

	Engineering Test Report No. 2002451-01				
Report Date	June 5, 2020				
Manufacturer Name	Ideal Industries				
Manufacturer FCC FRN Number & IC Company Number	0002862225 11250A				
Manufacturer Address	1375 Park Avenue Sycamore, IL 60178				
Product Name Brand/Model No.	Luminaire Controller Model No. LCE20A1000				
Product FCC ID & IC UPN Number	FCC ID: 2AAMXLCE20A1000 IC UPN:11250A-LCE20A1000				
Date Received	May 26, 2020				
Test Dates	May 27, 2020				
Specifications	FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 for Digital Modulation Intentional Radiators Operating within the band 902-928MHz Innovation, Science, and Economic Development Canada, RSS-247				
Test Facility	Innovation, Science, and Economic Development Canada, RSS-GEN Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515 FCC Reg. Number: 269750 IC Reg. Number: 2987A				
Signature	MARK E. LONGINOTTI				
Tested by	Mark E. Longinotti				
Signature	Kaymond J Klouda				
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894				
PO Number	AWS1076				

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test date(s) specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Table of Contents

1.	Report Revision History	.4
2.	Introduction	
3.	Purpose	
4.	Test Specifications	
5.	Laboratory Conditions	
6.	Summary	
7.	Test Plan	
8.	Grounding	.6
9.	Power Input	
10.	Firmware/Software	.6
11.	Modifications Made to EUT	.6
12.	Deviations from Specifications	.6
13.	Modes of Operation	
14.	Sample Calculations	
15.	Statement of Conformity	.7
16.	Certification	.7
17.	Photographs of EUT	.8
18.	Equipment List	10
19.	Average Effective Isotropic Radiated Power (EIRP)	
20.	Case Spurious Radiated Emissions	16
21.	Scope of Accreditation	25

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
-	08 JUN 2020	Initial Release of Engineering Test Report No. 2002451-01

2. Introduction

This document presents the results of a series of electromagnetic compatibility (EMC) tests that were performed on one (1) Luminaire Controller, Model No. LCE20A1000 (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was identified as follows:

EUT Identification					
Description	Luminaire Controller				
Device Type	Digitally Modulated				
Band of Operation	902-928MHz				
Model/Part No.	LCE20A1000				
S/N	None Assigned				
Size of EUT	9.5cm x 6.5cm x 4.5cm				

The EUT listed above was used throughout the test series. The EUT was submitted for testing with no support equipment.

3. Purpose

The original EUT was issued a grant of equipment authorization under the following IDs:

FCC ID: 2AAMXLCE20A1000 IC: 11250A-LCE20A1000

The test series was performed to determine if the EUT, with the AC power supply removed from the PCB, meets the Class II Permissive Change requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart C, Section 15.247 for Intentional Radiators. Testing was performed in accordance with ANSI C63.10-2013.

The test series was also performed to determine if the EUT, with the AC power supply removed from the PCB, meets the Class II Permissive Change requirements of the Innovation, Science, and Economic Development Canada Radio Standards Specification, RSS-247, for transmitters. Testing was performed in accordance with ANSI C63.10-2013.

4. Test Specifications

The tests were performed to selected portions of, and in accordance with the following test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, Subpart C, Section 247
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division, Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 Of the FCC Rules, April 2, 2019, KDB 558074
- RSS-247 Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

- RSS-Gen Issue 5, March 2019, Amendment 1, Innovation, Science, and Economic Development Canada, "Spectrum Management and Telecommunications, Radio Standards Specification, General Requirements for Compliance of Radio Apparatus"

5. Laboratory Conditions

The temperature at the time of the test was 25°C and the relative humidity was 33%.

6. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Test Methods	Results
Average Effective Isotropic Radiated Power (EIRP)	FCC 15.247 ISED RSS-247	Conforms
Case Spurious Radiated Emissions	FCC 15.247 ISED RSS-247	Conforms

7. Test Plan

No test plan was provided. Instructions were provided by personnel from Ideal Industries and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247, and ANSI C63.4-2014 specifications.

8. Grounding

The EUT was not grounded.

9. Power Input

The EUT was powered with 12VDC via a 2 wire power harness.

10. Firmware/Software

For all tests, the EUT had Firmware Version audacy-certification-line-na loaded onto the device to provide the correct load characteristics.

11. Modifications Made to EUT

No modifications were made to the EUT during the testing.

12. Deviations from Specifications

No deviations from the specifications were made during the testing.

13. Modes of Operation

The EMC tests were performed with the EUT operating separately in each of the following test modes:

- Transmit at 902.73MHz
- Transmit at 915MHz
- Transmit at 927.26MHz

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL $(dB\mu V) = MTR (dB\mu V) + CF (dB)$.

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$

To convert the Field Strength dB μ V/m term to μ V/m, the dB μ V/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in μ V/m terms.

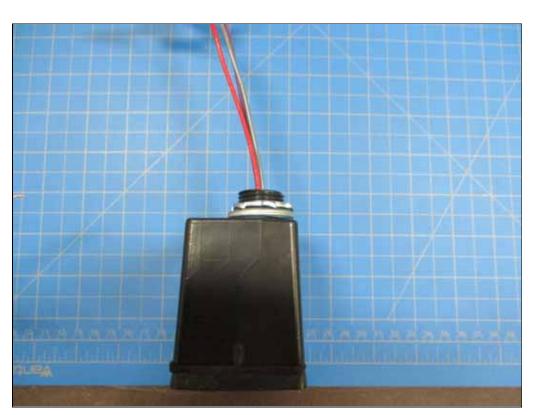
Formula 2: FS (μ V/m) = AntiLog [(FS (dB μ V/m))/20]

15. Statement of Conformity

The Ideal Industries Luminaire Controller, Model No. LCE20A1000, Serial No. None Assigned, with the AC power supply removed from the PCB, did fully meet the Class II Permissive Change requirements of the FCC "Code of Federal Regulations", Title 47, Part 15, Subpart C, Section 15.247 for Intentional Radiators. Testing was performed in accordance with ANSI C63.10-201.

It was also determined that Ideal Industries Luminaire Controller, Model No. LCE20A1000, Serial No. None Assigned, with the AC power supply removed from the PCB, did fully meet the Class II Permissive Change requirements of the Innovation, Science, and Economic Development Canada Radio Standards Specification, RSS-247 for transmitters. Testing was performed in accordance with ANSI C63.10-2013.

16. Certification


Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW3	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120- 5R0-10-12	PL2924	1GHZ-20GHZ	3/23/2020	3/23/2021
GRE1	SIGNAL GENERATOR	AGILENT	E4438C	MY42081749	250KHZ-6GHZ	2/25/2020	2/25/2021
NDQ1	TUNED DIPOLE ANTENNA	EMCO	3121C-DB4	313	400-1000MHZ	6/28/2018	6/28/2020
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	10/10/2019	10/10/2020
NWQ1	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS-LINDGREN	3117	66655	1GHZ-18GHZ	4/28/2020	4/28/2022
RBG3	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101592	2HZ-44GHZ	4/24/2020	4/24/2021
XPQ3	HIGH PASS FILTER	K&L MICROWAVE	4IH30- 1804/T10000-0	4	1.8GHZ-10GHZ	9/6/2019	9/6/2021

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Average Effective Isotropic Radiated Power (EIRP)

EUT Information				
Manufacturer	Ideal Industries			
Product	Luminaire Controller			
Model	LCE20A1000			
Serial No	None Assigned			
Mode	Transmit at 902.73MHz, Transmit at 915MHz, and Transmit at 927.26MHz			

Measurement Uncertainty				
Measurement Type	Expanded Measurement Uncertainty			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3			
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4			

Procedure

The EUT was placed on an 80cm high non-conductive stand and set to transmit. A bilog antenna was placed at a test distance of 3 meters from the EUT. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. Method "AVGSA-1" of ANSI C63.10-2013 was used to measure the average EIRP. The average power output was measured for the low, middle and high channels.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss. The average EIRP was calculated for low, middle, and high frequencies.

Test Setup for Effective Isotropic Radiated Power - Horizontal Polarization

Test Setup for Effective Isotropic Radiated Power - Vertical Polarization

	Test Details				
Manufacturer	Ideal Industries				
Model	LCE20A1000				
S/N	None Assigned				
Test Performed	Average EIRP				
Mode	Transmit at 902.73MHz				
Date Tested	May 27, 2020				
Requirements	4W (36dBm)				
Parameters	Average EIRP = 0.112W (20.5dBm)				
Notes					

Freq. (MHz)	Ant Pol	Meter Reading (dBm)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
902.73	Н	-19.2	18.2	2.2	1.6	18.7	36.0	-17.3
902.73	V	-20.5	20.0	2.2	1.6	20.5	36.0	-15.5

EIRP (dBm) = Matched Sig. Gen. Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

	Test Details				
Manufacturer	Ideal Industries				
Model	LCE20A1000				
S/N	None Assigned				
Test Performed	Average EIRP				
Mode	Transmit at 915MHz				
Date Tested	May 27, 2020				
Requirements	4W (36dBm)				
Parameters	Average EIRP = 0.071W (18.5dBm)				
Notes					

Freq. (MHz)	Ant Pol	Meter Reading (dBm)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
915.00	Н	-22.7	14.6	2.2	1.6	15.1	36.0	-20.9
915.00	V	-22.5	18.0	2.2	1.6	18.5	36.0	-17.5

EIRP (dBm) = Matched Sig. Gen. Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Test Details								
Manufacturer Ideal Industries								
Model	LCE20A1000							
S/N None Assigned								
Test Performed	Average EIRP							
Mode	Transmit at 927.26MHz							
Date Tested	May 27, 2020							
Requirements	4W (36dBm)							
Parameters	Average EIRP = 0.052W (17.2dBm)							
Notes								

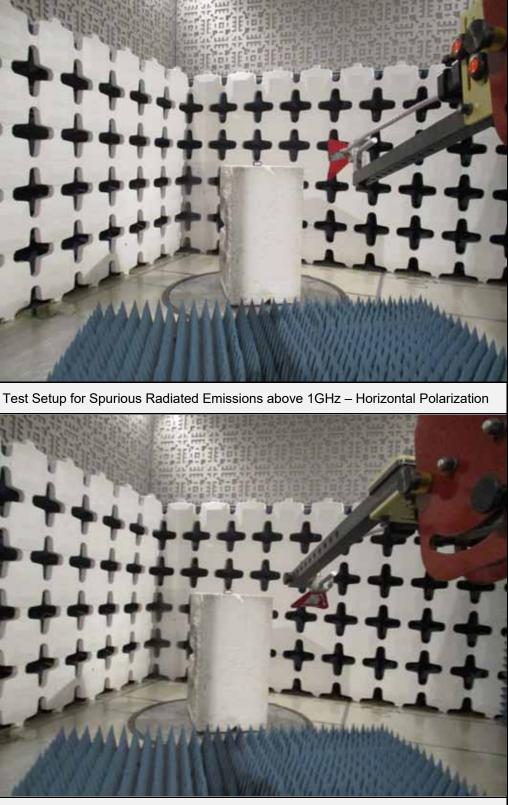
Freq. (MHz)	Ant Pol	Meter Reading (dBm)	Matched Sig. Gen. Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
	FUI	(ubiii)	(ubiii)	(ub)	(ub)	(ubiii)	(ubiii)	(ub)
927.26	Н	-24.6	12.8	2.2	1.7	13.3	36.0	-22.7
927.26	V	-24.2	16.7	2.2	1.7	17.2	36.0	-18.8

EIRP (dBm) = Matched Sig. Gen. Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

20. Case Spurious Radiated Emissions

EUT Information								
Manufacturer	Ideal Industries							
Product	Luminaire Controller							
Model	LCE20A1000							
Serial No	None Assigned							
Mode	Transmit at 902.73MHz, Transmit at 915MHz, Transmit at 927.26MHz							

Measurement Uncertainty							
Measurement Type	Expanded Measurement Uncertainty						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3						
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4						


Procedure

Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Final emission tests were then manually performed over the frequency range of 30MHz to 10.0GHz.

- 1) For emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
 - c) To ensure that maximum (or worst case) emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in §15.209(a), no further measurements are required. If however, the peak readings exceed the limits listed in 15.209(a), then the emissions are remeasured using a quasi-peak detector.
 - e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).
 - f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector and an average reading was taken.

Test Setup for Spurious Radiated Emissions above 1GHz - Vertical Polarization

Test Details							
Manufacturer	Ideal Industries						
Model	LCE20A1000						
S/N	None Assigned						
Mode	Transmit at 902.73MHz						
Test Date	May 27, 2020						
Parameters	Peak Measurements in the Restricted Bands						
Notes	3 meter test distance						

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total µV/m at 3 m	Peak Limit μV/m at 3 m	Margin (dB)
2708.19	Н	48.4	Ambient	3.7	32.5	-40.4	44.2	161.4	5000.0	-29.8
2708.19	V	47.5	Ambient	3.7	32.5	-40.4	43.3	145.5	5000.0	-30.7
3610.92	Н	52.7	Ambient	4.3	33.0	-40.3	49.6	302.8	5000.0	-24.4
3610.92	V	52.3	Ambient	4.3	33.0	-40.3	49.2	289.2	5000.0	-24.8
4513.65	Н	52.2	Ambient	4.7	34.0	-40.1	50.9	348.9	5000.0	-23.1
4513.65	V	51.8	Ambient	4.7	34.0	-40.1	50.5	333.2	5000.0	-23.5
5416.38	Н	50.7	Ambient	5.1	34.7	-40.2	50.3	326.8	5000.0	-23.7
5416.38	V	50.8	Ambient	5.1	34.7	-40.2	50.4	330.6	5000.0	-23.6

Test Details							
Manufacturer	Ideal Industries						
Model	LCE20A1000						
S/N	None Assigned						
Mode	Transmit at 902.73MHz						
Test Date	May 27, 2020						
Parameters	Average Measurements in the Restricted Bands						
Notes	3 meter test distance						

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant Fac. (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBµV/m at 3m	Average Total µV/m at 3 m	Average Limit µV/m at 3 m	Margin (dB)
2708.19	Н	32.50	Ambient	3.7	32.5	-40.4	0.0	28.3	25.9	500.0	-25.7
2708.19	V	32.6	Ambient	3.7	32.5	-40.4	0.0	28.4	26.2	500.0	-25.6
3610.92	Н	37.1	Ambient	4.3	33.0	-40.3	0.0	34.0	50.2	500.0	-20.0
3610.92	V	37.1	Ambient	4.3	33.0	-40.3	0.0	34.0	50.2	500.0	-20.0
4513.65	Н	36.3	Ambient	4.7	34.0	-40.1	0.0	35.0	55.9	500.0	-19.0
4513.65	V	36.4	Ambient	4.7	34.0	-40.1	0.0	35.1	56.6	500.0	-18.9
5416.38	Н	35.0	Ambient	5.1	34.7	-40.2	0.0	34.6	53.6	500.0	-19.4
5416.38	V	35.1	Ambient	5.1	34.7	-40.2	0.0	34.7	54.2	500.0	-19.3

Test Details							
Manufacturer	Ideal Industries						
Model	LCE20A1000						
S/N	None Assigned						
Mode	Transmit at 915MHz						
Test Date	May 27, 2020						
Parameters	Peak Measurements in the Restricted Bands						
Notes	3 meter test distance						

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total µV/m at 3 m	Peak Limit μV/m at 3 m	Margin (dB)
2745.00	Н	49.4	Ambient	3.7	32.6	-40.4	45.3	183.3	5000.0	-28.7
2745.00	V	51.8	Ambient	3.7	32.6	-40.4	47.7	241.7	5000.0	-26.3
3660.00	Н	52.2	Ambient	4.3	33.0	-40.3	49.2	288.2	5000.0	-24.8
3660.00	V	52.1	Ambient	4.3	33.0	-40.3	49.1	284.9	5000.0	-24.9
4575.00	Н	51.6	Ambient	4.7	34.2	-40.1	50.4	331.4	5000.0	-23.6
4575.00	V	51.2	Ambient	4.7	34.2	-40.1	50.0	316.5	5000.0	-24.0
2745.00	Н	49.4	Ambient	3.7	32.6	-40.4	45.3	183.3	5000.0	-28.7
2745.00	V	51.8	Ambient	3.7	32.6	-40.4	47.7	241.7	5000.0	-26.3

Test Details							
Manufacturer	Ideal Industries						
Model	LCE20A1000						
S/N	None Assigned						
Mode	Transmit at 915MHz						
Test Date	May 27, 2020						
Parameters	Average Measurements in the Restricted Bands						
Notes	3 meter test distance						

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant Fac. (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBµV/m at 3m	Average Total μV/m at 3 m	Average Limit µV/m at 3 m	Margin (dB)
2745.00	Н	36.20	Ambient	3.7	32.6	-40.4	0.0	32.1	40.1	500.0	-21.9
2745.00	V	36.2	Ambient	3.7	32.6	-40.4	0.0	32.1	40.1	500.0	-21.9
3660.00	Н	36.7	Ambient	4.3	33.0	-40.3	0.0	33.7	48.4	500.0	-20.3
3660.00	V	36.7	Ambient	4.3	33.0	-40.3	0.0	33.7	48.4	500.0	-20.3
4575.00	Н	35.9	Ambient	4.7	34.2	-40.1	0.0	34.7	54.4	500.0	-19.3
4575.00	V	35.8	Ambient	4.7	34.2	-40.1	0.0	34.6	53.7	500.0	-19.4
2745.00	Н	36.20	Ambient	3.7	32.6	-40.4	0.0	32.1	40.1	500.0	-21.9
2745.00	V	36.2	Ambient	3.7	32.6	-40.4	0.0	32.1	40.1	500.0	-21.9

Test Details				
Manufacturer	Ideal Industries			
Model	LCE20A1000			
S/N	None Assigned			
Mode	Transmit at 927.26MHz			
Test Date	May 27, 2020			
Parameters	Peak Measurements in the Restricted Bands			
Notes	3 meter test distance			

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Peak Total dBµV/m at 3m	Peak Total µV/m at 3 m	Peak Limit μV/m at 3 m	Margin (dB)
2781.78	Н	50.1	Ambient	3.7	32.4	-40.4	45.9	197.1	5000.0	-28.1
2781.78	V	49.9	Ambient	3.7	32.4	-40.4	45.7	192.6	5000.0	-28.3
3709.04	Н	52.8	Ambient	4.3	33.0	-40.2	49.9	310.8	5000.0	-24.1
3709.04	V	52.1	Ambient	4.3	33.0	-40.2	49.2	286.8	5000.0	-24.8
4636.30	Н	50.6	Ambient	4.8	34.3	-40.2	49.6	300.4	5000.0	-24.4
4636.30	V	50.3	Ambient	4.8	34.3	-40.2	49.3	290.2	5000.0	-24.7
2781.78	Н	50.1	Ambient	3.7	32.4	-40.4	45.9	197.1	5000.0	-28.1
2781.78	V	49.9	Ambient	3.7	32.4	-40.4	45.7	192.6	5000.0	-28.3

Test Details				
Manufacturer	Ideal Industries			
Model	LCE20A1000			
S/N	None Assigned			
Mode	Transmit at 927.26MHz			
Test Date	May 27, 2020			
Parameters	Average Measurements in the Restricted Bands			
Notes	3 meter test distance			

Freq. (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac. (dB)	Ant Fac. (dB/m)	Pre Amp (dB)	Duty Cycle (dB)	Average Total dBµV/m at 3m	Average Total µV/m at 3 m	Average Limit µV/m at 3 m	Margin (dB)
2781.78	Н	34.70	Ambient	3.7	32.4	-40.4	0.0	30.5	33.5	500.0	-23.5
2781.78	V	34.9	Ambient	3.7	32.4	-40.4	0.0	30.7	34.3	500.0	-23.3
3709.04	Н	36.6	Ambient	4.3	33.0	-40.2	0.0	33.7	48.1	500.0	-20.3
3709.04	V	36.6	Ambient	4.3	33.0	-40.2	0.0	33.7	48.1	500.0	-20.3
4636.30	Н	34.9	Ambient	4.8	34.3	-40.2	0.0	33.9	49.3	500.0	-20.1
4636.30	V	34.9	Ambient	4.8	34.3	-40.2	0.0	33.9	49.3	500.0	-20.1
2781.78	Н	34.70	Ambient	3.7	32.4	-40.4	0.0	30.5	33.5	500.0	-23.5
2781.78	V	34.9	Ambient	3.7	32.4	-40.4	0.0	30.7	34.3	500.0	-23.3

21. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Stanley Dolecki (Automotive Team Leader) Phone: 630 495 9770 ext. 103 Email: sdolecki@elitetest.com Website: www.elitetest.com

Valid to: June 30, 2021

ELECTRICAL

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

Test Technology:	Test Method(s) ¹ :
Transient Immunity	ISO 7637-2 (including emissions); ISO 7637-3;
*	ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
	CS-11979, Section 6.4; CS.00054, Section 5.9;
	EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
	GMW 3097, Section 3.5;
	SAE J1113-11; SAE J1113-12
Electrostatic Discharge (ESD)	ISO 10605 (2001, 2008);
	CS-11979 Section 7.0; CS.00054, Section 5.10;
	EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;
	GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3;
	CISPR 25 (2016), Sections 6.3 and 6.4;
	CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2;
	EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421)
Radiated Emissions Anechoic	CISPR 25 (2002, 2008), Section 6.4;
	CISPR 25 (2016), Section 6.5;
	CS-11979, Section 5.3; CS.00054, Section 5.6.3;
	GMW 3097, Section 3.3.1;
	EMC-CS-2009.1 (RE 310); FMC1278 (RE310)
Vehicle Radiated Emissions	CISPR 12; ICES-002
	1

(A2LA Cert. No. 1786.01) Revised 01/10/2020

Man Page 1 of 8

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

Test Technology:	Test Method(s) 1:
Bulk Current Injection (BCI)	ISO 11452-4;
	CS-11979, Section 6.1; CS.00054, Section 5.8.1;
	GMW 3097, Section 3.4.1;
	SAE J1113-4;
	EMC-CS-2009.1 (RI112); FMC1278 (RI112)
Bulk Current Injections (BCI) (Closed Loop Method)	ISO 11452-4; SAE J1113-4
Radiated Immunity Anechoic	ISO 11452-2: ISO 11452-5:
(Including Radar Pulse)	CS-11979, Section 6.2; CS.00054, Section 5.8.2;
Contraction of Contraction of Contraction	GMW 3097, Section 3.4.2;
	EMC-CS-2009.1 (R1114); FMC1278 (R1114); SAE J1113-21
Radiated Immunity Magnetic Field	ISO 11452-8
Radiated Immunity Reverb	ISO/IEC 61000-4-21;
	GMW 3097, Section 3.4.3;
	EMC-CS-2009.1 (RI114); FMC1278 (RI114);
	ISO 11452-11
Radiated Immunity	ISO 11452-9;
(Portable Transmitters)	EMC-CS-2009.1 (RI115); FMC1278 (RI115)
Vehicle Radiated Immunity (ALSE)	ISO 11451-2
Electrical Loads	ISO 16750-2, Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,
	4.8, 4.9, 4.11, and 4.12
Dielectric Withstand Voltage	MIL-STD-202, Method 301;
	EIA-364-20D
Insulation Resistance	MIL-STD-202, Method 302;
	SAE/USCAR-2, Revision 6, Section 5.5.1;
	EIA-364-21D
Contact Resistance	MIL-STD-202, Method 307;
	SAE/USCAR-2, Revision 6, Section 5.3.1;
	EIA/ECA-364-23C;
	USCAR21-3 Section 4.5.3
DC Resistance	MIL-STD-202, Method 303
Contact Chatter	MIL-STD-202, Method 310;
	SAE/USCAR-2, Revision 6, Section 5.1.9
Voltage Drop	SAE/USCAR-2, Revision 6, Section 5.3.2;
	USCAR21-3 Section 4.5.6

Ann Page 2 of 8

Test Technology:	Test Method(s) ¹ :
Emissions	
Radiated and Conducted	47 CFR, FCC Part 15 B (using ANSI C63.4:2014);
(3m Semi-anechoic chamber,	47 CFR, FCC Part 18 (using FCC MP-5:1986);
up to 40 GHz)	ICES-001; ICES-003; ICES-005;
	IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004);
	IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010);
	KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008);
	CISPR 11; EN 55011; KN 11; CNS 13803 (1997, 2003);
	CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; KN 14-1;
	IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000);
	EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006);
	IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004);
	AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz);
	CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);
	CISPR 32; EN 55032; KN 32
Current Harmonics	IEC 61000-3-2; EN 61000-3-2; KN 61000-3-2
Flicker and Fluctuations	IEC 61000-3-3; EN 61000-3-3; KN 61000-3-3
Immunity	
Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001);
	IEC 61000-4-2 (1995) + A1(1998) + A2(2000);
	EN 61000-4-2 (1995); EN 61000-4-2 (2009-05);
	KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
	IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2;
	1EEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000);
	IEC 61000-4-3, Ed. 3.0 (2006-02);
	IEC 61000-4-3, Ed. 3.2 (2010);
	KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
	IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;
	IEEE C37.90.2 2004
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011);
	IEC 61000-4-4 (1995) + A1(2000) + A2(2001);
	KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008);
	IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4
Surge	IEC 61000-4-5 (1995) + A1(2000);
	IEC 61000-4-5, Ed 1.1 (2005-11);
	EN 61000-4-5 (1995) + A1(2001);
	KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
	IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5;
	IEEE C37.90.1 2012

Ann Page 3 of 8

Test Technology:	Test Method(s) ¹ :
Immunity (cont'd)	
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000);
	IEC 61000-4-6, Ed 2.0 (2006-05);
	IEC 61000-4-6 Ed. 3.0 (2008);
	KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
	EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6;
	KN 61000-4-6
Power Frequency Magnetic Field	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009);
Immunity	EN 61000-4-8 (1994) + A1(2000);
-	KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008);
	IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8
Voltage Dips, Short Interrupts, and Line	IEC 61000-4-11, Ed. 2 (2004-03);
Voltage Variations	KN 61000-4-11 (2008-5);
100.000 	RRL Notice No. 2008-4 (May 20, 2008);
	IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09);
	EN 61000-4-12:2006;
	IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12
Generic and Product Specific EMC	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;
Standards	IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2;
	IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3;
	IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;
	EN 50130-4; IEC 61326-1;
	IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2;
	IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;
	IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17;
	EN 301 489-19; EN 301 489-52;
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2;
	ETSI EN 300 113-1; ETSI EN 300 113-2;
	ETSI EN 300 220-1; ETSI EN 300 220-2;
	ETSI EN 300 330-1; ETSI EN 300 330-2;
	ETSI EN 300 440-1; ETSI EN 300 440-2;
	ETSI EN 300 422-1; ETSI EN 300 422-2;
	ETSI EN 300 328; ETSI EN 301 893;
	ETSI EN 301 511; ETSI EN 301 908-1;
	ETSI EN 908-2; ETSI EN 908-13;
	ETSI EN 301 413;
	ETSI EN 302 502

Ann Page 4 of 8

Test Technology:	Test Method(s) ¹ :
Canadian Radio Tests	RSS-102 (RF Exposure Evaluation only); RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-246; RSS-247; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	1FT-008; NOM-208-SCFI
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101; ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015;
OTA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/ac	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

M Page 5 of 8

Test Method(s)1:
FAA AC 150/5345-10H FAA AC 150/5345-43J FAA AC 150/5345-44K FAA AC 150/5345-46E FAA AC 150/5345-47C FAA EB 67D

On the following products and materials: Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹When the date, revision or edition of a test method standard is not identified on the scope of accreditation, the laboratory is expected to be using the current version within one year of the date of publication, per part C., Section 1 of A2LA R101 - General Requirements - Accreditation of ISO-IEC 17025 Laboratories.

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.12

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Unintentional Radiators		
Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment		
Part 18	FCC MP-5 (February 1986)	40000
Intentional Radiators		
Part 15C	ANSI C63.10:2013	40000
Unlicensed Personal Communication		
Systems Devices		
Part 15D	ANSI C63.17:2013	40000

(A2LA Cert. No. 1786.01) Revised 01/10/2020

Page 6 of 8

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
U-NII without DFS Intentional Radiators Part 15E	ANSI C63.10:2013	40000
U-NII with DFS Intentional Radiators Part 15E	FCC KDB 905462 D02 (v02)	40000
UWB Intentional Radiators Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
Commercial Mobile Services (FCC Licensed Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
General Mobile Radio Services (FCC Licensed Radio Service Equipment) Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment) Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Maritime and Aviation Radio Services Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
Microwave and Millimeter Bands Radio Services Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
	1	

Ann Page 7 of 8

Testing Activities Performed in Support of FCC Declaration of Conformity and Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Signal Boosters Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

²Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

M Page 8 of 8

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibratian laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 8th day of August 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.