

Test Report	No.: 13053102	2.fcc01	Page 1 of 35
Client:	Tacx b.v. Rijksstraatweg 52, 2241BW	/ Wassenaar, Netherlands	
Test Item:	Digital Transmission S USB Antenna	ystem (DTS)	
Identification:	T2028	Serial Number:	
Project No.:	13053102	Date of Receipt:	July 16, 2013
Testing Location:	TÜV Rheinland EPS Eiberkamp 10 9351VT Leek		
Test Specification:	FCC 47 CFR Part 15, Subpa RSS-Gen (issue 3, Decemb ANSI C63.10:2009 KDB Publication No. 558074 Operating under Section 15.	art C, Section 15.247 (10-1-12 E er 2010) an RSS-210 (Issue 8, I 4 D01 V3.01: Measurement of D 247 (10/4/13)	dition) December 2010) igital Transmission Systems
Test Result:		The test item passed the te	est specification(s).
TÜV Rheinland EPS Testing Laboratory: Eiberkamp 10 9351 VT Leek			
Tested by:	Aler	Reviewed by:	(Y) blockshi
2013-08-02 R. van de	r Meer / Inspector	2013-08-02 O. Hoekstra / Rev	viewer
Date Name/Po	sition Signature	Date Name/Position	Signature
Other Aspects:		Abbreviations: P(ass) = pa F(ail) = fa	nssed iled
		N/A = no N/T = no	ot applicable ot tested
This report s	nall not be reproduced, except in fu The test results rela	III, without the written permission on the only to the item(s) tested.	of TÜV Rheinland EPS

Test Report No.:	13053102.fcc01	Page 2 of 35
	TEST SUMMARY	
5.1.1 CONDUCTED N RESULT: PASS	IEASUREMENTS AT ANTENNA PORT	
5.1.2 6DB AND 99% RESULT: PASS	BANDWIDTH	
5.1.3 PEAK POWER RESULT: PASS	SPECTRAL DENSITY	
5.1.4 BAND EDGE C RESULT: Pass	ONDUCTED EMISSIONS	
5.1.5 RADIATED SPU RESULT: PASS	JRIOUS EMISSIONS OF TRANSMITTER	
5.1.6 RADIATED SPU RESULT: PASS	JRIOUS EMISSIONS OF TRANSMITTER IN RES	STRICTED BANDS
5.2.1 AC Power Lil RESULT: PASS	NE CONDUCTED EMISSION OF TRANSMITTER	R

Contents	4
	4
1. GENERAL REMARKS	
1.1 COMPLEMENTARY MATERIALS	4
2. Test Sites	4
2.1 TEST FACILITIES	4
2.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS TABLE 1: LIST OF TEST AND MEASUREMENT EQUIPMENT	5
2.3 MEASUREMENT UNCERTAINTY	6
3. GENERAL PRODUCT INFORMATION	7
3.1 PRODUCT FUNCTION AND INTENDED USE	7
3.2 System Details	7
3.3 COUNTERMEASURES TO ACHIEVE EMC COMPLIANCE	8
4. TEST SET-UP AND OPERATION MODES	9
4.1 Test Methodology	9
4.2 OPERATION MODES	9
4.3 Physical Configuration for Testing	10
4.4 Test Software	11
4.5 SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	12
5. Test Results	13
 5.1 CONDUCTED MEASUREMENTS AT ANTENNA PORT. 5.1.1 Conducted Output Power. 5.1.2 6dB and 99% Bandwidth. 5.1.3 Peak Power Spectral Density	13 13 16 19 22 25 32 32 35

13053102.fcc01

Page 4 of 35

1. General Remarks

1.1 Complementary Materials

There is no attachment to this test report.

2. Test Sites

2.1 Test Facilities

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland EPS, located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948.

The description of the test facilities has been filed at the Office of the Federal Communications Commission under registration number 90828. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under registration number 2932G-2. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*)	: +15°C to +35°C
Relative humidity(*)	: 20 % to 75 %
Supply voltage	: 120VAC/60Hz
Air pressure	: 950 – 1050 hPa

When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

13053102.fcc01

Page 5 of 35

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)
For Antenna Port Cond	ucted Emission	·			
Temperature- Humiditymeter	Extech	SD500	99857	02/2012	02/2014
Spectrum Analyzer	Rohde & Schwarz	FSV	99733	05/2013	05/2014
For Radiated Emission					
Measurement Receiver	Rohde & Schwarz	ESCI	99699	03/2013	03/2014
RF Cable S-AR	Gigalink	APG0500	99858	02/2013	02/2014
Controller	Maturo	SCU/088/ 8090811	99861	N/A	N/A
Controller	EMCS	DOC202	99608	N/A	N/A
Controller	Heinrich Deisel	4630-100	99107	N/A	N/A
Test facility	Comtest	FCC listed: 90828 IC: 2932G-2	99580/99847	12/2011	12/2014
Spectrum Analyzer	Rohde & Schwarz	FSV	99733	05/2013	05/2014
Controller	EMCS	DOC202	99608	N/A	N/A
Antenna mast	EMCS	AP-4702C	99609	N/A	N/A
Temperature- Humiditymeter	Extech	SD500	99855	02/2012	02/2014
Guidehorn 1-18 GHz	EMCO	3115	12484	04/2013	04/2014
Guidehorn 18-40 GHz	EMCO	RA42-K-F-4B-C	12488	04/2013	04/2014
Biconilog Testantenna	Chase	CBL 6111B	15633	01/2013	01/2014
2.4 GHz bandreject filter	BSC	XN-1783	14450	N/A	N/A
Bandpass filter 4-10 GHz	Reactel	7AS-7G-6G- 511	99076	N/A	N/A
Bandpass filter 10-26 GHz	Reactel	9HS- 10G/26.5G- S11	99136	N/A	N/A
Preamplifier 0.5 - 18 GHz	Miteq	AMF-5D- 005180-28- 13p	99596	N/A	N/A
Filterbox	EMCS	RFS06S	99606	10/2012	10/2013

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing.

13053102.fcc01

Page 6 of 35

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
Antenna Port Conducted Emission	< 1GHz	±0.5dB
	> 1GHz	±0.7dB
Radiated Emission	150kHz - 30MHz	±5.0dB
	30MHz - 1GHz	±5.0dB
	> 1GHz	±5.5dB

13053102.fcc01

Page 7 of 35

3. General Product Information

3.1 **Product Function and Intended Use**

The brand Tacx model T2028, hereafter referred to as EUT, is a wireless network adapter module. The module will support and utilizes GFSK modulation techniques and is connected to a computer by USB.

The content of this report and measurement results have not been changed other than the way of presenting the data.

3.2 System Details

Details and an overview of the system and all of its components, as it has been tested, may be found below.

EUT	:	Digital Transmission System, USB Antenna
Manufacturer	:	Tacx b.v.
Brand	:	Тасх
Model(s)	:	T2028
Serial Number	:	
Voltage input rating	:	4.0 to 5.25Vdc (usb power)
Voltage output rating	:	
Current input rating	:	
Antenna	:	Internal, integrated on the PCB
Antenna Gain	:	2.0 dBi (declared)
Operating frequency	:	2403MHz-2480MHz.
Modulation	:	GFSK
Remarks	:	n.a.

13053102.fcc01

Page 8 of 35

Table 3: Interfaces present on the EUT

No.	Port	From	То	Remarks
1.	Mains	Mains	Laptop (AUX1)	Through a AC/DC power supply
2.	Data com.	Laptop USB	EUT USB	
3.	Antenna port	EUT	Spectrum	Conducted tests
			analyzer	

3.3 Countermeasures to achieve EMC Compliance

No additional measures were employed to achieve compliance.

13053102.fcc01

Page 9 of 35

4. Test Set-up and Operation Modes

4.1 Test Methodology

The test methodology used is based on the requirements of RSS-GEN, RSS-210, 47 CFR Part 15, Sections 15.31, 15.33, 15.35, 15.205, 15.207, 15.209, 15.247 and ANSI C63.10:2009

The test methods, which have been used, are based on ANSI C63.10-2009.

For details, see under each test item.

4.2 Operation Modes

Testing was performed at the lowest operating frequency (2403 MHz), at the operating frequency in the middle of the specified frequency band (2442 MHz) and at the highest operating frequency (2480 MHz). These operation modes were selected after review of the capabilities and characteristics of the EUT. The test software as mentioned in section 4.4 enabled the settings of these modes.

Operation Mode	EUT Status	Frequency (MHz)	TX power	Channel period (Hz)
Transmit (Tx)	On	2403	3 (=max)	200 (=max)
Transmit (Tx)	On	2442	3 (=max)	200 (=max)
Transmit (Tx)	On	2480	3 (=max)	200 (=max)

The EUT has been tested in the modes as described in table below

13053102.fcc01

Page 10 of 35

4.3 Physical Configuration for Testing

The EUT was connected to the usb port of a laptop computer. The laptop computer was used to configure the EUT to continuously transmit at a specified output power and channel as specified in the testdata. See section 4.5 for Auxiliary details.

The EUT was tested on a stand-alone basis and the test system was configured in a typical fashion (as a customer would normally use it).

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.10-2009.

Figure 1: Test Setup Diagram

Notes:

For more details, refer to the document: Test Set-Up Photographs document.

Test Report No.:	13053102.fcc01	Page 11 of 35
4.4 Test Softwar	re	
A continuous transmit of Intel Corporation. The te the EUT for the purpose the applicant and used o	r receive mode could be initiated by usin est software was used to define various of of compliance testing. The version of th during all tests is:	g test software as supplied by different operational modes of e test software, as supplied by
Test software :	ANTware2	
About ANTware II	×	
ANTware II Copyright 2010 Dynastream I	Innovations Inc. Cochrane, Alberta, Canada	
ANT Managed Library Version Unmanaged Wrapper Version	: AMO2.1.0.0 : AOA2.901	
For support, visit www.thisisa	ant.com	
	ОК	
This software was runni operation modes listed i	ng on a laptop computer (AUX1). It was n section 4.2 as appropriate.	used to enable the test

13053102.fcc01

Page 12 of 35

4.5 Special Accessories and Auxiliary Equipment

The product has been tested together with the following additional accessories:

1. AUX1

Laptop Computer
HP
Compaq 610
CNU94710WB
host for testsoftware

Test Report No.:	13053102.fcc01	Page 13 of 35		
5. Test Results				
5.1 Conducted Mea	surements at Antenna Port	t		
5.1.1 Conducted Output	Power			
RESULT: PASS				
Date of testing:	2013-07-18			
Requirements: FCC 15.247(b)(3) For systems using digital mo power is 1W (+30dBm). RSS-Gen: the e.i.r.p. shall no	dulation in the 2400-2483.5 MHz ban ot exceed 4 W (36 dBm).	d, the maximum peak output		
Test procedure: ANSI C63.10:2009				
The Peak Conducted Output according to section 9.1.2 in	Power was measured using the char KDB 558074 D01.	nel integration method		
The maximum peak output power (conducted) was measured at the antenna connector with a spectrum analyzer. The final measurement takes into account the loss generated by all the involved cables.				
The EIRP power (dBm) is ca measured conducted power.	lculated by adding the declared maxir	num antenna gain to the		
Notes: $mW = 10 \land (dBm/10)$ dBm = 10 x log(mW)				
plots : Peak power plots , Figures 1a, 1b and 1c show plo included in the reading.	ts of the Peak Power outputs, correction f	actors (= 0.6dB Cableloss)		

13053102.fcc01

Page 14 of 35

Conducted Output Power

Freq- uency [MHz]	Output Power [dBm]	Output Power [mW]	Limit [dBm]	Limit [mW]	Antenna Gain (dBi)	EIRP (dBm)	EIRP (mW)	Plot number
2402	-2.1	0.617	+30	1000	2.0	-0.10	0.977	1A
2442	-2.6	0.550	+30	1000	2.0	-0.60	0.871	1B
2480	-5.9	0.257	+30	1000	2.0	-3.90	0.407	1C

Test Report No.:	13053102.fcc01	Page 16 of 35
5.1.2 6dB and 99% Ba	andwidth	
RESULT: PASS		
Date of testing:	2013-07-18	
Requirements:		
FCC 15.247(a)(2) and RS For systems using digital at least 500kHz.	S-210 Section A8.2(a) modulation in the 2400-2483.5MHz ba	and, the 6dB bandwidth shall be
For 99% Bandwidth: RSS	-Gen Section 4.6.1: No requirement is	s given.
Test procedure 6dB band	width:	
ANSI C63.10:2009		
A spectrum analyzer was resolution bandwidth was to capture the modulated	connected to the antenna port of the E set to 100kHz, video bandwidth to 300 carrier.	EUT. The spectrum analyzer 0kHz and the span wide enough
For 99% Bandwidth:		
ANSI C63.10-2009 and R	SS-Gen.	
The transmitter shall be of conditions. The span of th process, including the emi of the selected span as is 3 times the resolution ban detector shall be used give actual.	perated at its maximum carrier power e analyzer shall be set to capture all p ission sideskirts. The resolution bandy possible without being below 1%. The dwidth. Video averaging is not permitt en that a peak or peak hold may produ	measured under normal test products of the modulation width shall be set as close to 1% e video bandwidth shall be set to ted. Where practical, a sampling uce a wider bandwidth than
A spectrum analyzer was resolution bandwidth was the resolution bandwidth. Spectrum analyzers autor	connected to the antenna port of the E set to 1% of the selected span, Video The span was set to capture the whole nated function for 99% BW was used.	EUT. The spectrum analyzer bandwidth was set to 3 times e modulation process. The
Plots shown on the next pag	es are of the 6 dB bandwidth.	

13053102.fcc01

Page 17 of 35

6dB Bandwidth

Operating Frequency [MHz]	99% Bandwidth [kHz]	6dB Bandwidth [kHz]	Limit [kHz]	Plot number
2402	4000	852	>500	А
2442	4623	612	>500	В
2480	3396	888	>500	С

Date: 18.JUL.2013 12:29:55

Test Report No.:	13053102.fcc01	Page 19 of 35
5.1.3 Peak Power	Spectral Density	
RESULT: PASS		
Date of testing:	2013-07-18	
Requirements:		
FCC 15.247(e) and RSS	-210 section A8.2(b)	
For digitally modulated sy intentional radiator to the time interval of continuou	ystems, the power spectral density (PS antenna shall not be greater than 8dBr is transmission.	D) conducted from the m in any 3kHz band during any
Test procedure:		
ANSI C63.10:2009		
The section 10.2 PKPSD to the antenna port of the video bandwidth was set allowed to stabilize before the maximum amplitude generated by all the invol	peak PSD procedure was used. A spe EUT. The analyzer resolution bandwic to 10kHz. The sweep time was set to a e making the final measurement. By us was determined. The final measuremer lved cables (0.6 dB).	ectrum analyzer was connected Ith was set to 3kHz and the auto couple and the trace was sing the Peak marker function at takes into account the loss

13053102.fcc01

Page 20 of 35

Peak Power Spectral Density

Operating Frequency [MHz]	Max PSD [dBm]	Limit [dBm]	Verdict [Pass/Fail]	Plot
2402	-18.87	8	Pass	А
2442	-19.03	8	Pass	В
2480	-21.36	8	Pass	С

Date: 18.JUL.2013 13:41:51

Plot A:

Test Report No.:	13053102.fcc01	Page 22 of 35
5.1.4 Band Edge Co	onducted Emissions	
RESULT: Pass		
Date of testing:	2013-07-18	
Requirements:		
FCC 15.205, FCC 15.209,	FCC 15.247(d) and RSS-210 section a	A8.5
In any 100 kHz bandwidth spectrum or digitally modu frequency power that is pro- least 20 dB below that in th the highest level of the des measurement, provided th power limits.	outside the frequency band in which the lated intentional radiator is operating, to oduced by the intentional radiator shall he 100 kHz bandwidth within the band sired power, based on either an RF cor e transmitter demonstrates compliance	ne spread the radio be at that contains nducted or a radiated with the peak conducted
Test procedure:		
ANSI C63.10:2009		
• ••••••••••••••••••••••••••••••••••••		
The marker-delta method,	as described in ANSI C63.10 was use	d.
the peak of the fundament RBW = 100kHz, VBW = 30	rmed using a spectrum analyzer with a al and using the following settings:)0kHz.	a suitable span to encompass
The highest emission amp in this report.	litudes relative to the appropriate limit	were measured and recorded
Results: All out of band sp See the figures on the follo	urious emissions are more than 20 dB owing pages.	below the fundamental.

Spectrum		
RefLevel 0.60 dBm (Att 10 dB 5	Offset 0.60 dB	Auto Sweep
1Pk View		M2[1] -40.27 dBm
-10 dBm		M1[1] 2.3997460 GHz -7.88 dBm 2.#027400 GHz
-20 dBm	Т71	The second second
-30 dBm		
-40 dBm		
-50 dBm	M	
-60 dBm	many with the second	
-70 dBm		
-80 dBm		
-90 dBm		F1
Start 2.39 GHz	501 pts	Stop 2.405 GHz

Date: 18.JUL.2013 12:08:58

Plot: Band Edge Conducted Emission, Spectral Diagram, 2403 MHz

Plot showing more than 20 dB band edge attenuation. F1 shows the band edge frequency of 2400 MHz.

Spectrun Ref Leve	n I 0.60 dBm 10 dB	Offset ().60 dB 👄 RE	3W 100 kHz	Modo Aut			
1Pk View	10 48	3991	19 h2 🕋 AD	344 300 KH2	MOUE AU	.0 FF I	 	
10 dBm	MI				D2	[1] [1]	2.4	-42.05 dB 4.1440 MHz -11.13 dBm 797600 GHz
20 dBm		$\nabla \Lambda$	_					
30 dBm		ľ V						
40 dBm—			$\frac{1}{\sqrt{2}}$	~				
50 dBm—								
50 dBm							 	
70 UBIII								
90 dBm								
				F1				
	8 GHz			501	pts		Sto	2.49 GHz
tart 2.47								
te: 18.JT ot: Band ot showing shows t	Edge Conng more the band e	2:14:01 Inducted E Inan 20 dB Indge frequ	mission, Sp band edge Jency of 24	bectral Dia attenuatio 83,5 MHz.	gram, 2480 on.	MHz.		
te: 18.J	Edge Conng more th	2:14:01 Inducted E Inan 20 dB Indge frequ	mission, Sp band edge Jency of 24	bectral Dia attenuatio 83,5 MHz.	gram, 2480 on.	MHz.		
te: 18.J	Edge Con ng more th the band e	2:14:01 Inducted E Inan 20 dB Indge frequ	mission, Sp band edge Jency of 24	bectral Dia attenuatio 83,5 MHz.	gram, 2480 on.	MHz.		
te: 18.J	Edge Con ng more th the band e	2:14:01 nducted E nan 20 dB edge frequ	mission, Sp band edge lency of 24	bectral Dia attenuatio 83,5 MHz.	gram, 2480 on.	MHz.		
te: 18.Ju ot: Band ot shows shows	Edge Con ng more th the band e	2:14:01 nducted E nan 20 dB edge frequ	mission, Sp band edge lency of 24	bectral Dia attenuatio 83,5 MHz.	gram, 2480 on.	MHz.		

Test Report No.:	13053102.fcc01	Page 25 of 35
5.1.5 Radiated Spur	ious Emissions of Transmi	tter
RESULT: PASS		
	2012 07 10 and (2012 07 02
Date of testing.	2013-07-19 and 2	2013-07-23
Frequency range:	30MHz - 25GHz	
Requirements:		
FCC 15.209 and FCC 15.24	47(d) and RSS-Gen	
Radiated emissions which f bands shall either meet the below the power level in the the desired power (the less	all outside the operation frequency b limit specified in FCC 15.209(a) or b 100kHz bandwidth within the band severe limit applies).	and and outside restricted e attenuated at least 20dB that contains the highest level of
Test procedure:		
ANSI C63.10:2009		
The EUT was placed on a r measurements of radiated emission spectrum profile. and the EUT orientation (X, amplitudes were attained.	nonconductive turntable 0.8m above emissions were performed, the EUT The physical arrangement of the test , Y, Z) were varied in order to ensure	the ground plane. Before final was scanned to determine its system, the associated cabling that maximum emission
The spectrum was examine transmitter frequency (25G) distance.	ed from 30MHz to the 10th harmonic Hz). Final radiated emission measure	of the highest fundamental ements were made at 3m
At each frequency where a antenna was raised and low level. Measurements were	spurious emission was found, the EU vered from 1 to 4m in order to determ taken using both horizontal and vertic	JT was rotated 360° and the nine the emission's maximum cal antenna polarizations.
The highest emission ampli Field strength values of rad 20 dB below the applicable	itudes relative to the appropriate limit liated emissions at frequencies not lis limit.	were recorded in this report. Sted in the tables are more than
Correction factors are incor Refer to section 4.2 for the Correction factors includes:	porated in the spectrum analyzers as power settings and modes. antenna factor, cable loss and pre-a	s an automated function. amplifier gain.

sured peak level verage value. RF On time / Repet	s are corrected	with a Duty Cycle
RF On time / Repet		
RF On time / Repet		
	ition rate)	
ide the RF On time	and Repetition rate	e data.
		_
/ 1 MHz		
V 3 MHz		
1		
D2	[1] .[1]	-2.00 dB 191.000 μs 57.29 dBμV
		0.000000000 s
Annahren	mummum	mound
501 nts		50.0 us/
Meas	suring	19.07.2013
	de the RF On time	de the RF On time and Repetition rate

D2 M1	[1] [1]	mmm	1 5 0	-0.07 dB 10.0000 ms 58.17 dBµV .0000000 s
D2 M1	[1] [1] undurniji	unndh	1 5 0	-0.07 dB 10.0000 ms 58.17 dBµV .0000000 s
D2 M1	[1] [1]	mmdm	1 S O	-0.07 dB 10.0000 ms 58.17 dBµV 0000000 s
D2 	[1] [1] 	unndm	1 8 0	-0.07 dB 10.0000 ms 58.17 dBµV .0000000 s
M1	[1] undurright	mmm	1 5 0	L0.0000 ms 58.17 dBµV .0000000 s
nh.h.h.	huhhnijk	unndm	Munight	the way was a start of the star
	S Meas	S Measuring	S Measuring	S Measuring

Plot: Repetition Rate is 10.00 ms as measured on a spectrum analyzer.

Date: 19.JUL.2013 11:54:09

13053102.fcc01

Page 28 of 35

Radiated Emission, Quasi Peak Data, 30MHz - 1GHz, Horizontal and Vertical Antenna Orientations

Freq. [MHz]	Antenna Orientation	Level QP [dBµV/m]	Limit [dBµV/m]	Margin [dB]
48.000 (harmonic of the 16.000 MHz crystal osc.)	Horizontal	27.8	40.0	12.2
115.36	Vertical	29.8	43.5	13.7
183.26	Horizontal	23.9	43.5	19.6
206.54	Vertical	25.6	43.5	17.9
346.22	Vertical	35.1	46.0	10.9
528.58	Horizontal	35.7	46.0	10.3
534.40	Vertical	35.9	46.0	10.1

Note: - Level QP = Reading QP + Factor

Tested in modes as described in section 4.2, highest values noted.
 Preliminary measurements indicated that the radiated emissions from EUT were not affected by the EUT's operating frequency.

- Quasi Peak detector used with a bandwidth of 120 kHz

13053102.fcc01

Page 29 of 35

Radiated Emission, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, 2403 MHz, Peak values.

Frequency [MHz]	Antenna Orientation	Detector	Bandwidth (MHz)	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1930.2	Vertical	Pk	1	49.0	74	-25.0
1997.7	Vertical	Pk	1	54.6	74	-19.4
3193.0	Vertical	Pk	1	44.4	74	-29.6
3602.0	Vertical	Pk	1	47.7	74	-26.3
3997.0	Vertical	Pk	1	47.5	74	-26.5
4806.0 (harmonic)	Vertical	Pk	1	65.4	74	-8.6
9608.8 (harmonic)	Vertical	Pk	1	53.8	74	-20.2

Radiated Emission, 1 - 25GHz, 2403 MHz, calculated Average values.

Frequency [MHz]	Level [dBµV/m]	Detector	Duty Cycle Correction factor (dB)	Calculated Av Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1930.2	49.0	Pk	-34.2	14.8	54	-39.2
1997.7	54.6	Pk	-34.2	20.4	54	-33.6
3193.0	44.4	Pk	-34.2	10.2	54	-43.8
3602.0	47.7	Pk	-34.2	13.5	54	-40.5
3997.0	47.5	Pk	-34.2	13.3	54	-40.7
4806.0 (harmonic)	65.4	Pk	-34.2	31.2	54	-22.8
9608.8 (harmonic)	53.8	Pk	-34.2	19.6	54	-34.4

13053102.fcc01

Page 30 of 35

Radiated Emission, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, 2442 MHz, Peak values.

Frequency [MHz]	Antenna Orientation	Detector	Bandwidth (MHz)	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1448.5	Horizontal	Pk	1	46.0	74	-8.0
1660.9	Vertical	Pk	1	48.7	74	-25.3
1996.2	Vertical	Pk	1	55.7	74	-18.3
2194.6	Vertical	Pk	1	49.4	74	-24.6
4884.0 (harmonic)	Vertical	Pk	1	60.9	74	-13.1
7007.0	Vertical	Pk	1	53.1	74	-20.9
8777.1		Pk	1	45.7	74	-28.3

Radiated Emission, 1 - 25GHz, 2442 MHz, calculated Average values.

Frequency [MHz]	Level [dBµV/m]	Detector	Duty Cycle Correction factor (dB)	Calculated Av Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1448.5	46.0	Pk	-34.2	11.8	54	-42.2
1660.9	48.7	Pk	-34.2	14.5	54	-39.5
1996.2	55.7	Pk	-34.2	21.5	54	-32.5
2194.6	49.4	Pk	-34.2	15.2	54	-38.8
4884.0 (harmonic)	60.9	Pk	-34.2	26.7	54	-27.3
7007.0	53.1	Pk	-34.2	18.9	54	-35.1
8777.1	45.7	Pk	-34.2	11.5	54	-42.5

13053102.fcc01

Page 31 of 35

Radiated Emission, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, 2480 MHz, Peak values.

Frequency [MHz]	Antenna Orientation	Detector	Bandwidth (MHz)	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1439.8	Horizontal	Pk	1	47.2	74	-26.8
1660.4	Horizontal	Pk	1	47.3	74	-26.7
1805.7	Vertical	Pk	1	57.8	74	-16.2
1904.3	Vertical	Pk	1	58.8	74	-15.2
1995.1	Vertical	Pk	1	58.8	74	-15.2
2200.1	Vertical	Pk	1	47.0	74	27.0
3594.0	Vertical	Pk	1	49.9	74	-24.1
4382.0	Vertical	Pk	1	48.3	74	-25.7
4960 (harmonic)	Vertical	Pk	1	63.4	74	-10.6
9920.2 (harmonic)	Vertical	Pk	1	46.6	74	-27.4

Radiated Emission, 1 - 25GHz, 2480 MHz, calculated Average values.

Frequency [MHz]	Level [dBµV/m]	Detector	Duty Cycle Correction factor (dB)	Calculated Av Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1439.8	47.2	Pk	-34.2	13.0	54	-41.0
1660.4	47.3	Pk	-34.2	13.1	54	-40.9
1805.7	57.8	Pk	-34.2	23.6	54	-30.4
1904.3	58.8	Pk	-34.2	24.6	54	-29.4
1995.1	58.8	Pk	-34.2	24.6	54	-29.4
2200.1	47.0	Pk	-34.2	12.8	54	-41.2
3594.0	49.9	Pk	-34.2	15.7	54	-38.3
4382.0	48.3	Pk	-34.2	14.1	54	-39.9
4960 (harmonic)	63.4	Pk	-34.2	29.2	54	-24.8
9920.2 (harmonic)	46.6	Pk	-34.2	12.4	54	-41.6

Test Report No.:	13053102.fcc01	Page 32 of 35
5.1.6 Radiated Spu	rious Emissions of Transmit	ter in restricted bands
RESULT: PASS		
Date of testing:	2013-07-19 and 2	2013-07-23
Frequency range:	30 MHz to 25 GH	Z
Requirements:		
FCC 15.205, FCC 15.209	and FCC 15.247(d) and RSS-Gen	
Radiated emissions which with the radiated emission	n fall in the restricted bands, as defined n limits specified in FCC 15.209(a).	in FCC 15.205(a), must comply
Test procedure:		
ANSI C63.10-2009. The EUT was placed on a measurements of radiated emission spectrum profile and the EUT orientation (amplitudes were attained.	a nonconductive turntable 0.8m above t d emissions were performed, the EUT v . The physical arrangement of the test X, Y, Z) were varied in order to ensure	he ground plane. Before final was scanned to determine its system, the associated cabling that maximum emission
The spectrum was examin were made at 3m distance	ned from 30 MHz to 25 GHz. Final radia e.	ated emission measurements
At each frequency where antenna was raised and lo level. Measurements were	a spurious emission was found, the EL owered from 1 to 4m in order to determ e taken using both horizontal and vertic	JT was rotated 360° and the ine the emission's maximum antenna polarizations.
The highest emission amp Field strength values of ra 20 dB below the applicable	plitudes relative to the appropriate limit adiated emissions at frequencies not lis le limit.	were recorded in this report. ted in the tables are more than
Correction factors are inco Refer to section 4.2 for the Correction factors include	orporated in the spectrum analyzers as e power settings and modes. s: antenna factor, cable loss and pre-a	an automated function. mplifier gain.
Where applicable measur calculate the Average val	red peak levels are corrected with a Durue.	ty Cycle Correction Factor to

13053102.fcc01

Page 33 of 35

Radiated Emission in restricted bands, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, 2403 MHz, Peak values.

Frequency [MHz]	Antenna Orientation	Detector	Bandwidth (MHz)	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1201.1	Vertical	Pk	1	47.9	Av=54 / Pk=74	-6.1
1930.2	Vertical	Pk	1	49.0	Av=54 / Pk=74	-5.0
1997.7	Vertical	Pk	1	53.6	Av=54 / Pk=74	-0.4
2202.0	Vertical	Pk	1	50.0	Av=54 / Pk=74	-4.0
2389.6	Vertical	Pk	1	53.0	Av=54 / Pk=74	-1.0
2485.4	Vertical	Pk	1	45.7	Av=54 / Pk=74	8.3

Note: - Peak (Pk) levels already within Average (Av) limts, therefor Av not tested.

Margin is compared to Av limit.

Radiated Emission in restricted bands, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, 2442 MHz, Peak values.

Frequency [MHz]	Antenna Orientation	Detector	Bandwidth (MHz)	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1222.2	Horizontal	Pk	1	47.8	Av=54 / Pk=74	-6.2
2200.1	Vertical	Pk	1	46.4	Av=54 / Pk=74	-7.6
2389.3	Vertical	Pk	1	46.8	Av=54 / Pk=74	-7.2
2499.9	Vertical	Pk	1	48.2	Av=54 / Pk=74	-5.8

Note: - Peak (Pk) levels already within Average (Av) limts, therefor Av not tested.

⁻ Margin is compared to Av limit.

13053102.fcc01

Page 34 of 35

Radiated Emission in restricted bands, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, 2480 MHz, Peak values.

Frequency [MHz]	Antenna Orientation	Detector	Bandwidth (MHz)	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1022.1	Vertical	Pk	1	56.1	74	17.9
1068.8	Vertical	Pk	1	54.1	74	19.9
1144.0	Vertical	Pk	1	56.6	74	17.4
1175.1	Vertical	Pk	1	53.1	74	20.9
1317.9	Vertical	Pk	1	55.6	74	18.4
1336.0	Vertical	Pk	1	57.2	74	16.8
1351.6	Vertical	Pk	1	65.1	74	8.9
1356.8	Vertical	Pk	1	54.3	74	19.7
1411.3	Vertical	Pk	1	55.3	74	18.7
1566.6	Vertical	Pk	1	56.9	74	17.1
1665.6	Vertical	Pk	1	56.5	74	17.5
2293.5	Vertical	Pk	1	60.4	74	13.6
2483.6	Vertical	Pk	1	70.6	74	3.4

Radiated Emission in restricted bands, 1 - 25GHz, 2480 MHz, calculated Average values.

Frequency [MHz]	Level [dBµV/m]	Detector	Duty Cycle Correction factor (dB)	Calculated Av Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1022.1	56.1	Pk	-34.2	21.9	54	32.1
1068.8	54.1	Pk	-34.2	19.9	54	34.1
1144.0	56.6	Pk	-34.2	22.4	54	31.6
1175.1	53.1	Pk	-34.2	18.9	54	35.1
1317.9	55.6	Pk	-34.2	21.4	54	32.6
1336.0	57.2	Pk	-34.2	23.0	54	31.0
1351.6	65.1	Pk	-34.2	30.9	54	23.1
1356.8	54.3	Pk	-34.2	20.1	54	33.9
1411.3	55.3	Pk	-34.2	21.1	54	32.9
1566.6	56.9	Pk	-34.2	22.7	54	31.3
1665.6	56.5	Pk	-34.2	22.3	54	31.7
2293.5	60.4	Pk	-34.2	26.2	54	27.8
2483.6	70.6	Pk	-34.2	36.4	54	17.6

Note: calculated average values are obtained by substrancting the Peak level with the Duty cycle factor. Duty cycle factor details are provided on page 26.

13053102.fcc01

Page 35 of 35

5.2 AC Power Line Conducted Measurements

5.2.1 AC Power Line Conducted Emission of Transmitter

AC power line conducted emissions are included in the Part 15B/ICES-003 testreport. Refer to documentnumber 13b_2AAMI-T2028_Testreport_FCC-15B-ICES003.

End of report