

10. Maximum Conducted Output Power

10.1 Block Diagram Of Test Setup

10.2 Limit

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5725~5850	1W

10.3 Test procedure

Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

• The EUT transmits continuously (or with a duty cycle \ge 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the

transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

10.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

10.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	5180-5240MHz		

Condition	Mode	Frequency (MHz)		ed Power 3m)	Total(dBm)	Limit	Verdict
			Ant A	Ant B		(dBm)	
NVNT	а	5180	4.80	4.80	/	24	Pass
NVNT	а	5200	5.08	5.69	/	24	Pass
NVNT	а	5240	5.71	6.07	/	24	Pass
NVNT	n20	5180	2.10	1.74	4.93	24	Pass
NVNT	n20	5200	2.32	1.84	5.10	24	Pass
NVNT	n20	5240	3.25	2.74	6.01	24	Pass
NVNT	n40	5190	0.93	1.63	4.30	24	Pass
NVNT	n40	5230	1.52	2.23	4.90	24	Pass
NVNT	ac20	5180	1.96	2.55	5.28	24	Pass
NVNT	ac20	5200	1.94	2.79	5.40	24	Pass
NVNT	ac20	5240	2.85	3.38	6.13	24	Pass
NVNT	ac40	5190	0.98	1.83	4.44	24	Pass
NVNT	ac40	5230	1.56	2.44	5.03	24	Pass
NVNT	ac80	5210	1.98	1.87	4.94	24	Pass

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	5745-5825MHz		

Condition	Mode	Frequency	Conducte (dB	ed Power Sm)	Total(dBm)	Limit	Verdict
		(MHz)	Ant A	Ant B		(dBm)	
NVNT	а	5745	2.65	2.94	1	30	Pass
NVNT	а	5785	3.34	4.23	1	30	Pass
NVNT	а	5825	4.39	4.05	1	30	Pass
NVNT	n20	5745	-0.07	0.73	3.36	30	Pass
NVNT	n20	5785	0.69	1.53	4.14	30	Pass
NVNT	n20	5825	1.81	1.92	4.88	30	Pass
NVNT	n40	5755	0.24	0.63	3.45	30	Pass
NVNT	n40	5795	1.19	1.66	4.44	30	Pass
NVNT	ac20	5745	-0.25	0.75	3.29	30	Pass
NVNT	ac20	5785	0.25	1.62	4.00	30	Pass
NVNT	ac20	5825	1.34	1.94	4.66	30	Pass
NVNT	ac40	5755	0.26	0.91	3.61	30	Pass
NVNT	ac40	5795	1.20	1.71	4.47	30	Pass
NVNT	ac80	5775	1.38	1.07	4.24	30	Pass

11. Out Of Band Emissions

11.1 Block Diagram Of Test Setup

11.2 Limit

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

11.3 Test procedure

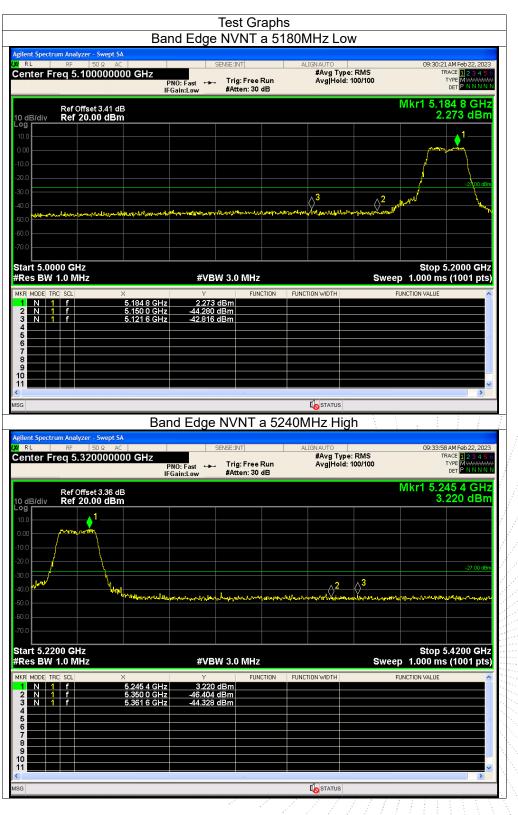
1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect

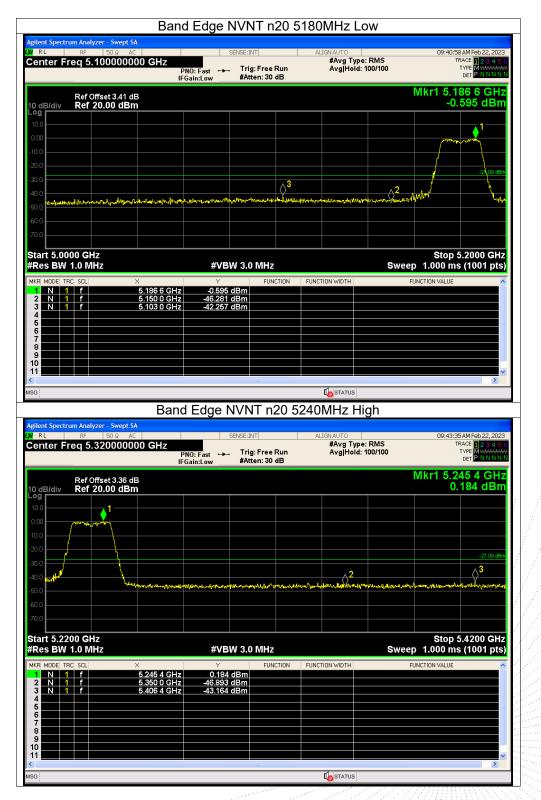
its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range. 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

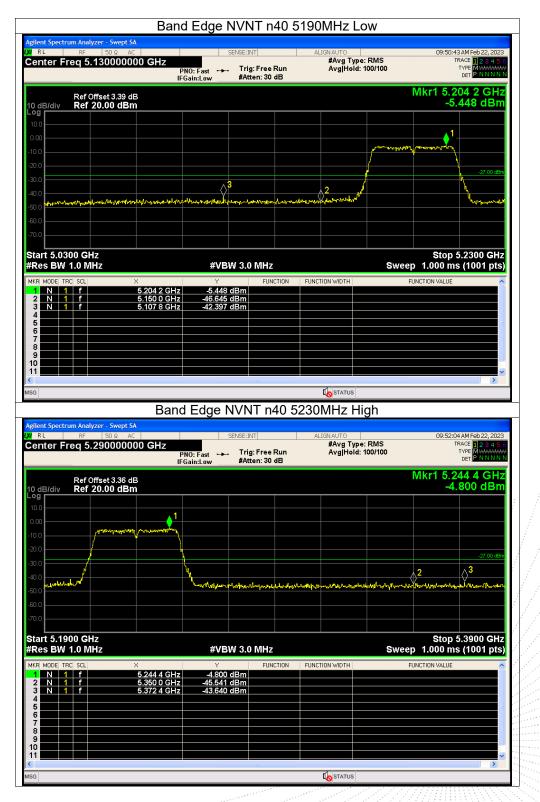
5. Repeat above procedures until all measured frequencies were complete.

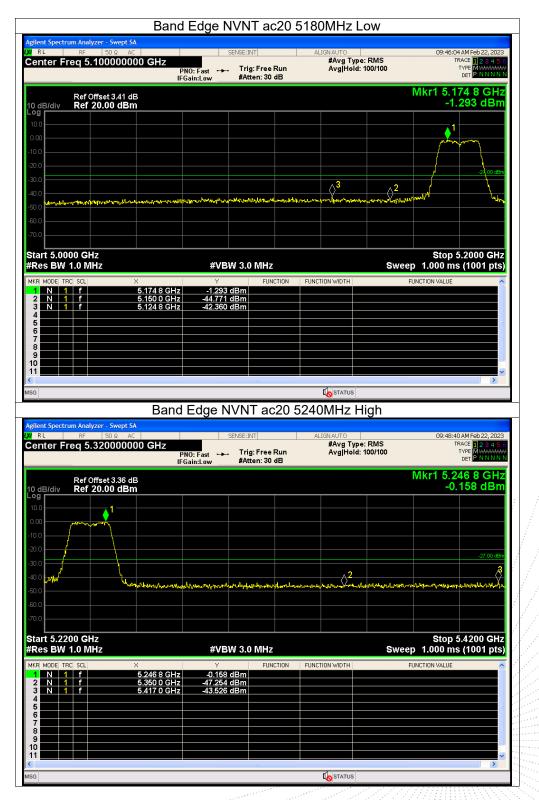

11.4 EUT operating Conditions

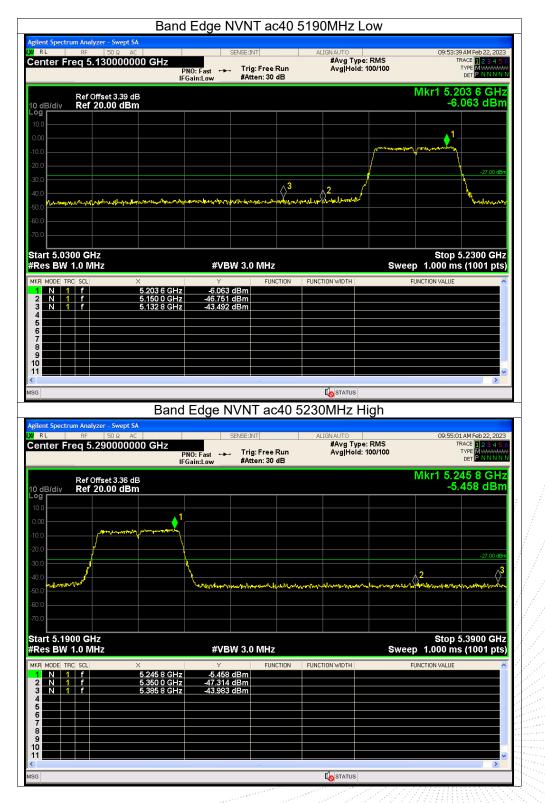
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data

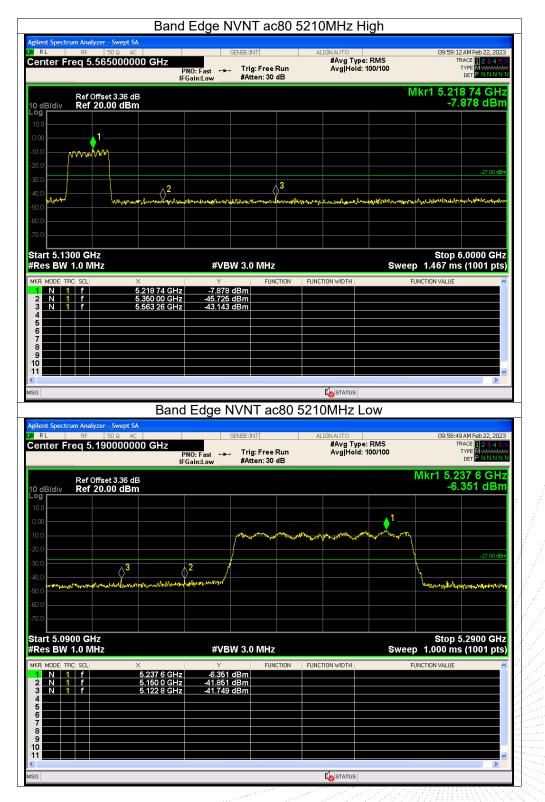


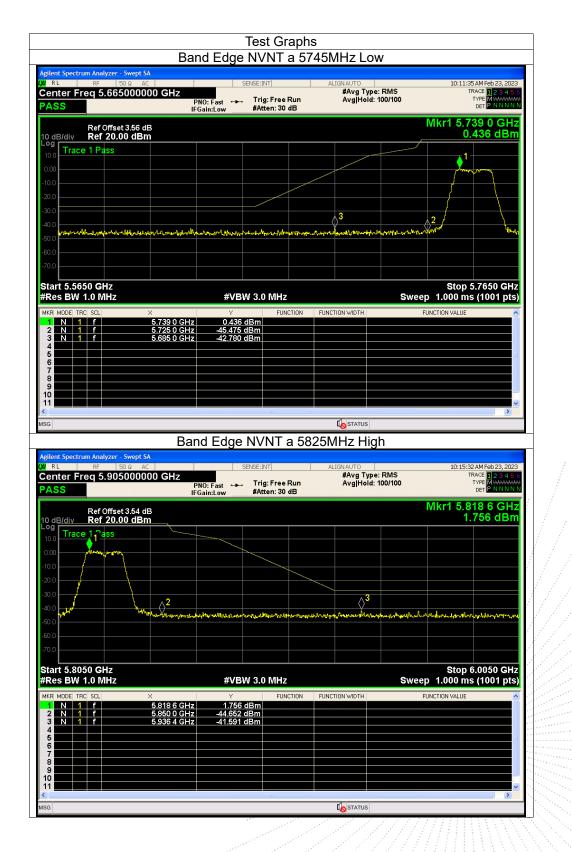
11.5 Test Result


Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.

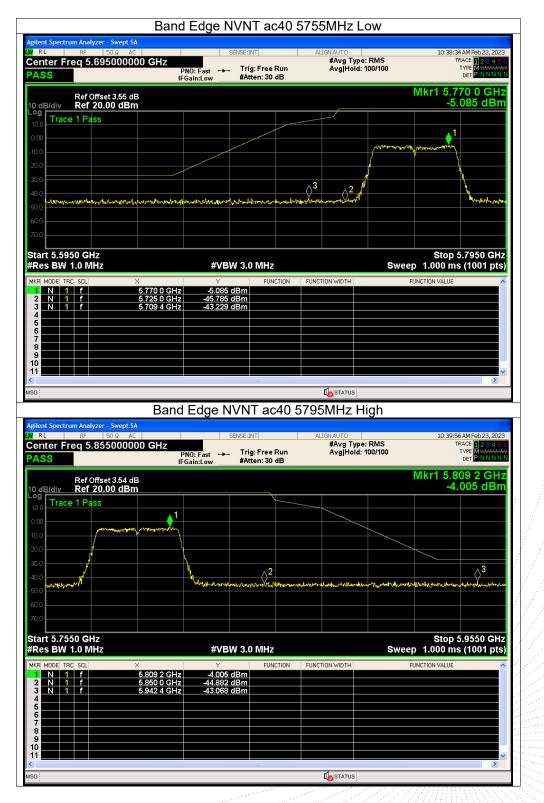




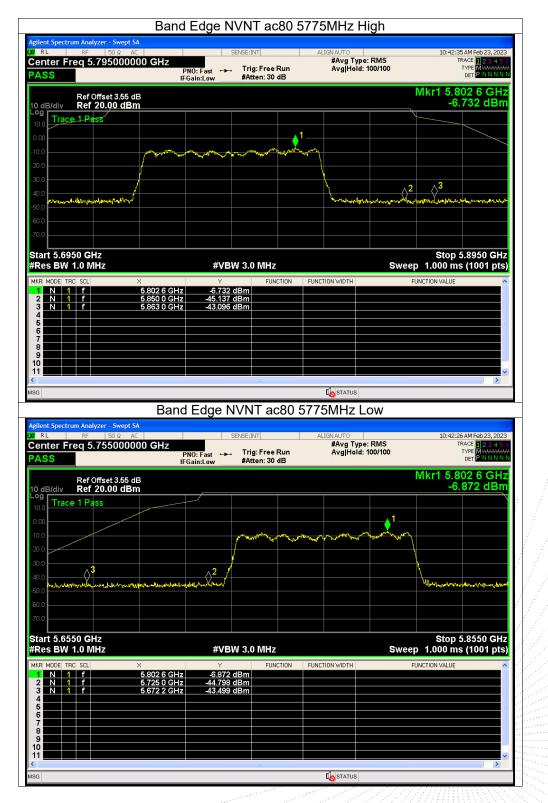




Band Edge NVNT n20 5745MHz Low nt Spectrum Analyze 10:24:43 AM Feb TRACE 1 TYPE M DET P RL #Avg Type: RMS Avg|Hold: 100/100 Center Freq 5.665000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB PASS Mkr1 5.751 4 GHz -2.037 dBm Ref Offset 3.56 dB Ref 20.00 dBm 10 dB/div Log Trace 1 Pass Δ }³ Start 5.5650 GHz #Res BW 1.0 MHz Stop 5.7650 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -2.037 dBm -46.067 dBm -42.434 dBm 5.751 4 GHz 5.725 0 GHz 5.572 6 GHz N 1 f 5 10 11 **I**STATUS Band Edge NVNT n20 5825MHz High (IRL 7 AM Feb 23, 2023 Center Freq 5.905000000 GHz #Avg Type: RMS Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET PASS Mkr1 5.820 2 GHz -0.596 dBm Ref Offset 3.54 dB Ref 20.00 dBm 10 dB/div Log Trace 1 Pass Ø **∂**² Start 5.8050 GHz #Res BW 1.0 MHz Stop 6.0050 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz 5.820 2 GHz 5.850 0 GHz 5.969 8 GHz -0.596 dBr -46.083 dBr -41.683 dBr N N 3 5 10 > **STATUS**



Band Edge NVNT n40 5755MHz Low 10:35:47 AM Feb. TRACE ım Analyzei RL #Avg Type: RMS Avg|Hold: 100/100 ALIC Center Freq 5.695000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET PASS Mkr1 5.770 6 GHz -5.166 dBm Ref Offset 3.55 dB Ref 20.00 dBm 10 dB/div Log Trace 1 Pass ø ٥Î **∂**² 6. L. MANNER Stop 5.7950 GHz Sweep 1.000 ms (1001 pts) Start 5.5950 GHz #Res BW 1.0 MHz #VBW 3.0 MHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -5.166 dBm -45.601 dBm -42.630 dBm 5.770 6 GHz 5.725 0 GHz 5.712 0 GHz N 1 f N 1 f 5 10 11 **I**STATUS Band Edge NVNT n40 5795MHz High (IRL 10:37:08 AM Feb 23, 202 Center Freq 5.855000000 GHz #Avg Type: RMS Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET PASS Mkr1 5.810 2 GHz -4.006 dBm Ref Offset 3.54 dB Ref 20.00 dBm 10 dB/div Log Trace 1 Pass ∂<mark>2</mark> Start 5.7550 GHz #Res BW 1.0 MHz Stop 5.9550 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz 5.810 2 GHz 5.850 0 GHz 5.953 6 GHz -4.006 dBr -46.013 dBr -42.080 dBr N N 3 5 IC > **STATUS**



12. Spurious RF Conducted Emissions

12.1 Block Diagram Of Test Setup

12.2 Limit

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: (1)For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2)For transmitters operating in the 5.725-5.85 GHz band(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

12.3 Test procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

 Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
 Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the

graph with marking the highest point and edge frequency.

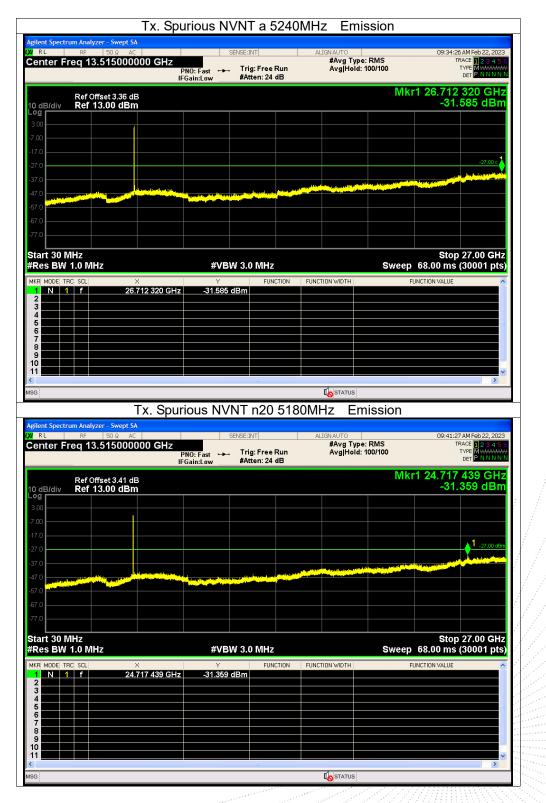
5. Repeat above procedures until all measured frequencies were complete.

12.4 Test Result

Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

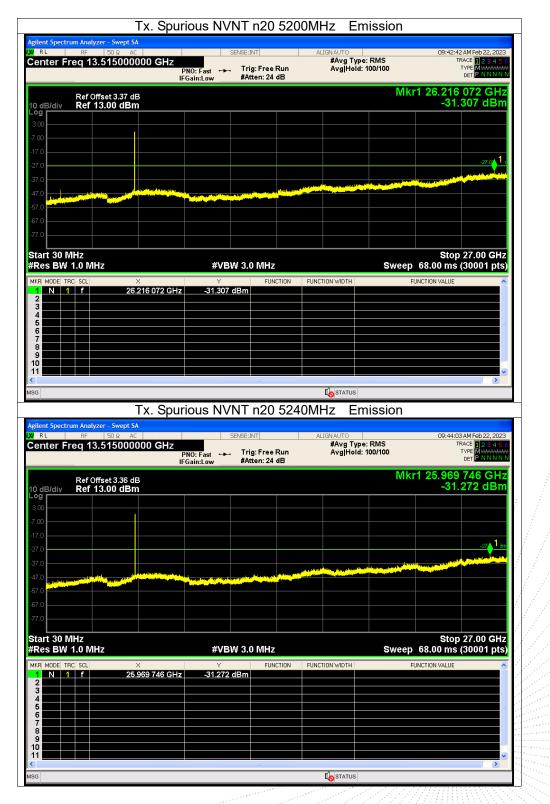
About:26.5GHz-40GHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

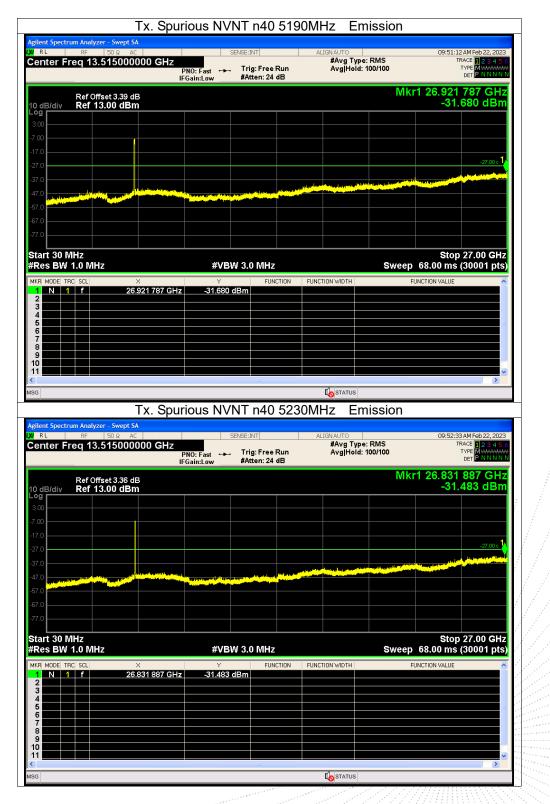
Note: A(B) Represent the value of antenna A and B, The worst data is Antenna A, only shown Antenna A Plot.



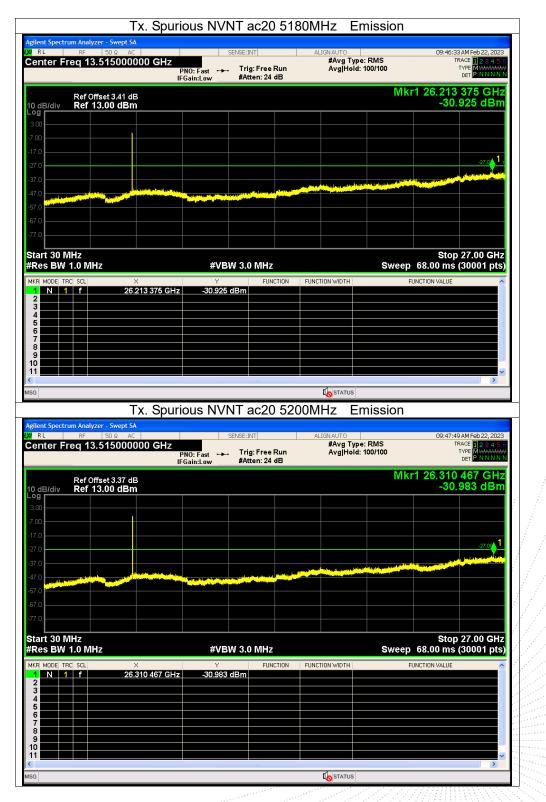
ilent Spectrum Analyzer -		Test G urious NVNT a		Hz Emissi	ion		
RL RF 5 enter Freq 13.51	ο Ω AC 5000000 GHz	SENSE:INT PNO: Fast Trig: Fre FGain:Low #Atten: 2		ALIGN AUTO #Avg Type: RM Avg Hold: 100/		09:30:50 AM Feb 22, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N	023 56 MM/H NN
Ref Offset	t 3.41 dB				Mkr1 2	6.839 978 GH -31.573 dB	
0 dB/div Ref 13.0							
.00							-
7.0						-27.00 0	.1
7.0	and and the provided in particular			ألصافا فالمتحاصين فالمحافظ		an a	
7.0 7.0							
7.0							
tart 30 MHz						Stop 27.00 GI	Hz
Res BW 1.0 MHz	×	#VBW 3.0 MH		INCTION WIDTH		.00 ms (30001 p	ts)
1 N 1 f	26.839 978 GHz		UNCTION FO	INCTION WIDTH	FUNCT	UN VALUE	Î
3							
6							
8 9 0							
1							•
3							
	Ty Sn	urique NIV/NT a	5200M	Hz Emissi	on		
	Swept SA	urious NVNT a	5200M		on		
RL RF 5	Swept SA 50 Ω AC 500000 GHz	URIOUS NVNT A	e Run	Hz Emissi Alignauto #Avg Type: RM Avg Hold: 100/	IS	09:32:06 AM Feb 22, 20 TRACE 1 2 3 4 TYPE M MMM DET P. N.N.N	123 56 NN
RL RF 5 enter Freq 13.51 Ref Offset 0 dB/div Ref 13.0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	09:32:06 AM Feb 22, 20 TRACE 1 2 3 4 TYPE MWWW DET PNNN 25.838 492 GH -31.872 dB	56 NN
Ref Offset 0 dB/div Ref 13.0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	TRACE 1 2 3 4 TYPE MWWW DET P N N N	56 NN
RL RF IS enter Freq 13.51 Ref Offset Ref Offset Ref Offset 0 dB/div Ref 13.0 9	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	TRACE 1 2 3 4 TYPE MWWW DET P N N N	56 NN
RL RF IS enter Freq 13.51 Ref Offset Ref Offset 0 dB/div Ref 13.0 Ref 13.0 00 7.0 7.0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	TRACE 1 2 3 4 TYPE MWWW DET P N N N	56 NN
RL RF IS enter Freq 13.51 Ref Offset Ref Offset 0 dB/div Ref 13.0 Ref 13.0 0 0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	TRACE 1 2 3 4 TYPE MWWW DET P N N N	56 NN
RL RF IS enter Freq 13.51 Ref Offset Ref Offset 0 dB/div Ref 13.0 Ref 13.0 0 0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	TRACE 1 2 3 4 TYPE MWWW DET P N N N	56 NN
RL RF S enter Freq 13.51 Ref Offset 0 dB/div Ref 13.0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	e Run	ALIGNAUTO #Avg Type: RM	IS 100	TRACE 1 2 3 4 TYPE MWWW DET P N N N	56 NN
RL RF IS enter Freq 13.51 Ref Offset Ref Offset dB/div Ref 13.0 Ref 13.0 0	Swept SA 50 Ω AC 15000000 GHz 1 1 3.37 dB	SENSE:INT	ee Run 24 dB	ALIGNAUTO #Avg Type: RM	IS 100 Mkr1 2	1744E 10234 Type Monitor 25.838 492 GH -31.872 dB 	
RL Re IS enter Freq 13.51 Ref Offset Ref Offset dB/div Ref 13.0 Ref 13.0 0	Swept SA 10 2 AC 15000000 GHz 1 13.37 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT PNO: Fast → Trig: Fre FGain:Low #Atten: 2 #Atten: 2 #VBW 3.0 MH	ee Run 24 dB	ALIGNAUTO #Avg Type: RM	IS Mkr1 2 Sweep 68	1744E 10234 Type Mowev er PININ 25.838 492 GH -31.872 dB	
RL Re IS enter Freq 13.51 Ref Offset Ref Offset dB/div Ref 13.0 Ref 13.0 0	Swept SA 10.2 AC 15000000 GHz 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT PNO: Fast → Trig: Fre FGain:Low #Atten: 2 #Atten: 2 #VBW 3.0 MH	ee Run 24 dB	ALIGNAUTO	IS Mkr1 2 Sweep 68	25.838 492 GH -31.872 dB -31.872 dB 	
RL RF IS enter Freq 13.51 Ref Offset dB/div Ref 13.0 0	Swept SA 10 2 AC 15000000 GHz 1 13.37 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT PNO: Fast → Trig: Fre FGain:Low #Atten: 2 #Atten: 2 #VBW 3.0 MH	ee Run 24 dB	ALIGNAUTO	IS Mkr1 2 Sweep 68	25.838 492 GH -31.872 dB -31.872 dB 	
RL Re IS enter Freq 13.51 Ref Offset Ref Offset dB/div Ref 13.0 Ref 13.0 000	Swept SA 10 2 AC 15000000 GHz 1 13.37 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT PNO: Fast → Trig: Fre FGain:Low #Atten: 2 #Atten: 2 #VBW 3.0 MH	ee Run 24 dB	ALIGNAUTO	IS Mkr1 2 Sweep 68	25.838 492 GH -31.872 dB -31.872 dB 	
RL Re IS enter Freq 13.51 Ref Offset Ref Offset dB/div Ref 13.0 Ref 13.0 0	Swept SA 10 2 AC 15000000 GHz 1 13.37 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT PNO: Fast → Trig: Fre FGain:Low #Atten: 2 #Atten: 2 #VBW 3.0 MH	ee Run 24 dB	ALIGNAUTO	IS Mkr1 2 Sweep 68	25.838 492 GH -31.872 dB -31.872 dB 	
RL Re IS enter Freq 13.51 Ref Offset Ref Offset dB/div Ref 13.0 Ref 0 00	Swept SA 10 2 AC 15000000 GHz 1 13.37 dB 10 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	SENSE:INT PNO: Fast → Trig: Fre FGain:Low #Atten: 2 #Atten: 2 #VBW 3.0 MH	ee Run 24 dB	ALIGNAUTO	IS Mkr1 2 Sweep 68	25.838 492 GH -31.872 dB -31.872 dB 	

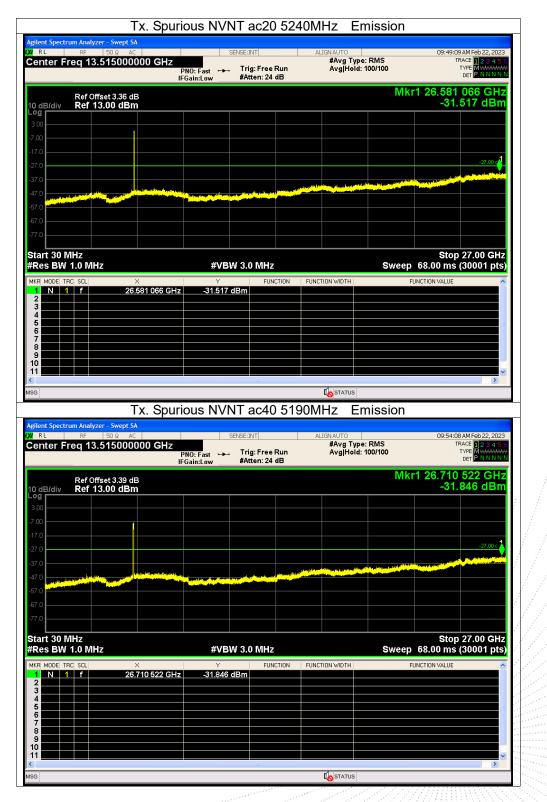
No.: BCTC/RF-EMC-005

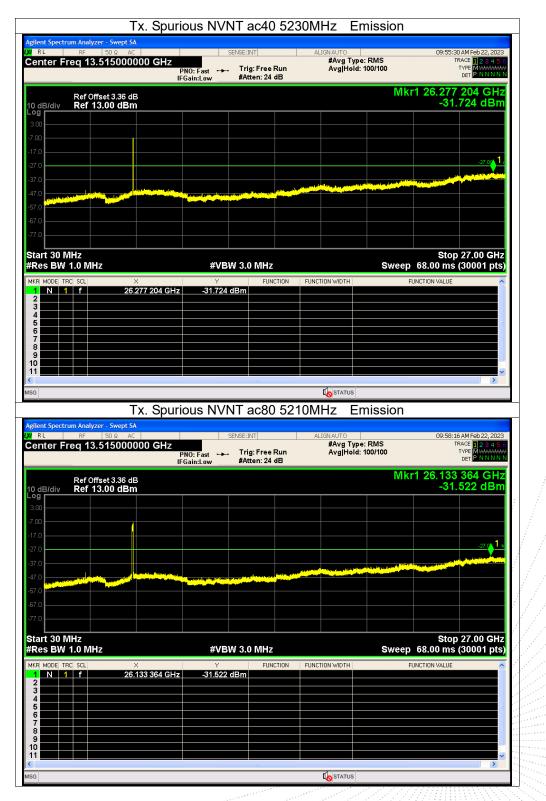

Page: 101 of 126



No.: BCTC/RF-EMC-005

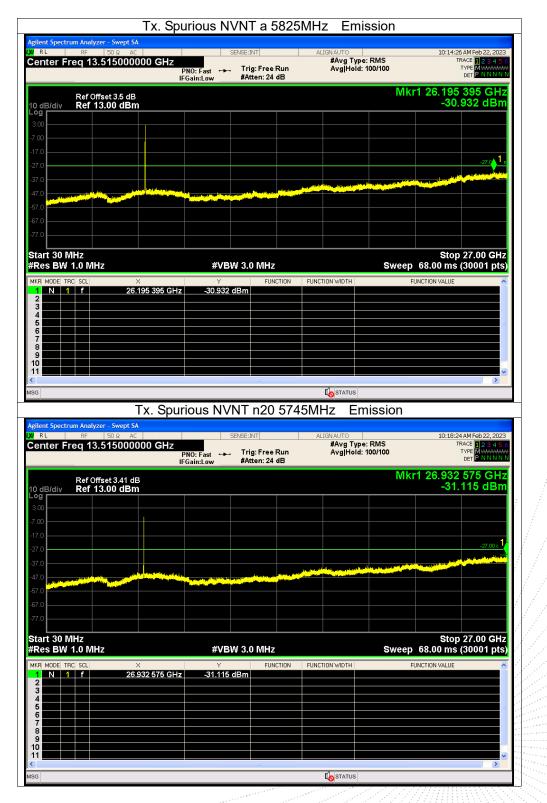


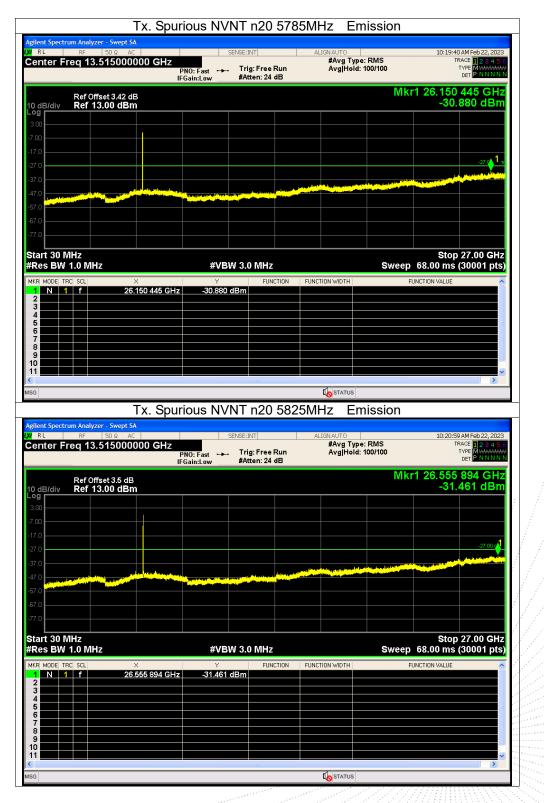




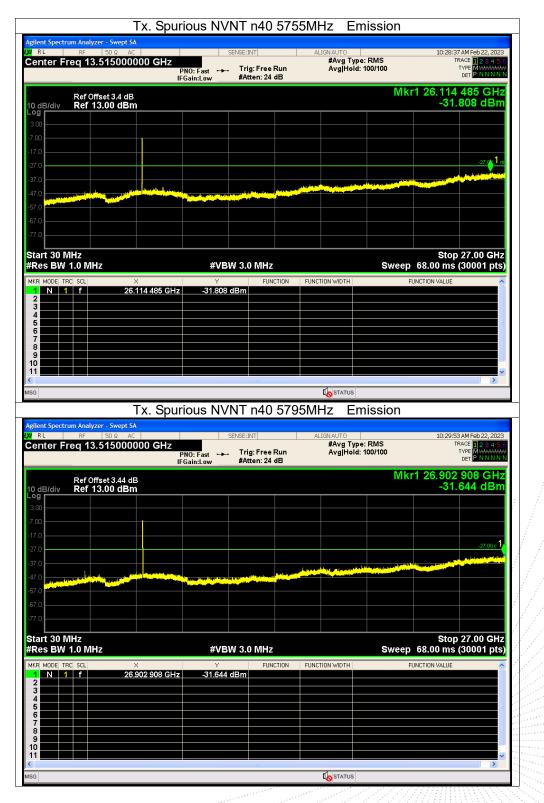
Edition: A.5

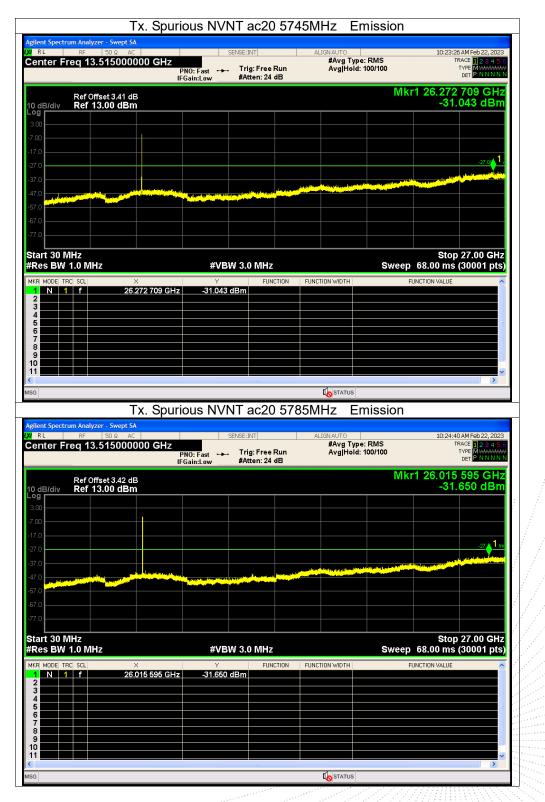
No.: BCTC/RF-EMC-005

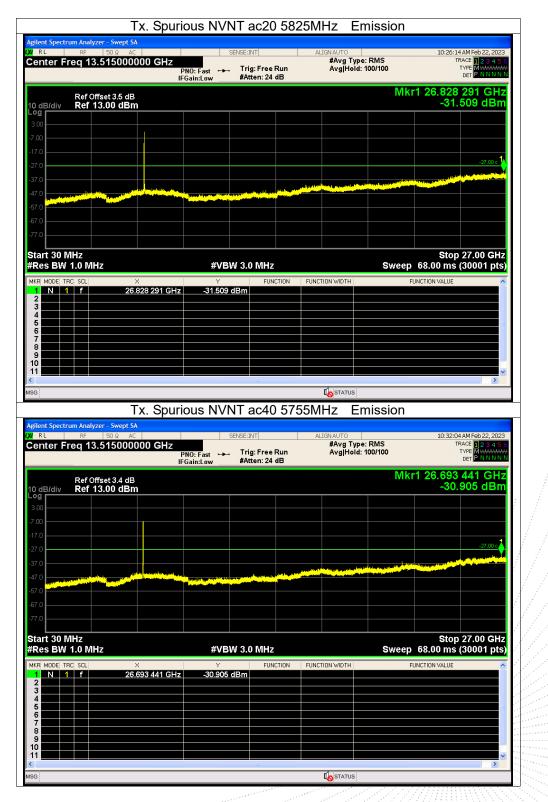


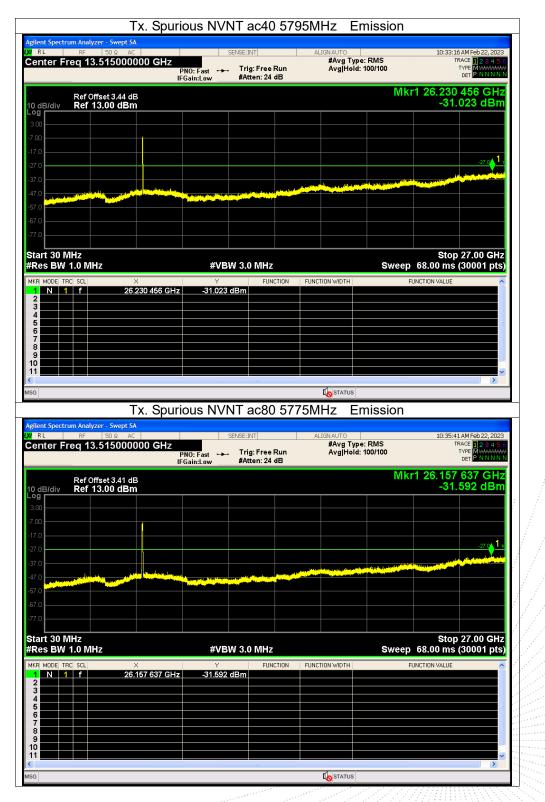

nter Freq 13.51	P	SENSE:INT NO: Fast → Trig: Free Gain:Low #Atten: 24	Run Avg) j Type: RMS Hold: 100/100	10:11:27 AM Feb 22, 202 TRACE 1 2 3 4 5 TYPE M WAAW DET P N N N
Ref Offset B/div Ref 13.0	3.41 dB			Mk	r1 26.255 628 GH -31.479 dBr
) 					
)					-27.0
rt 30 MHz					Stop 27.00 GH
es BW 1.0 MHz	×		ICTION FUNCTION WID		68.00 ms (30001 pt
N 1 f	26.255 628 GHz	-31.479 dBm			
					>
			I STA	TUS	
		irious NVNT a :	б785MHz Е	TUS Emission	
RL RF 50	Swept SA D Ω AC	SENSE:INT	5785MHz E	Emission	10:13:07 AM Feb 22, 20: TRACE
L RF 50	Swept SA D Ω AC 5000000 GHz		5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 1234 TYPE MWWW DET PNNN
nter Freq 13.51 Ref Offset IB/div Ref 13.0	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 1234
RE RF 50 nter Freq 13.51 Ref Offset JB/div Ref 13.0	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 12345 TYPE MWWW DET PNNN 11 26.165 728 GH
Ref Offset	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 12345 TYPE MWWW DET PNNN 11 26.165 728 GH
Ref Offset	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 12345 TYPE MWWW DET PNNN 11 26.165 728 GH
Ref Offset	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 12345 TYPE MWWW DET PNNN 11 26.165 728 GH
Ref Offset	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	5785MHz E	Emission 9 1 Type: RMS Hold: 100/100	TRACE 12345 TYPE MWWW DET PNNN 11 26.165 728 GH
nter Freq 13.51 Ref Offset	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	NO: Fast	ALIGNAUT Run Avg dB	Emission Type: RMS Hold: 100/100 MIK	TRACE 12345 TYPE MWWW DET PNNN 11 26.165 728 GH
Ref Offset	Swept SA D Q AC 50000000 GHz P IF 3.42 dB	SENSE:INT NO: Fast Gain:Low HAtten: 24 #VBW 3.0 MH	ALIGNAUT Run Avg dB	Emission	TRACE 12 3 4 5 TYPE MUNICIPAL OF THE
Ref Offset Bildiv Ref 13.0	Swept SA 20 AC 5000000 GHz 3.42 dB 0 dBm 	SENSE:INT NO: Fast Gain:Low Trig: Free #Atten: 24	S785MHz E	Emission	TRACE 12 3 4 5 TYPE MUNICIPAL STREET
Ref Offset Bildiv Ref 13.0	Swept SA 20 AC 5000000 GHz 3.42 dB 0 dBm 	SENSE:INT NO: Fast Gain:Low Trig: Free #Atten: 24	S785MHz E	Emission	TRACE 12 3 4 5 TYPE MUNICIPAL STREET

No.: BCTC/RF-EMC-005




No.: BCTC/RF-EMC-005


No.: BCTC/RF-EMC-005


No.: BCTC/RF-EMC-005

Edition: A.5

Edition: A.5

No.: BCTC/RF-EMC-005

13. Frequency Stability Measurement

13.1 Block Diagram Of Test Setup

13.2 Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

13.3 Test procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. EUT have transmitted absence of modulation signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.

4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.

5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and he limit is less than ±20ppm (IEEE 802.11nspecification).

6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

Page: 115 of 12

13.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%				
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz				
Test Mode:	TX (5.1G) Mode Frequency U-NII-1 (5180-5240MHz)						

Voltage vs. Frequency Stability

				Reference Frequency: 5180MHz				
	TES	ST CONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T		V nom (V)	120	5180.0011	5180	0.0011	0.2056	
T nom (°C)	20	V max (V)	138	5180.0010	5180	0.0010	0.2014	
(0)		V min (V)	102	5180.0092	5180	0.0092	1.7706	
	Limits			5150-5250 MHz				
Result				Complies				

				Ref	erence Freq	uency:5180MI	Hz
Т	EST C	ONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5180.0065	5180	0.0065	1.2634
		T (°C)	-10	5180.0033	5180	0.0033	0.6427
		T (°C)	0	5180.0023	5180	0.0023	0.4522
	5V	T (°C)	10	5180.0131	5180	0.0131	2.5259
\(nom (\()		T (°C)	20	5180.0089	5180	0.0089	1.7214
V nom (V)		T (°C)	30	5180.0096	5180	0.0096	1.8487
		T (°C)	40	5180.0089	5180	0.0089	1.7238
		T (°C)	50	5180.0028	5180	0.0028	0.5387
		T (°C)	60	5180.0064	5180	0.0064	1.2417
		T (°C)	70	5180.0033	5180	0.0033	0.6438
	Limits				5150-5	250 MHz	
	F	Result			Con	nplies	

				Reference Frequency: 5200MHz				
	TES	T CONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
-		V nom (V)	120	5200.0067	5200	0.0067	1.2909	
T nom (°C)	20	V max (V)	138	5200.0018	5200	0.0018	0.3443	
(0)		V min (V)	102	5200.0087	5200	0.0087	1.6731	
		Limits		5725-5850 MHz				
		Result		Complies				

Temperature vs. Frequency Stability

				Re	eference Fre	quency:5200M⊦	lz	
Г	EST C	ONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-20	5200.00022	5200	0.00022	0.0424	
		T (°C)	-10	5200.00528	5200	0.00528	1.0162	
		T (°C)	0	5200.00309	5200	0.00309	0.5946	
	5V	T (°C)	10	5200.00157	5200	0.00157	0.3019	
V nom (V)		T (°C)	20	5200.00496	5200	0.00496	0.9548	
v hom (v)	50	T (°C)	30	5200.00313	5200	0.00313	0.6024	
		T (°C)	40	5200.00171	5200	0.00171	0.3291	
		T (°C)	50	5200.01271	5200	0.01271	2.4442	
		T (°C)	60	5200.01354	5200	0.01354	2.6036	
		T (°C)	70	5200.01043	5200	0.01043	2.0056	
	Limits			5150-5250 MHz				
	F	Result		Complies				

				Reference Frequency: 5240MHz					
	TES	T CONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
-		V nom (V)	120	5240.0087	5240	0.0087	1.6510		
T nom (°C)	20	V max (V)	138	5240.0131	5240	0.0131	2.5054		
(0)		V min (V)	102	5240.0109	5240	0.0109	2.0776		
		Limits		5150-5250 MHz					
		Result		Complies					

				F	Reference Fr	equency:5240M	Ηz
Т	EST C	ONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5240.0122	5240	0.0122	2.3377
		T (°C)	-10	5240.0017	5240	0.0017	0.3320
		T (°C)	0	5240.0026	5240	0.0026	0.4950
		T (°C)	10	5240.0135	5240	0.0135	2.5748
V nom (V)	5V	T (°C)	20	5240.0092	5240	0.0092	1.7614
v noni (v)	50	T (°C)	30	5240.0113	5240	0.0113	2.1640
		T (°C)	40	5240.0053	5240	0.0053	1.0168
		T (°C)	50	5240.0001	5240	0.0001	0.0265
		T (°C)	60	5240.0114	5240	0.0114	2.1675
		T (°C)	70	5240.0084	5240	0.0084	1.5971
	Limits				5150	-5250 MHz	
	Result				C	omplies	

Temperature:	26 ℃	Relative Humidity:	54%				
Pressure:	101KPa	Test Voltage:	AC120V/60Hz				
Test Mode:	TX (5.8G) Mode Frequency U-NII-3 (5745-5825MHz)						

				Reference Frequency: 5745MHz				
	TES	T CONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
.		V nom (V)	120	5745.00955	5745	0.00955	1.6621	
T nom (°C)	20	V max (V)	138	5745.00563	5745	0.00563	0.9800	
(0)		V min (V)	102	5745.00228	5745	0.00228	0.3964	
		Limits		5725-5850 MHz				
		Result		Complies				

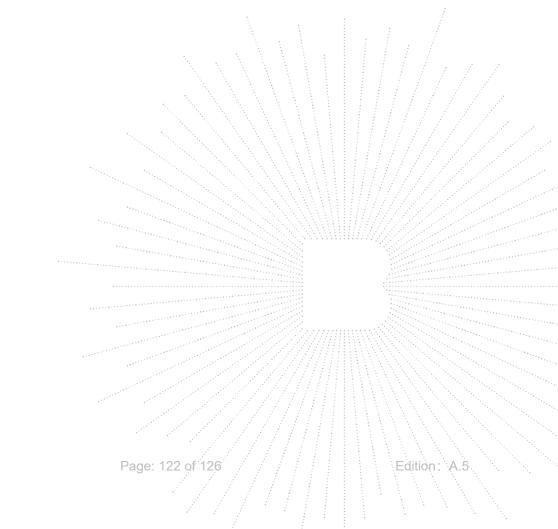
				Refe	rence Frequ	uency:5745MI	Hz
Т	EST C	ONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5745.00072	5745	0.00072	0.1245
		T (°C)	-10	5745.00876	5745	0.00876	1.5255
	5V	T (°C)	0	5745.00146	5745	0.00146	0.2548
		T (°C)	10	5745.00730	5745	0.00730	1.2707
V nom (V)		T (°C)	20	5745.00021	5745	0.00021	0.0371
v horn (v)		T (°C)	30	5745.00112	5745	0.00112	0.1955
		T (°C)	40	5745.00763	5745	0.00763	1.3289
		T (°C)	50 .	5745.00948	5745	0.00948	1.6509
		T (°C)	60	5745.01103	5745	0.01103	1.9193
		T (°C)	70	5745.01137	5745	0.01137	1.9789
	Limits				5725-58	50 MHz	
	F	Result	· · · ·		Com	plies	

				Reference Frequency: 5785MHz					
	TES	T CONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)		
T		V nom (V)	120	5785.00100	5785	0.00100	0.1727		
T nom (°C)	20	V max (V)	138	5785.00256	5785	0.00256	0.4430		
(0)		V min (V)	102	5785.00845	5785	0.00845	1.4601		
Limits				5725-5850 MHz					
		Result		Complies					

				Re	eference Fre	quency:5785MH	lz	
Т	EST C	ONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-20	5785.00843	5785	0.00843	1.4567	
		T (°C)	-10	5785.00092	5785	0.00092	0.1596	
		T (°C)	0	5785.00646	5785	0.00646	1.1169	
	5V	T (°C)	10	5785.00732	5785	0.00732	1.2652	
V nom (V)		T (°C)	20	5785.00228	5785	0.00228	0.3936	
v noni (v)		T (°C)	30	5785.01243	5785	0.01243	2.1494	
		T (°C)	40	5785.00252	5785	0.00252	0.4360	
		T (°C)	50	5785.00920	5785	0.00920	1.5906	
		T (°C)	60	5785.00779	5785	0.00779	1.3469	
		T (°C)	70	5785.01305	5785	0.01305	2.2551	
	Limits			5725-5850 MHz				
Result				Complies				

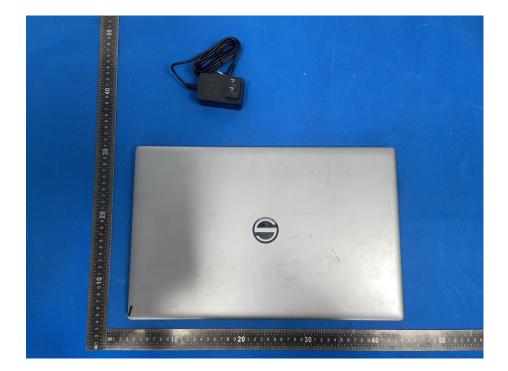
TEST CONDITIONS				Reference Frequency: 5825MHz				
				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°C)	20	V nom (V)	120	5825.01005	5825	0.01005	1.7252	
		V max (V)	138	5825.00601	5825	0.00601	1.0316	
		V min (V)	102	5825.00294	5825	0.00294	0.5050	
Limits				5725-5850 MHz				
Result				Complies				

				Reference Frequency: 5825MHz				
TEST CONDITIONS				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
V nom (V)	5V	T (°C)	-20	5825.00181	5825	0.00181	0.3110	
		T (°C)	-10	5825.00860	5825	0.00860	1.4760	
		T (°C)	0	5825.00381	5825	0.00381	0.6542	
		T (°C)	10	5825.01184	5825	0.01184	2.0327	
		T (°C)	20	5825.00415	5825	0.00415	0.7124	
		T (°C)	30	5825.00418	5825	0.00418	0.7168	
		T (°C)	40	5825.00775	5825	0.00775	1.3304	
		T (°C)	50	5825.00795	5825	0.00795	1.3643	
		T (°C)	60	5825.01344	5825	0.01344	2.3071	
		T (°C)	70	5825.00010	5825	0.00010	0.0175	
Limits				5725-5850 MHz				
	F	Result		Complies				


14. Antenna Requirement

14.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


14.2 Test Antenna

The EUT antenna is Internal antenna. It comply with the standard requirement.

15. EUT Photographs

Appendix-Photographs Of EUT Constructional Details

No.: BCTC/RF-EMC-005

Page: 123 of 126

Edition: A.5

16. EUT Test Setup Photographs

Conducted emissions

Page: 124 of 126

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The test report without CMA mark is only used for scientific research, teaching, enterprise product development and internal quality control purposes.

8. The quality system of our laboratory is in accordance with ISO/IEC17025.

9. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 126 of 126