 Calibratic 9/11/2	Preselect on Due 015 on Due 015 on Due 014 115	Calibrated c 1/13/2014 Calibrated c 5/17/2013 Calibrated c 9/11/2013
Analyzer: ev. 5/4/2014 Spectro	Asset #1328 um Analyzer SA EMI Radiated 1DCC amps /Coupl 1517 High	s / Receiv Chamber (Emission: C-OATS-3N Gers Attenu 7 HF Pream D Pass Filte	1328) s Sites 1-I nators / Filt	Preamp:	Asset #15 Ra 9kHz-1 FCC 71 Ra 1-2 0.03 Ra	17 13.2 GHz 2 Code 9150 10 10 10 10 10 10 10 10 10 1	E4405B IC Code 2762A-8 MN CS VHP-16	Agilent VCCI Code A-0015 Mfr CS Mini-Circuits	MY 4421 Rang 30-1000 SN N/A NA	Antenna A 0241 1 je MHz A 1 1	: Orai sset 328 sset 517 288	Cat I Cat II Cat II II	Calibratic 1/13/2 Calibratic 5/17/2 Calibratic 9/11/2 1/8/20	Preselect on Due 015 on Due 015 on Due 014 115 on Due	or: Calibrated c 1/13/2014 Calibrated c 5/17/2013 Calibrated c 9/11/2013 1/8/2014
Analyzer: ev. 5/4/2014 Spectro	Asset #1328 um Analyzer SA EMI Radiated 1DC(amps /Coupl 1517 Higt Or	rs / Receiv Chamber (Emission: C-OATS-3N Pers Attenu 7 HF Pream Pass Filte Antennas	1328) s Sites A-I nators / Filt	Preamp:	Asset #15 Ra 9kHz-1 FCC 71 Ra 1-2 0.03 Ra	17 13.2 GHz 3 Code 9150 10 10 10 10 10 10 10 10 10 1	E4405B IC Code 2762A-8 MN CS VHP-16 MN	Agilent VCCI Code A-0015 Mfr CS Mini-Circuits Mfr	MY 4421 Ran 30-1000 SN N/A NA SN	Antenna A 0241 1 Je MHz A 1 1 2 3 3	: Orat sset 328 sset 517 288 sset	Cat I Cat II Cat II I Cat	Calibratic 1/13/2/ Calibratic 5/17/2/ Calibratic 9/11/2/ 1/8/20 Calibratic	Preselect on Due 015 on Due 015 on Due 014 115 on Due 014	Calibrated of 1/13/2014 Calibrated of 5/17/2013 Calibrated of 9/11/2013 1/8/2014 Calibrated of 10/2/2013
Analyzer: 29. 5/4/2014 Spectro Pre:	Asset #1328 um Analyzer SA EMI Radiated 1DC(amps /Coupl 1517 Higt Or	s / Receiv Chamber (Emission: C-OATS-3N ers Attenu P FPream Pass Filte Antennas range Horn bological M	1328) s Sites A-I nators / Filt ap er eters	Preamp: lectors ers	Asset #15 Ra 9kHz-1 FCC 71 Ra 1-2 0.03 Ra	17 13.2 GHz 3 Code 9150 10 GHz 9 GHz 10 GHz 10 GHz 10 GHz 10 GHz 10 GHz	E4405B IC Code 2762A-8 MN CS VHP-16 MN 3115	Agilent VCCI Code A-0015 Mfr CS Mini-Circuits Mfr EMCO	MY4421 Rang 30-1000 SN N/A NA SN 0004-6	Antenna A 0241 1 ge MHz A 1 1 1 A 123 3 A	: Orat sset 328 sset 517 288 sset 990	Cat Cat Cat Cat	Calibratic 1/13/20 Calibratic 5/17/20 Calibratic 9/11/20 1/8/20 Calibratic 10/2/20	Preselect on Due 015 on Due 015 on Due 014 014 014 014 014 014 014	Calibrated of 1/13/2014 Calibrated of 5/17/2013 Calibrated of 9/11/2013 1/8/2014 Calibrated of 10/2/2013
Analyzer: 29. 5/4/2014 Spectro Pre:	Asset #1328 um Analyzer SA EMI Radiated 1DCC amps /Coupl 1517 High Or Meteoro mp./Humidity	s / Receiv Chamber (Emission: C-OATS-3N ers Attenu P FPream Pass Filte Antennas range Horn bological M	1328) s Sites A-I nators / Filt ap er eters	Preamp: lectors ers	Asset #15 Ra 9kHz-1 FCC 71 Ra 1-2 0.03 Ra	17 13.2 GHz 3 Code 9150 10 GHz 9 GHz 10 GHz 10 GHz 10 GHz 10 GHz 10 GHz	E4405B IC Code 2762A-8 MN CS VHP-16 MN 3115 MN 00 Perceptioi	Agilent VCCI Code A-0015 Mfr CS Mini-Circuits Mfr EMCO Mfr	MY4421 Rang 30-1000 SN N/A NA SN 0004-6 SN N/A	Antenna 0241 1 ge MHz 1 123 3 A S S S S S S S S S S S S S	: Oral sset 328 sset 517 288 sset 90 sset	Cat Cat Cat Cat	Calibratic 1/13/2/ Calibratic 5/17/2/ Calibratic 9/11/2 1/8/2C Calibratic 10/2/2/ Calibratic	Preselect on Due 015 on Due 015 on Due 014 015 on Due 014 015 on Due 014 015 on Due 014 015	Calibrated c 1/13/2014 Calibrated c 5/17/2013 Calibrated c 9/11/2013 1/8/2014 Calibrated c 10/2/2013 Calibrated c
Analyzer: ev. 5/4/2014 Spectro Pre:	Asset #1328 um Analyzer SA EMI Radiated 1DC(amps /Coupl 1517 Higt Or Meteore imp./Humidity	s / Receiv Chamber (Emission: C-OATS-3N ers Attenu r HE Pream h Pass Filte Antennas range Horn bological M (/Atm. Press	1328) s Sites A-I nators / Filt ap er eters	Preamp: lectors ers	Assot #15 Ra 9kHz-1 FCC 711 Ra 1-2 0.03 Ra 1-1.	17 13.2 GHz 3 Code 9150 10 GHz 9 GHz 10 GHz 10 GHz 10 GHz 10 GHz 10 GHz	E4405B IC Code 2762A-8 MN CS VHP-16 MN 3115 MN 00 Perceptioi	Agilent VCCI Code A-0015 Mfr CS Mini-Circuits Mfr EMCO Mfr Davis	MY4421 Rang 30-1000 SN N/A NA SN 0004-6 SN N/A	Antenna 0241 1 ge MHz 1 123 3 A S S S S S S S S S S S S S	: Orat sset 328 sset 517 288 sset 90 sset 65	Cat I Cat II Cat I Cat I Cat I	Calibratic 1/13/2 Calibratic 5/17/2 Calibratic 9/11/2 1/8/20 Calibratic 10/2/2 Calibratic 5/29/2	Preselect on Due 015 on Due 015 on Due 014 115 on Due 014 014 015	Calibrated 1/13/2014 Calibrated 5/17/2013 Calibrated 9/11/2013 1/8/2014 Calibrated 10/2/2013 Calibrated 5/29/2013

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

Conducted Spurious Emissions

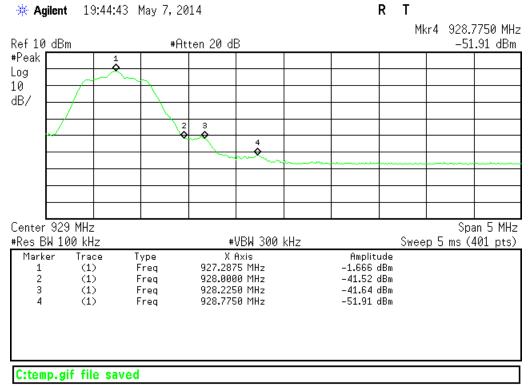

LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth that contains the highest level of desired power based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be **30 dB** instead of 20 dB ...

[15.247(d)]

MEASUREMENTS / RESULTS

Plots



Conducted Band Edge

Lower Channel – Band-edge (<-30dBm)

Upper Channel – Band-edge (<-30dBm)

Conducted Spurious Emission

Conducted Spurious Emissions at the Antenna Port:

For these scans, the spectrum analyzer was set to the following:

Span: 400MHz Resolution Bandwidth: 100 KHz Video Bandwidth: 300 KHz Points per sweep: 8192

The frequency range 30MHz-10GHz was tested at EUT antenna port and no emissions were found within 10dB of the limit, which was set at 30dB below the power of the transmit frequency. The low, mid, and high channels were tested.

page 17 of 28

Power Spectral Density

LIMIT

...the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. [15.247(e)]

MEASUREMENTS / RESULTS

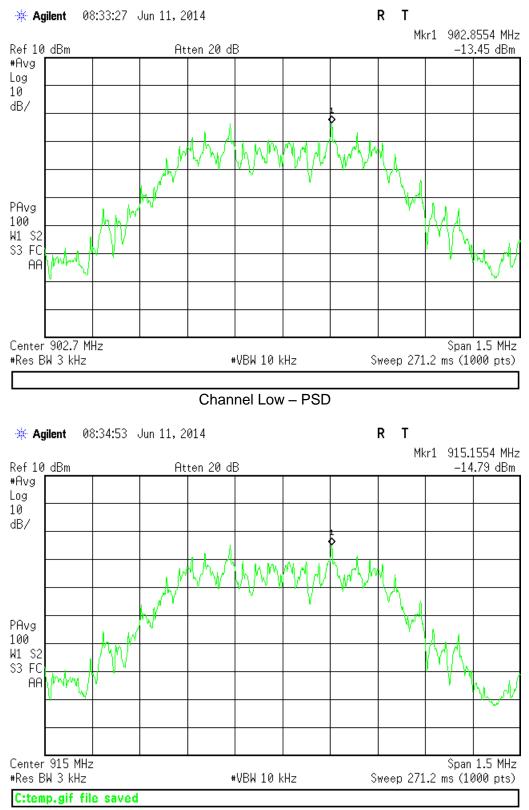
Engineer	Tuyen Truong A.
Date	5/7/2014
Site	CEMI6
Environmental Conditions	22.4°C, 34%, 1013mb

DTS Method 10.3 AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each sweep)

15.247 (e) Maximum Power Spectral Density

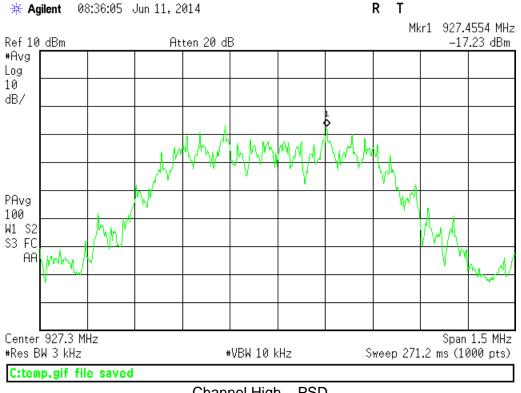
Date: Company:	Tuyen Truong 5/7/2014, 6/11/2014 Powercast Corporat SCD1000		RBW = 3KHz VBW = 10KHz					
channel (MHz)	mode	measured PSD (dBm)	attenuator factor (dB)	adjusted power measurement	bandwidth correction factor adjustment	limit (dBm)	margin (dB)	result
902.7	DMSS	-13.45	19.29	5.84	0	8	-2.16	Pass
915	DMSS	-14.79	19.29	4.50	0	8	-3.50	Pass
927.3	DMSS	-17.23	19.29	2.06	0	8	-5.94	Pass

Rev. 5/4/2014


Spectrum Analyzers / Receivers /Preselectors	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Gold 1	100Hz-26.5 GHz	E4407B	Agilent	MY45113816	1284	I	3/28/2015	3/28/2014
Conducted Test Sites (Mains / Telco) CEMI 6	FCC Code 719150		VCCI Code A-0015			Cat ∭	Calibration Due NA	Calibrated on N/A
Meteorological Meters		MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
Temp./Humidity/Atm. Pressure Gauge		7400 Perception II	Davis	N/A	965	I	5/29/2014	5/29/2013
TH A#1831		35519-044	Control Company	130319991	1831	II	6/13/2015	6/13/2013
Preamps /Couplers Attenuators / Filters	Range	MN	Mfr	SN	Asset	Cat	Calibration Due	Calibrated on
HF 20dB 50W Attenuator	0.009-18 GHz	PE 7019-20	Pasternack	1	791	II	7/13/2014	7/13/2013

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

PLOTS



Channel Mid – PSD

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

Channel High - PSD

AC Line Conducted Emissions

LIMITS

Frequency of emission (MHz)	Quasi-peak limit (dBµV)	Average limit (dBµV)
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency. [47 CFR 15.207(a)]

MEASUREMENTS / RESULTS

Engineer	Tuyen Truong
Date	5/8/2014
Site	CEMI6
Environmental	22°C, 2%, 1000mb
Conditions	

Date: 08-May-14							Company: Powe	rcast Co	orporation	Company: Powercast Corporation						
Engine	er: Tuyen Truong			EUT Desc: SCD1000												
Ter	mp: 22.8 °C						Humidity: 28%						Pressure	e: 1000 mBa		
Not	tes:															
							uency Range: 0.15-	30 MHz		EUT	Input Volt	age/Frequency:	120Vac/60	Hz		
	Quasi			erage	l i	LISN										
_	Read			adings		Factors		TTN		C/CISPR C			CISPR CI			
Frequency	QP1	QP2	AVG1	AVG2	L1	L2		actor	QP Limit	Margin			Margin	Result		
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB			dB)	(dBµV)	(dB)	(Pass/F		(dB)	(Pass/Fa		
0.41	13.3	17.8	4.4	7.9	0.0			20.3	57.7	-19.3	Pass		-19.3	Pass		
1.46	8.1	10.3	1.8	2.7	0.0			20.3	56.0	-25.1	Pass		-22.8	Pass		
3.10	7.7	9.4	1.6	2.6	0.0			20.3	56.0	-26.1	Pass		-22.9	Pass		
14.10	7.2	8.1	3.9	13.1	-0.1			20.3	60.0	-31.2	Pass		-16.2	Pass		
19.20	15.9	17.0	9.2	9.3	-0.1			20.3	60.0	-22.2	Pass		-19.9	Pass		
29.72	6.6	6.6	0.3	0.4	-0.1	1 -0.2	-0.4 -2	20.3	60.0	-32.5	Pase	50.0	-28.8	Pass		
Resu	lt: Pass						Worst Mar	gin:	-16.2	dB	Fr	equency:	14.10) MHz		
easurement Devic	:e: LISN ASSE	T 1730(Line	1) LISN A	SSET 1731	(Line 2	2)	Cable: CEM	<i>I</i> I-03			Spectre	ım Analyzer: `	Yellow			
							Attenuator: 20d	B Atter	nuator-64			Site:	CEMI6			
Spectrum Analy	zers / Receiver	rs /Prosolor	tors	Pange		MN	Mfr		SN	Assot	Cat	alibration Du	a Cali	brated o		
Spectrum Analy		rs/Preselec	tors	Range		MN 85045	Mfr	252	SN	Asset	Cat	Calibration Du				
Spectrum Analy	zers / Receive Yellow	rs/Preselec	tors	Range 9kHz-2.90		MN 8594E	Mfr Agilent	352	SN 3A01958	Asset 100	Cat (Calibration Du 6/3/2014		brated o /3/2013		
			ctors	•	GHz			352			I		6	/3/2013		
LISNs/I	Yellow Measurement F	Probes	ctors	9kHz-2.90 Range	GHz e	8594E	Agilent Mfr		3A01958	100 Asset	I	6/3/2014 Calibration Du	6 e Cali	/3/2013 brated or		
LISNS/N	Yellow	Probes	ctors	9kHz-2.90	GHz e)MHz	8594E	Agilent	2	3A01958	100	I	6/3/2014	6 e Cali 2/	/3/2013		
LISNS/I L	Yellow Measurement F JSN Asset 1730 JSN Asset 1731	Probes) I	ctors	9kHz-2.90 Range 150kHz-30 150kHz-30	GHz e)MHz)MHz	8594E MN LI-150A	Agilent Mfr Com-Power Com-Power	2	3A01958 SN 201090	100 Asset 1730	I Cat (I	6/3/2014 Calibration Du 2/26/2015 3/3/2015	6 e Cali 2/ 3	/3/2013 brated of /26/2014 /3/2014		
LISNS/I L	Yellow Measurement F JSN Asset 1730 JSN Asset 1731 Test Sites (Mai	Probes) I	ctors	9kHz-2.90 Range 150kHz-30 150kHz-30 FCC Co	GHz e)MHz)MHz)MHz	8594E MN LI-150A	Agilent Mfr Com-Power Com-Power	2	3A01958 SN 201090	100 Asset 1730	Cat (6/3/2014 Calibration Du 2/26/2015 3/3/2015 Calibration Du	6 e Cali 2/ 3	/3/2013 brated o /26/2014 /3/2014 brated o		
LISNS/I L	Yellow Measurement F JSN Asset 1730 JSN Asset 1731	Probes) I	ctors	9kHz-2.90 Range 150kHz-30 150kHz-30	GHz e)MHz)MHz)MHz	8594E MN LI-150A	Agilent Mfr Com-Power Com-Power	2	3A01958 SN 201090	100 Asset 1730	I Cat (I	6/3/2014 Calibration Du 2/26/2015 3/3/2015	6 e Cali 2/ 3	/3/2013 brated of /26/2014 /3/2014		
LISNs/N L L Conducted	Yellow Measurement F JSN Asset 1730 JSN Asset 1731 Test Sites (Mai	Probes) I ins/Telco)	ctors	9kHz-2.90 Range 150kHz-30 150kHz-30 FCC Co	GHz e)MHz)MHz)MHz	8594E MN LI-150A	Agilent Mfr Com-Power Com-Power	2	3A01958 SN 201090	100 Asset 1730	Cat (I Cat (III	6/3/2014 Calibration Du 2/26/2015 3/3/2015 Calibration Du	e Cali 2/ 3 e Cali	/3/2013 brated o /26/2014 /3/2014 brated o N/A		
LISNs/I L Conducted	Yellow Measurement F JSN Asset 1730 JSN Asset 1731 Test Sites (Mai CEMI 6	Probes) ins / Telco) ters	ctors	9kHz-2.90 Range 150kHz-30 150kHz-30 FCC Co	GHz e DMHz DMHz DMHz ode	8594E MN LI-150A LI-150A	Agilent Mfr Com-Power Com-Power VCCI Code A-0015	2	SN 201090 201091	100 Asset 1730 1731	Cat (I Cat (III	6/3/2014 Calibration Du 2/26/2015 3/3/2015 Calibration Du NA	e Cali 2/ 3 e Cali e Cali	/3/2013 brated of /26/2014 /3/2014 brated of		

TH A#1831 35519-044 Control Company 130319991 1831 Ш 6/13/2015 6/13/2013 Cables Range Mfr Cat Calibration Due Calibrated on CEMI-03 9kHz - 2GHz C-S Ш 9/30/2014 9/30/2013 Attenuators Range MN Mfr SN Asset Cat Calibration Due Calibrated on 20dB Attenuator-64 9kHz-2GHz N/A Ш 11/20/2014 11/20/2013

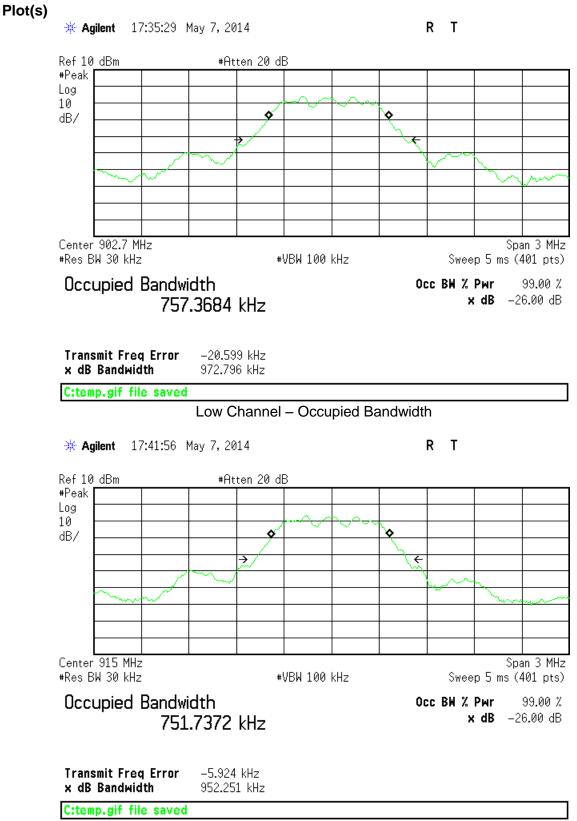
All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

	te: 08-May-14 er: Tuyen Truong					Company: Power EUT Desc: SCLE		1		w	ork Order			
Ten	p: 22.8 °C					Humidity: 28%					Pressure	: 1000 mBa		
Not	es:													
						uency Range: 0.15-3	0 MHz	EU	Γ Input Vo	oltage/Frequency: 1	20Vac/60H	lz		
	Quasi			rage	LISN							_		
_	Read			dings	Factors		TN	FCC/CISPR			CISPR Cla			
Frequency	QP1	QP2	AVG1	AVG2	L1 L2	Factor Fac					Margin	Result		
(MHz) 0.41	(dBµV) 17.5	(dBµV) 22,9	(dBµV) 6.8	(dBµV) 14.2	(dB) (dB) 0.0 0.0	(dB) (d	B) (dBµ\ 0.3 57.7) (dB) -14.2		s/Fail) (dBµV) Iss 47.7	(dB) -12.9	(Pass/Fa Pass		
1.46	9.7	13.2	3.3	6.0	0.0 0.0		0.3 57.7	-14.2			-12.9	Pass		
3.10	9.7 8.0	10.1	1.5	3.5	0.0 0.0		0.3 56.0	-22.3			-19.5	Pass		
14.10	7.8	7.1	1.5	0.8	-0.1 -0.1		0.3 60.0	-25.4			-21.9	Pass		
18.30	15.6	16.3	8.6	9.3	-0.1 -0.1		0.3 60.0	-23.0	Pa		-20.2	Pass		
29.72	6.7	6.6	0.4	0.4	-0.1 -0.1		0.3 60.0	-23.0			-19.9	Pass		
		0.0	0.4	0.4	-0.1 -0.2			-32.3		··· .				
Resul	t: Pass					Worst Marg	gin: -12	.9 dB	F	Frequency:	0.408	3 MHz		
						Attenuator: 20dE		4		Site: (CEMI6			
surement Devic Spectrum Analyz		rs /Preseled	ctors	Range 9kHz-2.9GF	MN Iz 8594E	Attenuator: 20dE Mfr Agilent	Attenuator-6 SN 3523A0195	Asset	Cat	Site: (Calibration Due 6/3/2014	e Calik	brated o		
pectrum Analyz	ers/Receive		ctors	9kHz-2.9GH		Mfr	SN	Asset	Cat I Cat	Calibration Due	e Calib 6/	/3/2013		
Spectrum Analyz LISNs/N	zers / Receive Yellow	Probes	ctors	-	lz 8594E	Mfr Agilent	SN 3523A0195	Asset 8 100 Asset	Ι	Calibration Due 6/3/2014	e Calik 6/ e Calik	3/2013		
pectrum Analy: LISNs/M 니	ers / Receive Yellow leasurement F	Probes	ctors	9kHz-2.9GH Range	lz 8594E MN Hz LI-150A	Mfr Agilent Mfr	SN 3523A0195 SN	Asset 8 100	l Cat	Calibration Due 6/3/2014 Calibration Due	e Calik 6/ e Calik 2/2	brated of (3/2013 brated of 26/2014 (3/2014		
Spectrum Analy: LISNs/M LI	zers / Receiver Yellow Ieasurement F SN Asset 1730	Probes	ctors	9kHz-2.9GF Range 150kHz-30M	Iz 8594E MN Hz LI-150A Hz LI-150A	Mfr Agilent Mfr Com-Power	SN 3523A0195 SN 201090	Asset 8 100 Asset 1730	 Cat	Calibration Due 6/3/2014 Calibration Due 2/26/2015	e Calik 6/ e Calik 2/2 3/	'3/2013 brated o 26/2014		
Spectrum Analy: LISNs/M LI	ters / Receive Yellow Ieasurement F SN Asset 1730 SN Asset 1731	Probes	ctors	9kHz-2.9GF Range 150kHz-30M 150kHz-30M	Iz 8594E MN Hz LI-150A Hz LI-150A	Mfr Agilent Mfr Com-Power Com-Power	SN 3523A0195 SN 201090	Asset 8 100 Asset 1730	l Cat I	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015	e Calik 6/ e Calik 2/2 3/	/3/2013 brated o 26/2014 /3/2014		
Spectrum Analy: LISNs/M 니 Conducted · Mete	ers / Receiver Yellow Ieasurement F SN Asset 1730 SN Asset 1731 Cest Sites (Mai CEMI 6 orological Me	Probes) ins / Telco) ters	ctors	9kHz-2.9GF Range 150kHz-30M 150kHz-30M FCC Code 719150	Iz 8594E MN Hz LI-150A Hz LI-150A MN	Mfr Agilent Mfr Com-Power Com-Power VCCI Code A-0015 Mfr	SN 3523A0195 SN 201090 201091 SN	Asset 8 100 Asset 1730 1731 Asset	I Cat I Cat Ⅲ Cat	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015 Calibration Due NA Calibration Due	e Calit 6/ e Calit 2/2 3/ e Calit e Calit	(3/2013) brated of 26/2014 (3/2014) brated of N/A brated of		
Spectrum Analy: LISNs/M 니 Conducted · Mete	ers / Receiver Yellow leasurement F SN Asset 1730 SN Asset 1731 SN Asset 1731 Fest Sites (Mai CEMI 6	Probes) ins / Telco) ters	ctors	9kHz-2.9GF Range 150kHz-30M 150kHz-30M FCC Code 719150	Iz 8594E MN Hz LI-150A Hz LI-150A	Mfr Agilent Mfr Com-Power Com-Power VCCI Code A-0015 Mfr	SN 3523A0199 SN 201090 201091	Asset 8 100 Asset 1730 1731	I Cat I Cat Ⅲ	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015 Calibration Due NA	e Calit 6/ e Calit 2/2 3/ e Calit e Calit	'3/2013 brated o 26/2014 '3/2014 brated o N/A		
Spectrum Analy: LISNs/M 니 Conducted · Mete	ers / Receiver Yellow Ieasurement F SN Asset 1730 SN Asset 1731 Cest Sites (Mai CEMI 6 orological Me	Probes) ins / Telco) ters	ctors	9kHz-2.9GF Range 150kHz-30M 150kHz-30M FCC Code 719150	Iz 8594E MN Hz LI-150A Hz LI-150A MN 7400 Perceptic	Mfr Agilent Mfr Com-Power Com-Power VCCI Code A-0015 Mfr	SN 3523A0198 SN 201090 201091 SN N/A	Asset 8 100 Asset 1730 1731 Asset 965	I Cat I Cat Ⅲ Cat	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015 Calibration Due NA Calibration Due	e Calit 6/ 2/2 3/ e Calit calit 5/2	i3/2013 brated o 26/2014 i3/2014 brated o N/A brated o		
Spectrum Analy: LISNs/M 니 Conducted · Mete	ers / Receiver Yellow leasurement F SN Asset 1730 SN Asset 1731 Gest Sites (Mai CEMI 6 orological Me itty/Atm. Press TH A#1831 Cables	Probes) ins / Telco) ters	ctors	9kHz-2.9GH Range 150kHz-30M 150kHz-30M FCC Code 719150 Range	Iz 8594E MN Hz LI-150A Hz LI-150A MN 7400 Perceptic 35519-044	Mfr Agilent Mfr Com-Power Com-Power VCCI Code A-0015 Mfr Davis Control Company Mfr	SN 3523A0198 SN 201090 201091 SN N/A	Asset 8 100 Asset 1730 1731 Asset 965	I Cat I Cat III Cat I I Cat	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015 Calibration Due 5/29/2014 6/13/2015 Calibration Due	e Calik 6/ 2/2 3/ e Calik 5/2 6/ 6/ e Calik	(3/2013) (3/2014) (3/2014) (3/2014) (3/2014) (3/2014) (3/2014) (3/2014) (3/2013) (3/2013) (3/2013) (3/2013) (3/2013) (3/2013) (3/2013) (3/2013) (3/2014) (3/		
Spectrum Analy: LISNs/M 니 Conducted · Mete	ers / Receive Yellow leasurement F SN Asset 1730 SN Asset 1730 SN Asset 1731 Cest Sites (Mai CEMI 6 orological Me dity/Atm. Press TH A#1831	Probes) ins / Telco) ters	ctors	9kHz-2.9GH Range 150kHz-30M 150kHz-30M FCC Code 719150	Iz 8594E MN Hz LI-150A Hz LI-150A MN 7400 Perceptic 35519-044	Mfr Agilent Mfr Com-Power Com-Power VCCI Code A-0015 Mfr Davis Control Company	SN 3523A0198 SN 201090 201091 SN N/A	Asset 8 100 Asset 1730 1731 Asset 965	I Cat I II Cat III Cat I I	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015 Calibration Due 5/29/2014 6/13/2015	e Calik 6/ 2/2 3/ e Calik 5/2 6/ 6/ e Calik	'3/2013 brated o 26/2014 '3/2014 brated o N/A brated o 29/2013		
Spectrum Analy: LISNs/M 니 Conducted · Mete	ers / Receiver Yellow leasurement F SN Asset 1730 SN Asset 1731 Gest Sites (Mai CEMI 6 orological Me itty/Atm. Press TH A#1831 Cables	Probes) ins / Telco) ters	ctors	9kHz-2.9GH Range 150kHz-30M 150kHz-30M FCC Code 719150 Range	Iz 8594E MN Hz LI-150A Hz LI-150A MN 7400 Perceptic 35519-044	Mfr Agilent Mfr Com-Power Com-Power VCCI Code A-0015 Mfr Davis Control Company Mfr	SN 3523A0198 SN 201090 201091 SN N/A	Asset 8 100 Asset 1730 1731 Asset 965	I Cat I Cat III Cat I I Cat	Calibration Due 6/3/2014 Calibration Due 2/26/2015 3/3/2015 Calibration Due 5/29/2014 6/13/2015 Calibration Due	e Calik 6/ 2/2 3/ e Calik 5/2 6/ e Calik 5/2 6/ e Calik	(3/2013) brated c 26/2014 (3/2014) brated c N/A brated c 29/2013 13/2013 brated c		

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

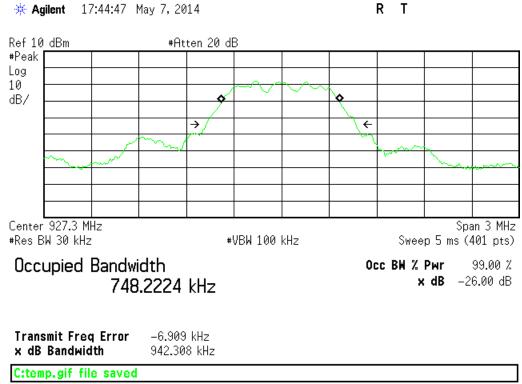
Occupied Bandwidth

REQUIREMENT


When an occupied bandwidth is no specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. [RSS-GEN 4.6.1]

Engineer	Tuyen Truong
Date	5/7/2014
Site	CEMI6
Environmental	23.9°C, 25%, 1015mb
Conditions	

9	99% Occupied Bandwidth									
Frequency (MHz)	Mode	99% Occupied Bandwidth (KHz)								
902.7	DMSS	757.3684								
915	DMSS	751.7372								
927.3	DMSS	748.2224								
Date: Company:	Tuyen Truong 5/7/2014 Powercast Corporation SCD1000	RBW = 30KHz VBW = 100KHz Analyzer: GOLD SA Attenuator: PE7019-20								



Mid Channel - Occupied Bandwidth

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

High Channel – Occupied Bandwidth

Measurement Uncertainty

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Expanded Uncertainty k=2	Maximum allowable uncertainty
Radiated Emissions (30-1000MHz) NIST CISPR	5.6dB 4.6dB	N/A 5.2dB (Ucispr)
Radiated Emissions (1-26.5GHz)	4.6dB	N/A
Radiated Emissions (above 26.5GHz)	4.9dB	N/A
Magnetic Radiated Emissions	5.6dB	N/A
Conducted Emissions NIST	3.9dB	N/A
CISPR	3.6dB	3.6dB (Ucispr)
Telco Conducted Emissions (Current)	2.9dB	N/A
Telco Conducted Emissions (Voltage)	4.4dB	N/A
Electrostatic Discharge	11.5%	N/A
Radiated RF Immunity (Uniform Field)	1.6dB	N/A
Electrical Fast Transients	23.1%	N/A
Surge	23.1%	N/A
Conducted RF Immunity	3dB	N/A
Magnetic Immunity	12.8%	N/A
Dips and Interrupts	2.3V	N/A
Harmonics	3.5%	N/A
Flicker	3.5%	N/A
Radio frequency (@ 2.4GHz)	3.23 x 10 ⁻⁸	1 x 10 ⁻⁷
RF power, conducted	0.40dB	0.75dB
Maximum frequency deviation: • Within 300Hz and 6kHz of audio frequency / Within 6kHz and 25kHz of audio frequency	3.4% 0.3dB	5% 3dB
Adjacent channel power	1.9dB	3dB
Conducted spurious emission of transmitter, valid up to 12.75GHz	2.39dB	3dB
Conducted emission of receivers	1.3dB	3dB
Radiated emission of transmitter, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of transmitter, valid up to 80GHz	3.3dB	6dB
Radiated emission of receiver, valid up to 26.5GHz	3.9dB	6dB
Radiated emission of receiver, valid up to 80GHz	3.3dB	6dB
Humidity	2.37%	5%
Temperature	0.7°C	1.0°C
Time	4.1%	10%
RF Power Density, Conducted	0.4dB	3dB
DC and low frequency voltages	1.3%	3%
Voltage (AC, <10kHz)	1.3%	2%
Voltage (DC)	0.62%	1%
The above reflects a 95% confidence level		

Curtis-Straus LLC, a wholly owned subsidiary of BV CPS One Distribution Center Circle, #1 • Littleton, MA • TEL (978) 486-8880 • FAX (978) 486-8828

Conditions Of Testing

[Bureau Veritas Consumer Products Services, Inc., a Massachusetts corporation], and/or its affiliates (collectively, the "Company") will conduct, at the request of the Submitter ("Client"), the tests specified on the submitted Test Request Form or equivalent in accordance with, and subject to, the following terms and conditions (collectively, "Conditions"):

1. All orders for tests are subject to acceptance by the Company, and no order will constitute a binding commitment of the Company unless and until such order is accepted by it, as evidenced by the issuance of a written report ("Test Report") by the Company. The Test Report is issued solely by the Company, is intended for the exclusive use of Client and shall not be published, used for advertising purposes, copied or replicated for distribution to any other person or entity or otherwise publicly disclosed without the prior written consent of the Company. By submitting a request for services to the Company, Client consents to the disclosure to accreditation bodies of those records of Client relevant to the accreditation body's assessment of the Company's competence and compliance with relevant accreditation criteria. The Company shall not be liable for any loss or damage whatsoever resulting from the failure of the Company to provide its services within any time period for completion estimated by the Company. If Client anticipates using the Test Report in any legal proceeding, arbitration, dispute resolution forum or other proceeding, it shall so notify the Company prior to submitting the Test Report in such proceeding. The Company has no obligation to provide a fact or expert witness at such proceeding unless the Company agrees in advance to do so for a separate and additional fee.

2. The Test Report will set forth the findings of the Company solely with respect to the test samples identified therein. Unless specifically and expressly indicated in the Test Report, the results set forth in such Test Report are not intended to be indicative or representative of the quality or characteristics of the lot from which a test sample is taken, and Client shall not rely upon the Test Report as being so indicative or representative of the lot or of the tested product in general. The Test Report will reflect the findings of the Company at the time of testing only, and the Company shall have no obligation to update the Test Report after its issuance. The Test Report will set forth the results of the tests performed by the Company based upon the written information provided to the Company. The Test Report will be based solely on the samples and written information submitted to the Company by Client, and the Company shall not be obligated to conduct any independent investigation or inquiry with respect thereto.

The Company may, in its sole discretion, destroy samples which have been furnished to the Company for testing and which have not been destroyed in the course of testing. The Company may delegate the performance of all or a portion of the services contemplated hereunder to an affiliate, agent or subcontractor of the Company, and Client consents to such delegation.
 These Conditions and the Test Report represent the entire understanding of the parties hereto with respect to the subject

matter hereof and of the Test Report, and no modification, variance or extrapolation with respect thereto shall be permitted without the prior written consent of the Company.

5. The names, service marks, trademarks and copyrights of the Company and its affiliates, including the names "BUREAU VERITAS," "BUREAU VERITAS CONSUMER PRODUCTS SERVICES," "BVCPS", "MTL", "ACTS", "MTL-ACTS" and CURTIS-STRAUS (collectively, the "Marks") are and shall remain the sole property of the Company or its affiliates and shall not be used by Client except solely to the extent that Client obtains the prior written approval of the Company and then only in the manner prescribed by the Company. Client shall not contest the validity of the Marks or take any action that might impair the value or goodwill associated with the Marks or the image or reputation of the Company or its affiliates.

6. Payment in full shall be due 30 days after the date of invoice. Interest shall be due on overdue amounts from the due date until paid at an interest rate of 1.5% per month or, if less, the maximum rate permitted by law. The Company reserves the right, at any time and from time to time, to revoke any credit extended to Client. Client shall reimburse the Company for any costs it incurs in collecting past due amounts, including court costs and fees and expenses of attorneys and collection agencies. The Test Report may not be used or relied upon by Client if and for so long as Client fails to pay when due any invoice issued by the Company or any affiliate of it to Client or any affiliate or subsidiary of Client together with interest and penalties, if any, accrued thereon.

7. The Company disclaims any and all responsibility or liability arising out of or in connection with e-mail transmissions of such information.

8. Client understands and agrees that the Company is neither an insurer nor a guarantor, that the Company does not take the place of Client or any designer, manufacturer, agent, buyer, distributor or transportation or shipping company, and that the Company disclaims all liability in such capacities. Client further understands that if it seeks assurance against loss or damage, it should obtain appropriate insurance.

9. Client agrees that the Company, by providing the services, does not take the place of Client nor any third party, nor does the Company release them from any of their obligations, nor does the Company otherwise assume, abridge, abrogate or undertake to discharge any duty of any third party to Client or any duty of Client or any third party to any other third party, and Client will not release any third party from its obligations and duties with respect to the tested goods.

10. Client shall, on a timely basis, (a) provide adequate instructions to the Company in order to enable the Company to perform properly its services, (b) provide, or cause Client's suppliers and contractors to provide, the Company with all documents necessary to enable the Company to perform its services, (c) furnish the Company with all relevant information regarding Client's intended use and purposes of the tested goods, (d) advise the Company of essential dates and deadlines relevant to the tested goods and (e) fully exercise all rights and remedies available to Client against third parties in respect of the tested goods.

11. The Company shall undertake due care and ordinary skill in the performance of its services to Client, and the Company shall accept responsibility only were such skill has not been exercised and, even in such event, only to the extent of the limitation of liability set forth herein.

12. If Client desires to assert a claim arising from or relating to (i) the performance, purported performance or nonperformance of any services by the Company or (ii) the sale, resale, manufacture, distribution or use of any tested goods, it must submit that claim to the Company in a writing that sets forth with particularity the basis for such claim within 60 days from discovery of the potential claim and not more than six months after the date of issuance of the Test Report to Client. Client waives any and all

page 27 of 28

such claims including, without limitation, claims that the Test Report is inaccurate, incomplete or misleading or that additional or different testing is required, unless and then only to the extent that Client submits a written claim to the Company within both such time periods.

13. CLIENT SHALL, EXCEPT TO THE EXTENT OF COMPANY'S LIABILITY TO CLIENT HEREUNDER (WHICH IN NO EVENT SHALL EXCEED THE LIMITATION OF LIABILITY HEREIN), HOLD HARMLESS AND INDEMNIFY THE COMPANY, ITS AFFILIATES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, AGENTS AND SUBCONTRACTORS AGAINST ALL ACTUAL OR ALLEGED THIRD PARTY CLAIMS FOR LOSS, DAMAGE OR EXPENSE OF WHATSOEVER NATURE AND HOWSOEVER ARISING FROM OR RELATING TO (i) THE PERFORMANCE, PURPORTED PERFORMANCE OR NON-PERFORMANCE OF ANY SERVICES BY THE COMPANY OR (ii) THE SALE, RESALE, MANUFACTURE, DISTRIBUTION OR USE OF ANY TESTED GOODS.

14. EXCEPT AS MAY OTHERWISE BE EXPRESSLY AGREED TO IN WRITING BY THE COMPANY AND NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN OR IN ANY TEST REPORT, NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, IS MADE.

15. (A) IN NO EVENT WHATSOEVER SHALL THE COMPANY BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE TEST REPORT OR THE SERVICES PROVIDED BY THE COMPANY HEREUNDER, INCLUDING WITHOUT LIMITATION LOSS OF OR DAMAGE TO PROPERTY; LOSS OF INCOME, PROFIT OR USE; OR ANY CLAIMS OR DEMANDS MADE AGAINST CLIENT OR ANY OTHER PERSON BY ANY THIRD PARTY IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE SERVICES PROVIDED BY THE COMPANY HEREUNDER.

(B)NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN, AND IN RECOGNITION OF THE RELATIVE RISKS AND BENEFITS TO CLIENT AND THE COMPANY ASSOCIATED WITH THE TESTING SERVICES CONTEMPLATED HEREBY, THE RISKS HAVE BEEN ALLOCATED SUCH THAT UNDER NO CIRCUMSTANCES WHATSOEVER SHALL THE LIABILITY OF THE COMPANY TO CLIENT OR ANY THIRD PARTY IN RESPECT OF ANY CLAIM FOR LOSS, DAMAGE OR EXPENSE, OF WHATSOEVER NATURE OR MAGNITUDE, AND HOWSOEVER ARISING, EXCEED AN AMOUNT EQUAL TO FIVE (5) TIMES THE AMOUNT OF THE FEES PAID TO THE COMPANY FOR THE SPECIFIC SERVICES WHICH GAVE RISE TO SUCH CLAIM OR U.S.\$10,000, WHICHEVER IS THE LESSER AMOUNT.

16. The Company shall not be liable for any loss or damage resulting from any delay or failure in performance of its obligations hereunder resulting directly or indirectly from any event of force majeure or any event outside the control of the Company. If any such event occurs, the Company may immediately cancel or suspend its performance hereunder without incurring any liability whatsoever to Client.

Company's services, including these Conditions, shall be governed by, and construed in accordance with, the local laws of the country where the Company performs the tests or, in the case of tests performed in the United States of America, the laws of Massachusetts without regard to conflicts of laws principles. If any aspect(s) of these Conditions is found to be illegal or unenforceable, the validity, legality and enforceability of all remaining aspects of these Conditions shall not in any way be affected or impaired thereby. Any proceeding related to the subject matter hereof shall be brought, if at all, in the courts of the country where the Company performs the tests or, in the case of tests performed in the United States of America, in the courts of Massachusetts. Client waives the right to interpose any counterclaim or setoffs of any nature in any litigation arising hereunder.

The complete list of the Approved Subcontractors Curtis-Straus may use to delegate the performance of work can be provided upon request.

page 28 of 28