

	TEST REPOR	RT		
FCC ID:	2AAMA-NK840			
Test Report No::	TCT220621E004	(0)		
Date of issue::	Jul. 12, 2022			
Testing laboratory:	SHENZHEN TONGCE TESTIN	IG LAB	\	
Testing location/ address:	2101 & 2201, Zhenchang Facto Subdistrict, Bao'an District, She People's Republic of China			
Applicant's name::	Shenzhen Newidea Technolog	y Co., Limited		
Address:	Blg 31, Cuigang Industrial Zone Bao'an District, Shenzhen, Chir		yong Town,	
Manufacturer's name:	Shenzhen Newidea Technolog	y Co., Limited		
Address:	Blg 31, Cuigang Industrial Zone 5, Huaide Road, Fuyong Town, Bao'an District, Shenzhen, China			
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.249 ANSI C63.10:2013			
Product Name::	2.4G wireless keyboard+Blueto	ooth		
Trade Mark:	N/A		\	
Model/Type reference:	NK840, K201/K201M)	
Rating(s)::	Rechargeable Li-ion Battery DO	C 3.7V		
Date of receipt of test item	Jun. 21, 2022			
Date (s) of performance of test:	Jun. 21, 2022 - Jul. 12, 2022			
Tested by (+signature):	Brews XU	forens store		
Check by (+signature):	Beryl ZHAO	Boyl TCT	SUITS	
Approved by (+signature):	Tomsin	loms of	3	

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

	eneral Pro							
	. EUT desci							
	. Model(s) l							
1.3	. Operation	Frequenc	y		(cí)			4
2. Te	st Result	Summary	y					5
3. Ge	eneral Info	rmation.						6
3.1	. Test Envir	onment ar	nd Mode			(6)		6
3.2	. Descriptio	n of Supp	ort Units					6
4. Fa	cilities an	d Accred	litations					7
4.1	. Facilities .		(0)		(0)		$\langle C_{i} \rangle$	7
4.2	. Location .							7
4.3	. Measurem	ent Uncer	tainty					7
5. Te	st Results	and Mea	asureme	nt Data				8
5.1	. Antenna R	Requireme	nt					8
	. Conducte							
5.3	. Radiated I	Emission I	Measurem	ent				13
5.4	. 20dB Occ	upied Ban	dwidth					25
Apper	ndix A: Ph	otograph	s of Tes	t Setup				
Apper	ndix B: Ph	otograph	s of EU1	Г				

General Product Information

1.1. EUT description

Product Name:	2.4G wireless keyboard+Bluetooth		
Model/Type reference:	NK840		
Sample Number:	TCT220621E003-0101		
Operation Frequency:	2408MHz ~ 2474MHz		
Number of Channel:	34		
Modulation Technology:	GFSK	ST)	
Antenna Type:	PCB Antenna		
Antenna Gain:	0.11dBi		
Rating(s):	Rechargeable Li-ion Battery DC 3.7	V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1 (NK840	
Other models	K201/K201M	

Note: NK840 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of NK840 can represent the remaining models.

Report No.: TCT220621E004

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
_ 1	2408MHz	10	2426MHz	19	2444MHz	28	2462MHz
2	2410MHz	11	2428MHz	20	2446MHz	29	2464MHz
3	2412MHz	12	2430MHz	21	2448MHz	30	2466MHz
4	2414MHz	13	2432MHz	22	2450MHz	31	2468MHz
5	2416MHz	14	2434MHz	23	2452MHz	32	2470MHz
6	2418MHz	15	2436MHz	24	2454MHz	33	2472MHz
7	2420MHz	16	2438MHz	25	2456MHz	34	2474MHz
8	2422MHz	17	2440MHz	26	2458MHz		
9	2424MHz	18	2442MHz	27	2460MHz		KC

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2408MHz
The Middle channel	2440MHz
The Highest channel	2474MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§15.249 (a) (d)/ §15.209	PASS
Band Edge	§15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	25.3 °C	25.5 °C			
Humidity:	56 % RH	54 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Mode:					
Engineering mode:	ering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery				

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	JD

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 6 of 28

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2.Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

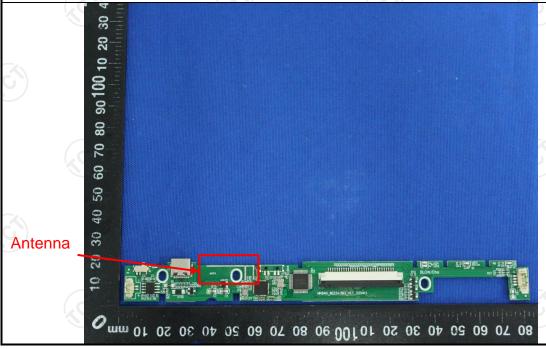
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT220621E004

5. Test Results and Measurement Data

5.1. Antenna Requirement

Standard requirement:


FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 0.11dBi.

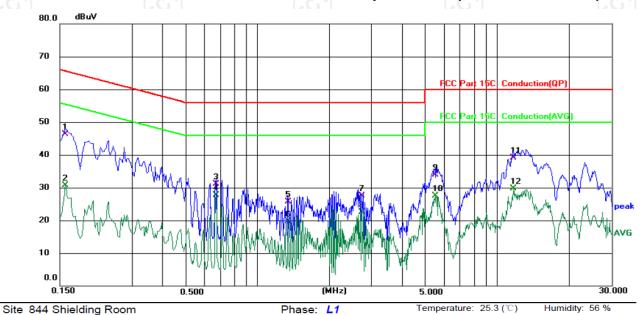
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	160	
Test Method:	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
	Frequency range	Limit (c	dBuV)	
	(MHz)	Quasi-peak	Average	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	Refere	nce Plane		
Test Setup:	AUX Equipment E.U.T Filter A Emil Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Mode:	Charging + Transmittin	g Mode		
Test Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the magnetic power through a Lit coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2013 or conducted interface. 	e impedance stabovides a 50ohm leasuring equipmed es are also connects. With 50ohm term diagram of the line are checked ince. In order to first positions of equipmed in the line are changed in the line are checked in the l	ilization network /50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and d for maximum of the maximum ipment and all of ed according to	
Test Result:	PASS			

5.2.2. Test Instruments

Cond	lucted Emission	Shielding R	oom Test Site (8	43)		
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jul. 04, 2023		
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023		
Line-5	TCT	CE-05	N/A	Jul. 04, 2023		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		



5.2.3. Test data

Report No.: TCT220621E004

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1580	35.73	10.57	46.30	65.57	-19.27	QP	
2		0.1580	20.10	10.57	30.67	55.57	-24.90	AVG	
3		0.6740	20.96	10.14	31.10	56.00	-24.90	QP	
4	*	0.6740	17.56	10.14	27.70	46.00	-18.30	AVG	
5		1.3460	15.51	10.12	25.63	56.00	-30.37	QP	
6		1.3460	9.56	10.12	19.68	46.00	-26.32	AVG	
7		2.7300	17.40	10.08	27.48	56.00	-28.52	QP	
8		2.7300	12.46	10.08	22.54	46.00	-23.46	AVG	
9		5.5380	23.65	10.20	33.85	60.00	-26.15	QP	
10		5.5380	17.31	10.20	27.51	50.00	-22.49	AVG	
11		11.6980	28.92	10.27	39.19	60.00	-20.81	QP	
12		11.6980	19.44	10.27	29.71	50.00	-20.29	AVG	

Note:

Freq. = Emission frequency in MHz

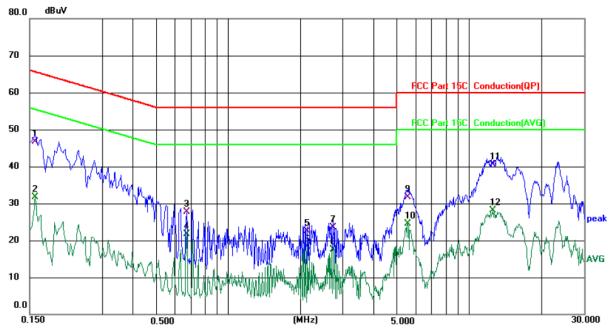
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N Temperature: 25.3 (°C) Humidity: 56 %

Limit: FCC Part 15C Conduction(QP) Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1580	36.25	10.49	46.74	65.57	-18.83	QP	
2		0.1580	21.21	10.49	31.70	55.57	-23.87	AVG	
3		0.6740	17.50	10.14	27.64	56.00	-28.36	QP	
4		0.6740	11.50	10.14	21.64	46.00	-24.36	AVG	
5		2.1379	12.37	10.17	22.54	56.00	-33.46	QP	
6		2.1379	8.04	10.17	18.21	46.00	-27.79	AVG	
7		2.7300	13.41	10.18	23.59	56.00	-32.41	QP	
8		2.7300	7.36	10.18	17.54	46.00	-28.46	AVG	
9		5.5780	21.52	10.23	31.75	60.00	-28.25	QP	
10		5.5780	14.21	10.23	24.44	50.00	-25.56	AVG	
11		12.5500	30.07	10.40	40.47	60.00	-19.53	QP	
12		12.5500	17.76	10.40	28.16	50.00	-21.84	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

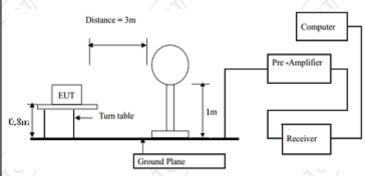
 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

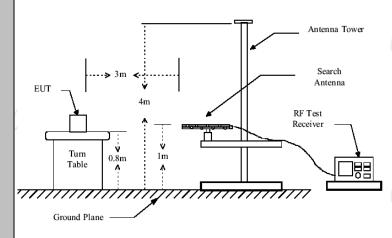
AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

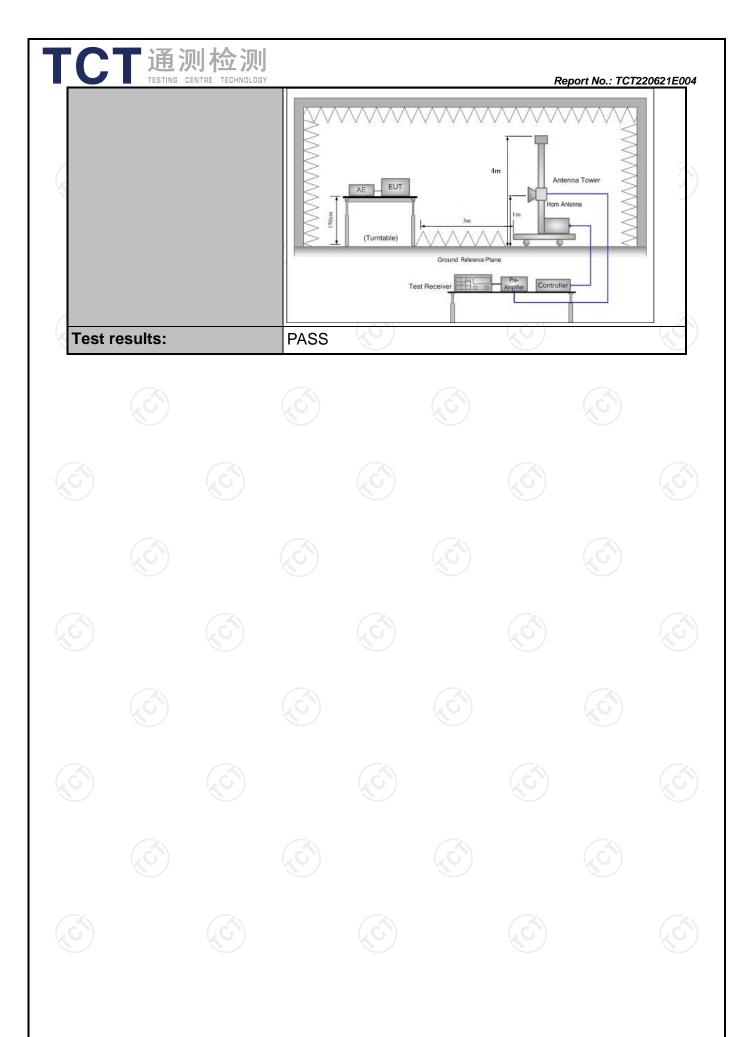
5.3. Radiated Emission Measurement


5.3.1. Test Specification

Test Requirement:	FCC Part15	C Section	า 15.209	(C_{i})	KQ
Test Method:	ANSI C63.1				
Frequency Range:	9 kHz to 25				
. , ,	-6')		(C)		(Q)
Measurement Distance:	3 m				
Antenna Polarization:	Horizontal 8	& Vertical			
	Frequency	Detector	RBW	VBW	Remark
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		Peak	1MHz	10Hz	Average Value
Limit(Field strength of the	Freque	ency	Limit (dBu\	V/m @3m)	Remark
•		-K\	94.		Average Value
fundamental signal):	2400MHz-24	483.5MHZ	114	.00	Peak Value
	_		1: :(/ID.)	<i>"</i> 80)	D 1
	Freque		Limit (dBu\		Remark
	0.009-0		2400/F(KHz) 24000/F(KHz)		Quasi-peak Value
	0.490-1 1.705		24000/		Quasi-peak Value
	30MHz-8		40		Quasi-peak Value Quasi-peak Value
Limit(Spurious Emissions):	88MHz-2		43		Quasi-peak Value
	216MHz-9	1	46		Quasi-peak Value
	960MHz		54		Quasi-peak Value
			54		Average Value
	Above '	1GHz	74		Peak Value
Limit (band edge) :	bands, excelleast 50 dB	ept for har below the diated em	monics, s level of this	shall be a the funda nits in	cified frequency attenuated by at mental or to the Section 15.209,
Test Procedure:	meters a below 1 1GHz. determing 2. The Element on the to 3. The anteres a value of vertical personners and the total personners are personners and the total personners are personners and the total personners and the total personners are personners and the total personners and the total personners are personners and the total personners and the total personners are personners and the total personners and the total personners are personners and the personners are personners and the personners are personners	above the IGHz, 1.5 The table he the pose UT was ence-received por a varena height above the field above the second control of t	ground a im above was ro ition of the set 3 r ving anter iable-heig t is varied ground to d strengt ns of the	at a 3 me the greated 3 e highest anters anna, which ght anten determine th. Both	eter chamber in round in above 60 degrees to radiation. away from the ch was mounted na tower. The meter to four he the maximum horizontal and are set to make


- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz


30MHz to 1GHz

Test setup:

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

5.3.2. Test Instruments

	Radiated En	nission Test Site	e (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESIB7	100197	Jul. 04, 2023	
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 04, 2023	
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023	
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023	
Pre-amplifier	HP	8447D	2727A05017	Jul. 04, 2023	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023	
Antenna Mast	Keleto	RE-AM	N/A	N/A	
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023	
Coaxial cable	SKET	RC-DC18G-N	N/A_	Feb. 24, 2023	
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 04, 2023	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

5.3.3. Test Data

Field Strength of Fundamental

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2408	97.29	Н	114	-16.71
2408	89.56	V	114	-24.44
2440	97.17	н	114	-16.83
2440	89.11	V	114	-24.89
2474	96.40	H	114	-17.60
2474	88.96	V	114	-25.04

Frequency (MHz)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2408	89.13	Н	94	-4.87
2408	81.32	V	94	-12.68
2440	88.35	Н	94	-5.65
2440	80.87	V	94	-13.13
2474	87.62	Н	94	-6.38
2474	80.07	V	94	-13.93

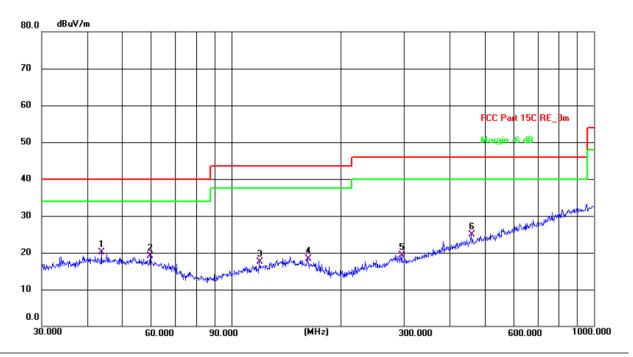
Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)		
	(A)			
(C)	(80)	-120)		
		-		

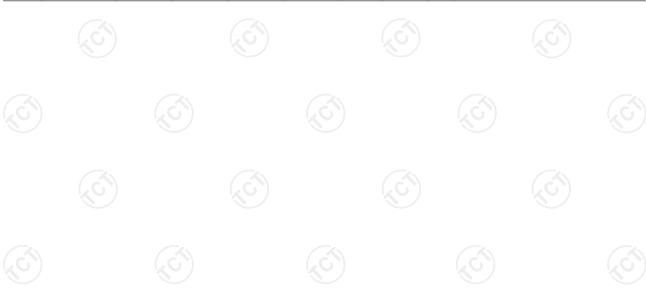
Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

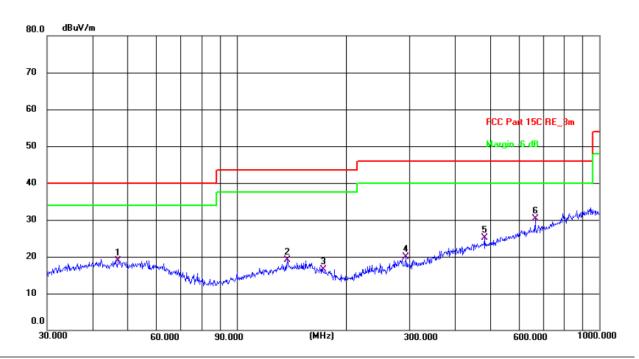
- 2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.
- 3. For fundamental frequency, RBW >20dB BW, VBW>=RBW, PK detector is for PK value, RMS detector is for AV value.


Page 17 of 28

Frequency Range (30MHz-1GHz)

Report No.: TCT220621E004


Horizontal:


Site #2 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.5(C) Humidity: 54 %

Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	43.8119	6.26	13.94	20.20	40.00	-19.80	QP	Р	
2	59.6493	5.94	13.14	19.08	40.00	-20.92	QP	Р	
3	119.4361	5.47	11.94	17.41	43.50	-26.09	QP	Р	
4	162.6106	5.22	13.13	18.35	43.50	-25.15	QP	Р	
5	295.1469	5.47	13.80	19.27	46.00	-26.73	QP	Р	
6	459.1144	6.42	18.51	24.93	46.00	-21.07	QP	Р	

Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 25.5(C) Humidity: 54 %

Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	46.9948	5.01	13.85	18.86	40.00	-21.14	QP	Р	
2	137.9028	5.95	13.11	19.06	43.50	-24.44	QP	Р	
3	172.5988	4.48	12.07	16.55	43.50	-26.95	QP	Р	
4	293.0842	5.99	13.85	19.84	46.00	-26.16	QP	Р	
5	482.2156	6.19	19.01	25.20	46.00	-20.80	QP	Р	
6 *	665.8035	8.05	22.34	30.39	46.00	-15.61	QP	Р	

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (Lowest channel) was submitted only.

Above 1GHz

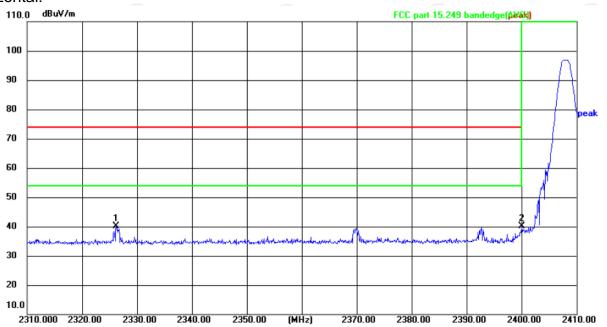
				Above	2 1GHZ				
				Low channe	el: 2408MH	lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4816	Н	48.87		-3.94	44.93		74	54	-9.07
7224	Н	44.22		0.52	44.74		74	54	-9.26
4816	V	49.26		-3.94	45.32		74	54	-8.68
7224	V	44.37	- (.G	0.52	44.89	. C	74	54	-9.11
				/				3.	

Middle channel: 2440MHz											
4	Frequency	Ant Pol	Peak	AV	Correction	Emissic	n Level	Peak limit	Δ\/ limit	Margin	
ď	(MHz)	H/V	reading	reading	Factor	Peak	AV		(dBµV/m)	(dB)	
Ч	(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(αυμ ۷/111)	(αΒμ ۷/ΙΙΙ)	(GD)	
	4880	Η	50.47		-3.98	46.49		74	54	-7.51	
	7320	Τ	45.36	-	0.57	45.93	-	74	54	-8.07	
		-				/			<i></i>		
Ī		(0)		No.			(9)		, Ko		
Ī	4880	V	49.19		-3.98	45.21)	74	54	-8.79	
	7320	V	44.62		0.57	45.19		74	54	-8.81	
						Z		<u></u>			

	High channel: 2474MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4948	Н	48.26	- f .G	-3.98	44.28	·6 ² -	74	54	-9.72	
7422	Н	42.95		0.57	43.52	<u></u>	74	54	-10.48	
4948	V	49.15		-3.98	45.17		74	54	-8.83	
7422	V	43.84		0.57	44.41		74	54	-9.59	

Note:

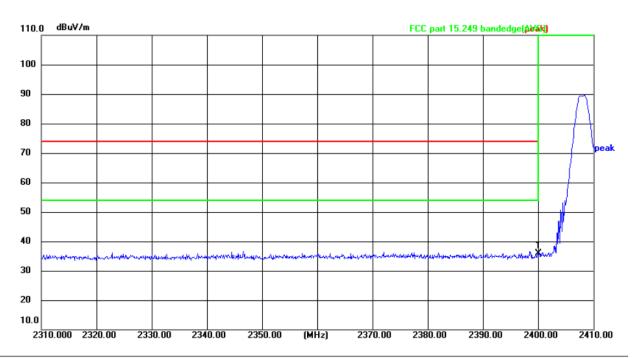
- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.


Report No.: TCT220621E004

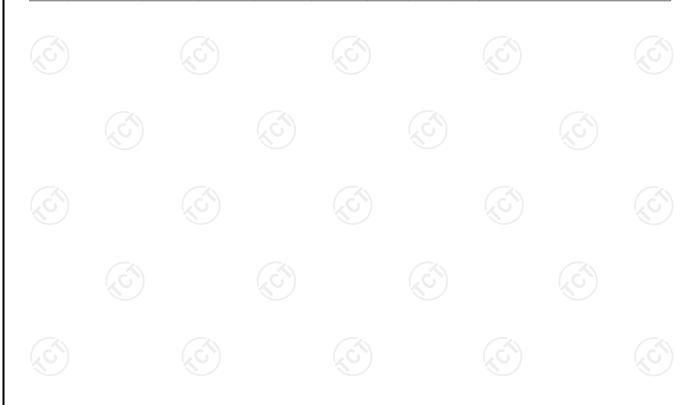
Band Edge Requirement

Lowest channel 2408:

Horizontal:


Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7 V Humidity: 52 %

N	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	1 *	2326.200	56.25	-16.00	40.25	74.00	-33.75	peak	Р	
	2	2400.000	55.96	-15.72	40.24	74.00	-33.76	peak	Р	



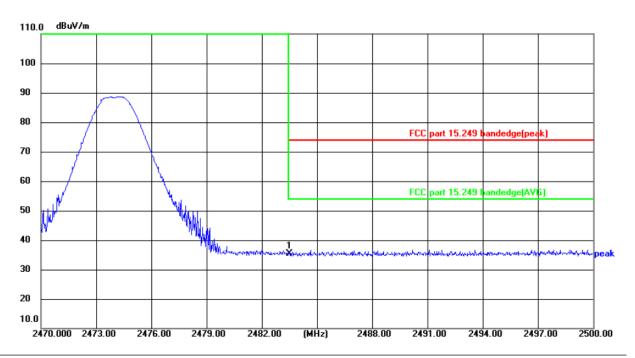
Vertical:

Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7 V Humidity: 52 %

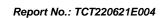

Margin Frequency Reading Factor Level Limit P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) | (dBuV/m) |(dB) 2400.000 -15.72 74.00 1 * 51.59 35.87 -38.13 Ρ peak


Highest channel 2474:

Horizontal:


Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	51.06	-15.41	35.65	74.00	-38.35	peak	Р	
2 *	2488.870	56.51	-15.39	41.12	74.00	-32.88	peak	Р	


Vertical:

Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7 V Humidity: 52 %

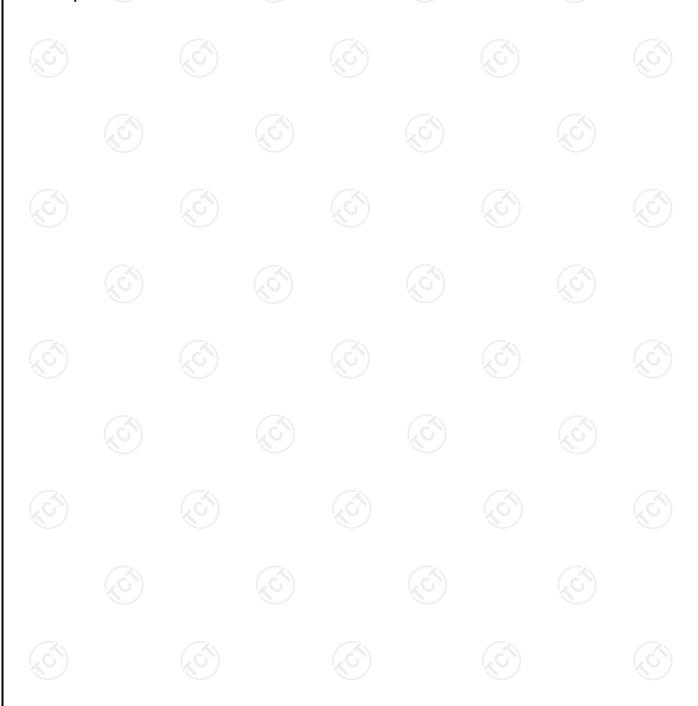
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	50.87	-15.41	35.46	74.00	-38.54	peak	Р	

5.4. 20dB Occupied Bandwidth

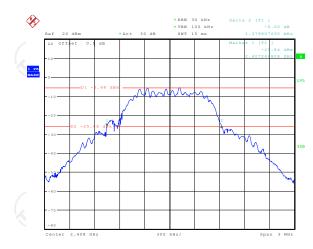
5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	N/A
	 1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test results:	PASS

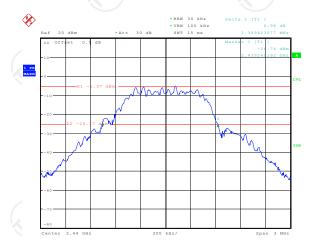
5.4.2. Test Instruments


Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Jul. 18, 2022

5.4.3. Test data


Report No.: TCT220621E004

Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion
Lowest	1379.81	(3)	PASS
Middle	1389.42		PASS
Highest	1418.27		PASS
Test plots as follows:			



Lowest channel

Date: 11.JUL.2022 14:23:02

Middle channel

Highest channel

Date: 11.JUL.2022 14:17:28

Appendix A: Photographs of Test Setup

Refer to the test report No. TCT220621E003

Appendix B: Photographs of EUT

Refer to the test report No. TCT220621E003

*****END OF REPORT****

