PROBE CALIBRATION CERTIFICATES

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: ettl@chinattl.com
 Http://www.chinattl.en

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx, y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.

 DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

 Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97201

Page 2 of 11

E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Probe ET3DV6

SN: 1664

Calibrated: November 17, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z16-97201

Page 3 of 11

DASY/EASY - Parameters of Probe: ET3DV6 - SN: 1664

Basic Calibration Parameters

1.04	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.87	1.89	1.67	±10.8%
DCP(mV) ^B	101.1	101.2	99.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	274.7	±2.1%
		Y	0.0	0.0	1.0		281.1	
		Z	0.0	0.0	1.0	-	250.6	-

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z16-97201

Page 4 of 11

DASY/EASY – Parameters of Probe: ET3DV6 - SN: 1664

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.76	6.76	6.76	0.55	1.80	±12%
835	41.5	0.90	6.33	6.33	6.33	0.60	1.80	+12%
1750	40.1	1.37	5.01	5.01	5.01	0.49	2.56	±12%
1900	40.0	1.40	4.92	4.92	4.92	0.55	2.36	±12%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97201

Page 5 of 11

DASY/EASY - Parameters of Probe: ET3DV6 - SN: 1664

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.45	6.45	6.45	0.80	1.50	±12%
835	55.2	0.97	6.41	6.41	6.41	0.56	1.90	±12%
1750	53.4	1.49	4.77	4.77	4.77	0.58	2.52	±12%
1900	53.3	1.52	4.32	4.32	4.32	0.62	2.55	±12%

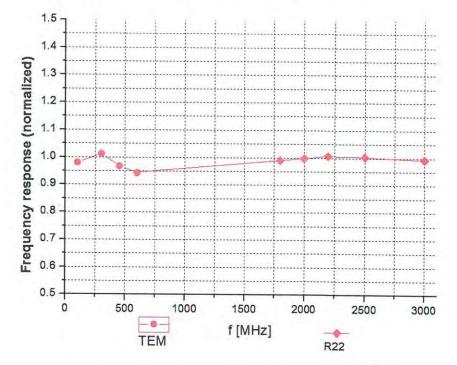
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary

effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97201

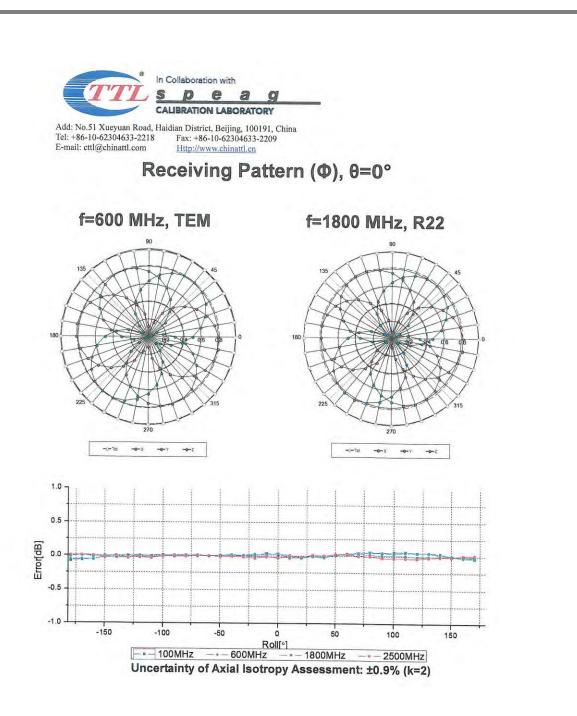
Page 6 of 11



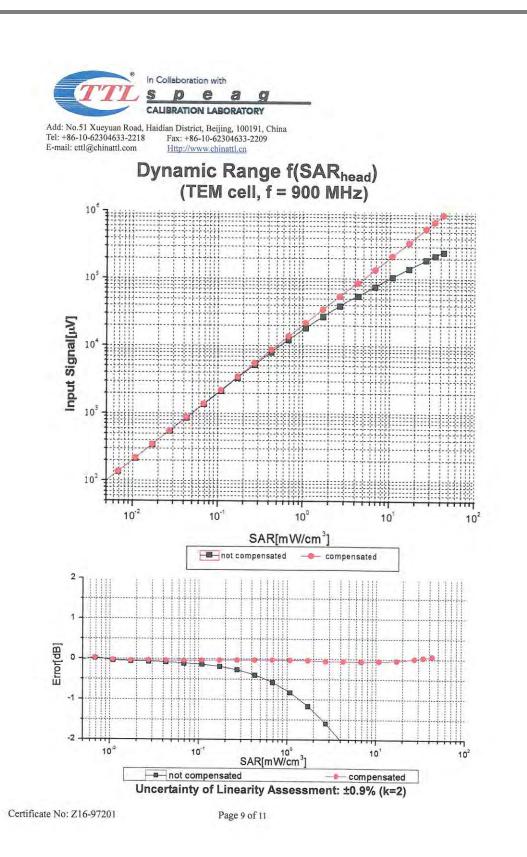
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

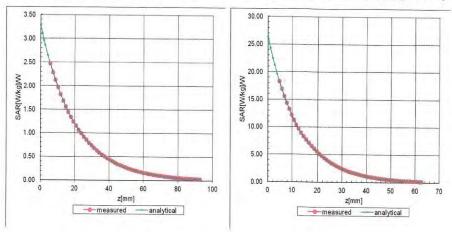
Uncertainty of Frequency Response of E-field: ±7.5% (k=2)


Certificate No: Z16-97201

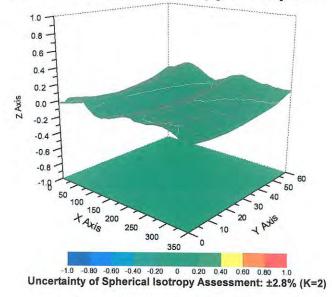
Page 7 of 11

Certificate No: Z16-97201

Page 8 of 11



E-mail: cttl@chinattl.com


Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z16-97201

Page 10 of 11

DASY/EASY - Parameters of Probe: ET3DV6 - SN: 1664

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	6.8mm
Probe Tip to Sensor X Calibration Point	2.7mm
Probe Tip to Sensor Y Calibration Point	2.7mm
Probe Tip to Sensor Z Calibration Point	2.7mm
Recommended Measurement Distance from Surface	4mm

Certificate No: Z16-97201

Page 11 of 11

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

 S
 Schweizerischer Kalibrierdienst

 C
 Service suisse d'étalonnage

 Servizio svizzero di taratura

 S
 Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BACL

Certificate No: DAE4-527_Oct16

the second s			
Dbject	DAE4 - SD 000 D	04 BJ - SN: 527	
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	lure for the data acquisition electro	onics (DAE)
Calibration date:	October 19, 2016		
The measurements and the unce	rtainties with confidence pro	nal standards, which realize the physical units bability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C a	are part of the certificate.
alibration Equipment used (M&	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards	1	Cal Date (Certificate No.) 09-Sep-16 (No:19065)	Scheduled Calibration Sep-17
rimary Standards eithley Multimeter Type 2001	ID #		
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	09-Sep-16 (No:19065) Check Date (in house)	Sep-17
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check)	Sep-17 Scheduled Check In house check: Jan-17
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check)	Sep-17 Scheduled Check In house check: Jan-17 In house check: Jan-17 Signature
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by: Approved by:	ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	09-Sep-16 (No:19065) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check) Function	Sep-17 Scheduled Check In house check: Jan-17 In house check: Jan-17

Certificate No: DAE4-527_Oct16

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-527_Oct16

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV
DASY measurement	parameters: Au	to Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Z
High Range	402.800 ± 0.02% (k=2)	403.076 ± 0.02% (k=2)	403.341 ± 0.02% (k=2)
Low Range	3.93103 ± 1.50% (k=2)	3.93681 ± 1.50% (k=2)	3.93835 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	316.5°±1°

Certificate No: DAE4-527_Oct16

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199994.24	-1.73	-0.00
Channel X	+ Input	20000.60	-0.84	-0.00
Channel X	- Input	-20001.62	-0.70	0.00
Channel Y	+ Input	199995.66	-0.16	-0.00
Channel Y	+ Input	20000.45	-0.98	-0.00
Channel Y	- Input	-20002.19	-1.25	0.01
Channel Z	+ Input	199994.81	-0.92	-0.00
Channel Z	+ Input	20001.05	-0.30	-0.00
Channel Z	- Input	-20002.07	-1.07	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.81	-0.26	-0.01
Channel X + Input	201.70	0.18	0.09
Channel X - Input	-198.38	-0.08	0.04
Channel Y + Input	2001.07	-0.09	-0.00
Channel Y + Input	201.60	0.07	0.03
Channel Y - Input	-198.82	-0.50	0.25
Channel Z + input	2001.44	0.31	0.02
Channel Z + Input	200.17	-1.40	-0.69
Channel Z - Input	-199.98	-1.53	0.77

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	10.45	8.51
	- 200	-7.86	-10.11
Channel Y	200	-3.58	-3.84
	- 200	2.79	2.49
Channel Z	200	1.11	0.78
	- 200	-2.83	-2.83

3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	1	5.40	-1.23
Channel Y	200	8.21	it to an	6.51
Channel Z	200	7.31	6.00	

Certificate No: DAE4-527_Oct16

Page 4 of 5

4. AD-Converter Values with inputs shorted

 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

 High Range (LSB)
 Low Range (LSB)

 Channel X
 16049
 14725

 Channel Y
 16330
 16314

 Channel Z
 15928
 15276

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.34	-0.78	2.18	0.42
Channel Y	-0.38	-1.63	0.47	0.42
Channel Z	-0.71	-2.72	1.26	0.55

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-527_Oct16

Page 5 of 5

DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BACL

Certificate No: D835V2-454_Aug15

Object	D835V2 - SN: 45	4	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abc	ive 700 MHz
Calibration date:	August 17, 2015		
The measurements and the unce All calibrations have been conduc	rtainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an ny facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Calibration Equipment used (M&	re childar for calibration)		
		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
Primary Standards Power meter EPM-442A	ID #		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination	ID # GB37480704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Primary Standards Prower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02013) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Jul-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 654	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 654 ID #	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02013) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 654 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-15 Oct-15 Oct-15 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 654 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 654 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 654 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Oct-15 Oct-15 Oct-15 Mar-16 Dec-15 Jul-16 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D835V2-454_Aug15 Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

s

С

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-454_Aug15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	فنبدؤ الم	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.39 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.55 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.1 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	· · · · · · · · · · · · · · · · · · ·
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.61 W/kg

Certificate No: D835V2-454_Aug15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8 Ω - 2.5 jΩ	-
Return Loss	- 31.6 dB	1

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.1 Ω - 4.5 jΩ
Return Loss	- 25.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.378 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 31, 2002

Certificate No: D835V2-454_Aug15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 17.08.2015

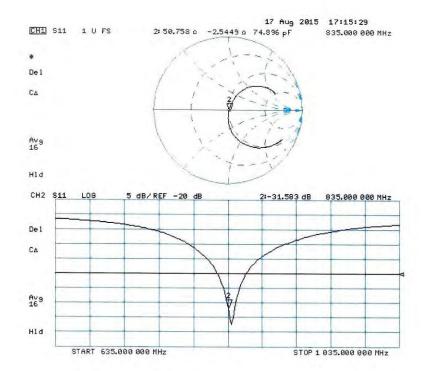
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 454

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ε_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.89 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 2.83 W/kg

Certificate No: D835V2-454_Aug15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-454_Aug15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 17.08.2015

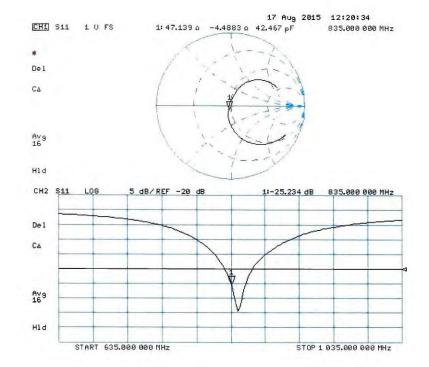
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 454

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 1.02 S/m; ε_r = 56.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.12 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.90 W/kg

Certificate No: D835V2-454_Aug15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-454_Aug15

Page 8 of 8

Calibration Laboratory of	of
Schmid & Partner	
Engineering AG	
Zeughausstrasse 43, 8004 Zurich, S	witzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client	BACL

Certificate No: D1900V2-5d207_Jul15

S

C

S

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibra Power meter EPM-442A GB37480704 07-Oct.14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct.14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct.14 (No. 217-02021) Oct-15 Power sensor HP 8481A MY41092317 07-Oct.14 (No. 217-02131) Mar-16 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check: O RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14)	Object	D1900V2 - SN:50	1207	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)		dure for dipole validation kits abo	ove 700 MHz
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.				
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	July 14, 2015		
Power meter EPM-442A GB37480704 07-Oct.14 (No. 217-02020) Oct.15 Power sensor HP 8481A US37292783 07-Oct.14 (No. 217-02020) Oct.15 Power sensor HP 8481A US37292783 07-Oct.14 (No. 217-02020) Oct.15 Power sensor HP 8481A MY41092317 07-Oct.14 (No. 217-02021) Oct.15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr.15 (No. 217-02131) Mar-16 Reference Probe ES3DV3 SN: 5047.2 / 06327 01-Apr.15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec.14 (No. DAE4-601_Aug14) Aug-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check: O RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house) Signature Calibrated by: Leif Klysner Laboratory Technician Signature	All calibrations have been conduc	cted in the closed laborator		
Power sensor HP 8481A US37292783 07-Oct.14 (No. 217-02020) Oct.15 Power sensor HP 8481A MY41092317 07-Oct.14 (No. 217-02021) Oct.15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr.15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5058 (20k) 01-Apr.15 (No. 217-02131) Mar-16 Reference Probe ES3DV3 SN: 5047.2 / 06327 01-Apr.15 (No. 217-02134) Mar-16 DAE4 SN: 3205 30-Dec.14 (No. ES3-3205_Dec14) Dec-15 SN: 601 18-Aug.14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check: O RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Calibrated by: Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Signature			Cal Date (Certificate No.)	Scheduled Calibration
Power sensor HP 8481A MY41092317 07-Oct.14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Type-N mismatch combination SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 Reference Probe ES3DV3 SN: 3025 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Calibrated by: Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Signature				Oct-15
Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 SN: 5058 (20k) 01-Apr-15 (No. 217-02134) Mar-16 SN: 5057 (20k) 01-Apr-15 (No. 217-02134) Dec-15 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check SR generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Very NA Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Salibrated by: Name Function Signature Salibrated by: Leif Klysner Laboratory Technician Suff Murch		The second s		Oct-15
Type-N mismatch combination SN: 5047.27/06327 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 5047.27/06327 01-Apr-15 (No. 217-02134) Mar-16 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 SAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Calibrated by: Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Scief Might		CORD FLOCATOR AND MALE		Oct-15
Name Function Signature Calibrated by: Name Function Signature	and the second second second.		01-Apr-15 (No. 217-02131)	Mar-16
DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Dec 13 Secondary Standards ID # Check Date (in house) Scheduled Check SF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Velow rk Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Calibrated by: Leif Klysner Laboratory Technician Signature			the second se	
Secondary Standards ID # Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Name Function Signature Calibrated by: Leif Klysner Laboratory Technician				
RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Signature	Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: O Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: O Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Signature	Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Seif Theorem	Reference Probe ES3DV3 DAE4	SN: 3205 SN: 601	30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Dec-15 Aug-15
Calibrated by: Leif Klysner Laboratory Technician Seif Tuly	Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 3205 SN: 601	30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Dec-15 Aug-15
Sef hly	Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 3205 SN: 601	30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Dec-15 Aug-15 Scheduled Check
20	Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 3205 SN: 601 ID # 100005 US37390585 S4206	30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Approved by: Katja Pokovic Technical Manager	Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D1900V2-5d207_Jul15

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

s

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossarv:

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d207_Jul15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ² (10 g) of Head TSL SAR measured	condition 250 mW input power	5.34 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
SAR measured	250 mW input power	10.2 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ² (10 g) of Body TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	5.47 W/kg	

Certificate No: D1900V2-5d207_Jul15

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7 Ω + 5.8 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω + 6.4 jΩ	
Return Loss	- 23.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 21, 2014	

Certificate No: D1900V2-5d207_Jul15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 14.07.2015

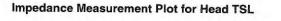
Test Laboratory: SPEAG, Zurich, Switzerland

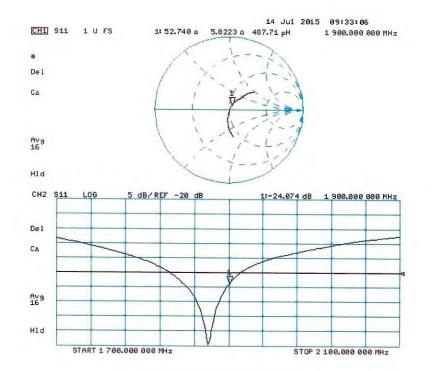
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d207


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 S/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.21 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (measured) = 12.8 W/kg

Certificate No: D1900V2-5d207_Jul15

Page 5 of 8

Certificate No: D1900V2-5d207_Jul15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

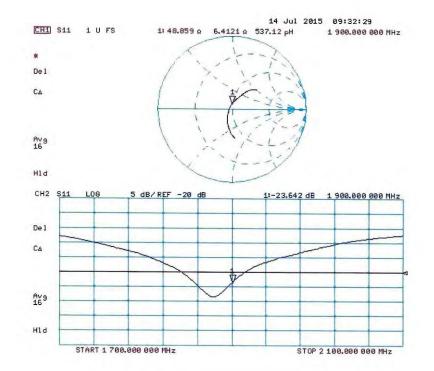
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d207

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.54 S/m; ϵ_r = 52.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 95.84 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.47 W/kg Maximum value of SAR (measured) = 12.9 W/kg

Certificate No: D1900V2-5d207_Jul15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d207_Jul15

Page 8 of 8