

GIObal United Technology Services Co., Ltd.

Report No.: GTS201911000016F01

TEST Report

Applicant:	Everbrilliant Enterprise Limited
Address of Applicant:	ROOM 1701-2, 17/F., ING TOWER, 308 DES VOEUX ROAD CENTRAL, HONG KONG
Manufacturer/Factory :	Everbrilliant Enterprise Limited
Address of Manufacturer/Factory :	ROOM 1701-2, 17/F., ING TOWER, 308 DES VOEUX ROAD CENTRAL, HONG KONG
Equipment Under Test (E	UT)
Product Name:	Supreme Translation Earphone
Model No.:	BTLT200
Trade Mark:	Supreme
Trade Mark: FCC ID:	Supreme 2AAM5- BTLT200
	•
FCC ID:	2AAM5- BTLT200
FCC ID: Applicable standards:	2AAM5- BTLT200 FCC CFR Title 47 Part 15 Subpart C Section 15.247
FCC ID: Applicable standards: Date of sample receipt:	2AAM5- BTLT200 FCC CFR Title 47 Part 15 Subpart C Section 15.247 Oct.10,2019

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Nov.12, 2019	Original

Prepared By:

JosentOu

Date:

Nov.12, 2019

Project Engineer

Check By:

Date: Them Reviewer 1

Nov.12, 2019

TEST Report

Applicant:	Everbrilliant Enterprise Limited
Address of Applicant:	ROOM 1701-2, 17/F., ING TOWER, 308 DES VOEUX ROAD CENTRAL, HONG KONG
Manufacturer/Factory :	Everbrilliant Enterprise Limited
Address of Manufacturer/Factory :	ROOM 1701-2, 17/F., ING TOWER, 308 DES VOEUX ROAD CENTRAL, HONG KONG
Equipment Under Test (El	JT)
Product Name:	Supreme Translation Earphone
Model No.:	BTLT200
Trade Mark:	Supreme
FCC ID:	2AAM5- BTLT200
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Oct.10,2019
Date of Test:	Oct.10,2019-Nov.12, 2019
Date of report issued:	Nov.12, 2019
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	Nov.12, 2019	Original

Prepared By:

Date:

Project Engineer

Check By:

Date:

Reviewer

3 Contents

1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	 5.1 GENERAL DESCRIPTION OF EUT	7 7 7 7 7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	
'	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED PEAK OUTPUT POWER 7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER 7.7 DWELL TIME 7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 7.9 BAND EDGE. 7.9.1 Conducted Emission Method 7.9.2 Radiated Emission Method 7.10 SPURIOUS EMISSION 7.10.1 Conducted Emission Method 7.10.2 Radiated Emission Method	10 11 14 15 19 21 23 28 29 29 33 36 36 42
8	7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED PEAK OUTPUT POWER 7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER 7.7 DWELL TIME 7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 7.9 BAND EDGE 7.9.1 Conducted Emission Method 7.9.2 Radiated Emission Method 7.10 SPURIOUS EMISSION 7.10.1 Conducted Emission Method	10 11 14 15 19 21 23 28 29 29 33 36 36 42

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of §	95%.

5 General Information

5.1 General Description of EUT

Product Name:	Supreme Translation Earphone
Model No.:	BTLT200
Test sample(s) ID:	GTS201911000016F01
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip ANT
Antenna gain:	1.90dBi
Power supply:	DC 3.7V From Adapter and DC 5V From external circuit
Adapter (Auxiliary test suppled by test Lab):	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,2A

Operation	Frequency eacl	h of channe					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
•	the test voltage was tuned from 85% to 115% of the nominal rated supply we worst case was under the nominal rated supply condition. So the report just ta.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

	None.
5.6	Test Facility
	 The test facility is recognized, certified, or accredited by the following organizations: FCC —Registration No.: 381383 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383. IC —Registration No.: 9079A The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A NVLAP (LAB CODE:600179-0) Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0
5.7	Test Location
	All tests were performed at:
	Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

6 Test Instruments list

Rad	iated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020

Con	Conducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020

RF Conducted Test:						
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020
9	Power Sensor	Agilent	E9300A	GTS589	June. 26 2019	June. 25 2020
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 26 2019	June. 25 2020

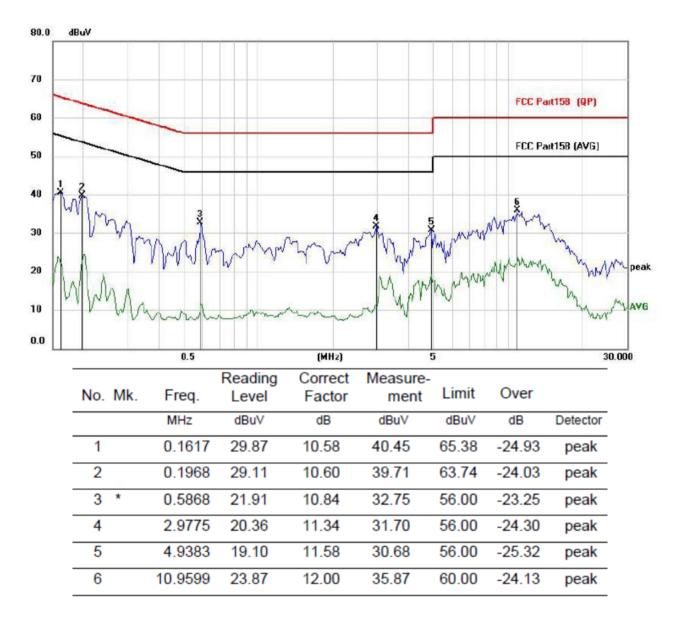
Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020

7 Test results and Measurement Data

7.1 Antenna requirement

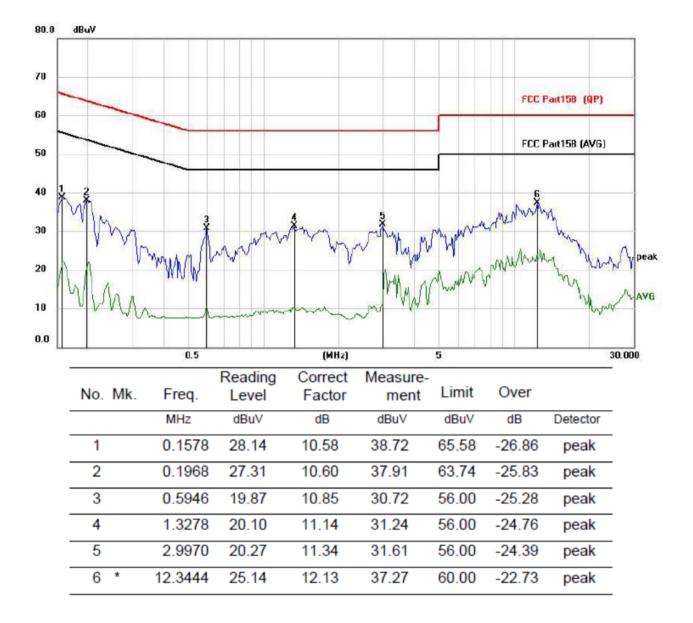
Standard requirement:	FCC Part15 C Section 15.203 /247(c)					
15.203 requirement:	15.203 requirement:					
responsible party shall be us antenna that uses a unique	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.					
15.247(c) (1)(i) requiremen	t:					
operations may employ tran maximum conducted output	(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.					
E.U.T Antenna:	E.U.T Antenna:					
The antenna is Chip antenn details	na, the best case gain of the is 1.90dBi, reference to the appendix II for					

1.2	Conducted Emission	3					
	Test Requirement:	FCC Part1	5 C Section 15	5.207			
	Test Method:	ANSI C63.	10:2013				
	Test Frequency Range:	150KHz to	30MHz				
	Class / Severity:	Class B					
	Receiver setup:	RBW=9KH	z, VBW=30KH	lz, Sweep ti	me=auto		
	Limit:	IT _			Limit	t (dBuV)	
		Frequer	ncy range (MH	z) Q	uasi-peak	· · · · ·	erage
			0.15-0.5		66 to 56*	56 t	o 46*
			0.5-5		56		46
			5-30		60	5	50
		* Decrease	s with the loga	arithm of the	e frequency.		
	Test setup:		Reference	Plane			
		Remark: E.U.T. Equipmer LISN: Line Imped Test table height	e/Insulation plane	EMI Receiv	Filter AC p	oower	through a
	Test procedure:	line imp 50ohm/s	I.T and simulat edance stabiliz 50uH coupling	zation netwo impedance	ork (L.I.S.N.). for the meas	This provide uring equipm	es a nent.
		LISN that terminat photogra 3. Both sid interfere positions	ipheral devices at provides a 5 ion. (Please re aphs). es of A.C. line ence. In order t s of equipment ng to ANSI C63	0ohm/50uH efer to the b are checke o find the m t and all of t	l coupling imp lock diagram d for maximu haximum emis he interface c	m conducted ssion, the related	50ohm etup and d ative pe changed
	Test Instruments:	Refer to se	ction 6.0 for d	etails			
	Test mode:	Refer to se	ction 5.2 for d	etails			
	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
	Test voltage:	AC 120V, 6	50Hz			1	-
	Test results:	Pass					


7.2 Conducted Emissions

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


Line:

Report No.: GTS201911000016F01

Neutral:

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013	
Limit:	30dBm(for GFSK),20.97dBm(for EDR)	
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

7.3 Conducted Peak Output Power

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	-8.199			
GFSK	Middle	-8.166	20.97	Pass	
	Highest	-8.251			
	Lowest	-8.763			
π/4-DQPSK	Middle	-8.756	20.97	Pass	
	Highest	-8.699			
	Lowest	-8.504			
8-DPSK	Middle	-8.579	20.97	Pass	
	Highest	-8.547			

FCC Part15 C Section 15.247 (a)(2) **Test Requirement:** ANSI C63.10:2013 Test Method: Limit: N/A Test setup: Spectrum Analyzer E.U.T C **Non-Conducted** Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	1.037	
GFSK	Middle	1.029	Pass
	Highest	1.048	
	Lowest	1.320	
π/4-DQPSK	Middle	1.312	Pass
	Highest	1.316	
	Lowest	1.291	
8-DPSK	Middle	1.294	Pass
	Highest	1.290	

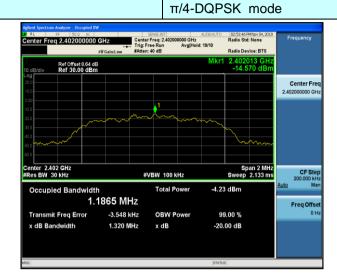
Test plot as follows:

Test mode:

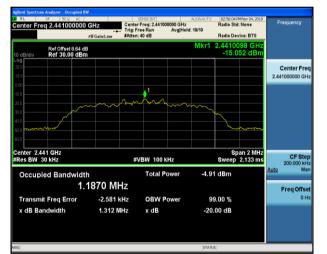

GFSK mode

Lowest channel

Middle channel



Highest channel

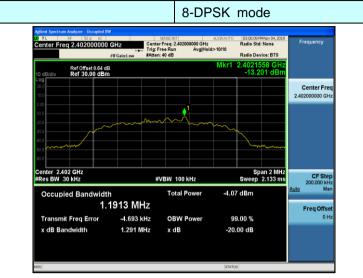


Test mode:


Report No.: GTS201911000016F01

Lowest channel

Middle channel



Highest channel

Test mode:

Report No.: GTS201911000016F01

Lowest channel

Middle channel

Highest channel

• •			
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.5 Frequencies Separation

Measurement Data

Mode	Test channel	Frequencies Separation (kHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.180	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.002	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	0.998	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers Limit		Result
GFSK	79	≥15	Pass
π/4-DQPSK	79		Pass
8-DPSK	79		Pass

Test plot as follows:

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(s)	Limit(ms)	Result
2441MHz	DH1	0.377	0.121	400	Pass
2441MHz	DH3	1.633	0.261	400	Pass
2441MHz	DH5	2.886	0.308	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

π /4-DQPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(s)	Limit(ms)	Result
2441MHz	2DH1	0.384	0.123	400	Pass
2441MHz	2DH3	1.635	0.262	400	Pass
2441MHz	2DH5	2.879	0.307	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 \div 2 \div 79) ×31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5

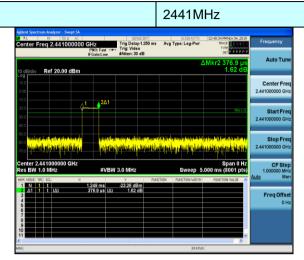
8-DPSK mode:

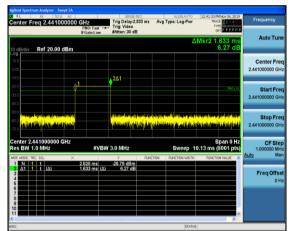
Frequency	Packet	Pulse time (ms)	Dwell time(s)	Limit(ms)	Result
2441MHz	3DH1	0.387	0.124	400	Pass
2441MHz	3DH3	1.633	0.261	400	Pass
2441MHz	3DH5	2.885	0.308	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

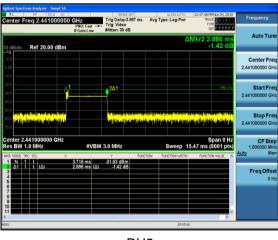
Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) x (1600 ÷ 6 ÷ 79) x31.6 Second for DH5, 2-DH5, 3-DH5


Test plot as follows:

GFSK mode:


Test channel:

DH1

DH3



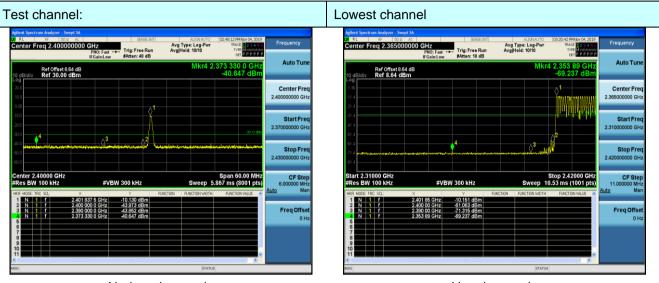
Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

π/4-DQPSK mode:

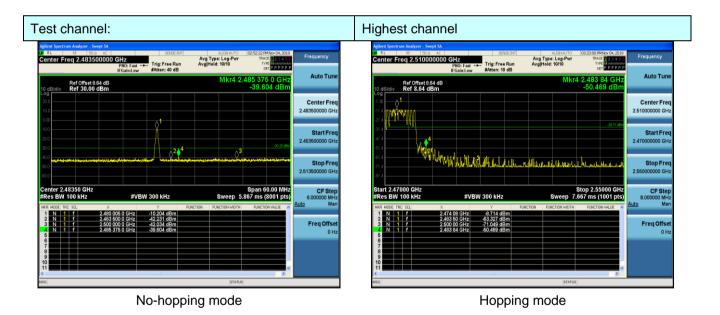
8-DPSK mode:

.8	Pseudorandom Frequency Hopping Sequence							
	Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:							
	a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.							
	Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.							
	(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.							
	(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.							
	EUT Pseudorandom Frequency Hopping Sequence							
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ -1 = 511 bits 							
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ - 1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) 							
	 added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 2⁹ -1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) 							
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ - 1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:							
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ - 1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow:							
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 0 2 4 6 62 64 78 1 73 75 77							
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter.							
	added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9 • Length of pseudo-random sequence: 2 ⁹ -1 = 511 bits • Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: 0 2 4 6 62 64 78 1 73 75 77 Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding							

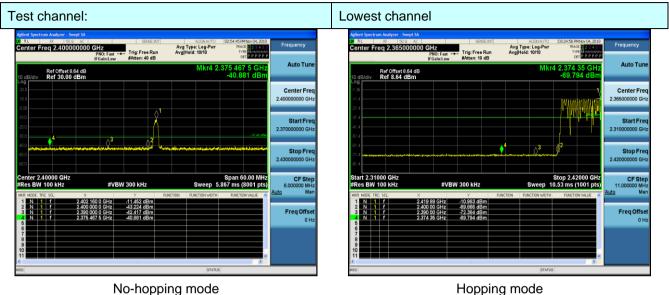
7.9 Band Edge

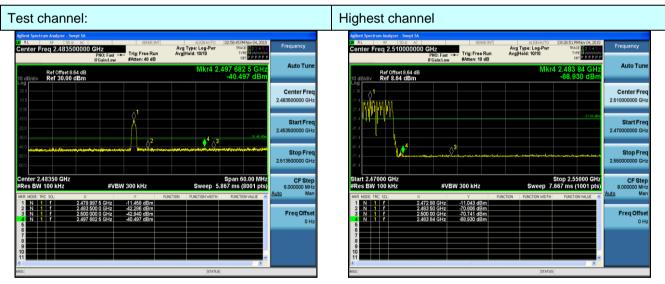

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

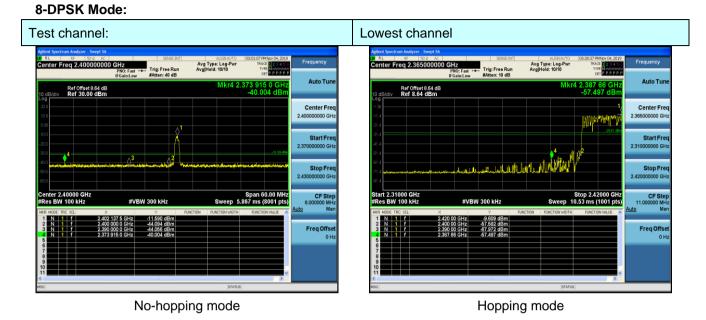

Test plot as follows:

GFSK Mode:


No-hopping mode


Hopping mode

π/4-DQPSK Mode:



No-hopping mode

Hopping mode

Avg Type: Log-P Avg|Hold: 10/10 Center Fre 2.51000000 GH an dh<mark>allada, tabila adam, alawa a</mark>n enter 2.48350 GHz Res BW 100 kHz op 2.55000 GH 60 00 M CF Ste Sp Sweep 5.867 V 300 kHz /BW 300 kHz 43.73 Freq Offs

No-hopping mode

Hopping mode

Auto Tu

Start Fre

Stop Fr

CF Ste

Freq Offs

7.9.2 Radiated Emission M	ethod						
Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.Measurement Distance: 3m						
Test site:							
Receiver setup:	Frequency Detector RBW VBW Remark						
	Above 1GHz	Peak Value					
		Peak	1MHz	10Hz	Average Value		
Limit:	Frequency Limit (dBuV/m @3m) Re						
	Above 1	GHz –	<u> </u>		Average Value Peak Value		
Test setup:			74.0	0	reak value		
	Turn Tables - er	EUT+	Test Antenna- < lm 4m >	*	AAAAAAAAAAAAAAAAAA		
Test Procedure:	 Receiver Preamplifier The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to 						
	determine the 2. The EUT was antenna, whic tower.	hine the position of the highest radiation. JT was set 3 meters away from the interference-receiving ha, which was mounted on the top of a variable-height antenna Intenna height is varied from one meter to four meters above the					
	ground to det horizontal and measuremen	ermine the ma d vertical pola t.	aximum value rizations of th	e of the field he antenna	l strength. Both are set to make the		
	and then the	antenna was t able was turne	uned to heig	hts from 1 r	ed to its worst case neter to 4 meters 0 degrees to find the		
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	limit specified EUT would be 10dB margin average meth	l, then testing e reported. Ot would be re-te nod as specifie	could be stop herwise the e ested one by ed and then r	oped and th emissions th one using p	10dB lower than the e peak values of the nat did not have beak, quasi-peak or a data sheet.		
Test Instruments:	Refer to section	6.0 for details					
Test mode:	Refer to section	5.2 for details					
Test results:	Pass						

7.9.2 Radiated Emission Method

Measurement Data

Remark: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2390	57.49	-5.68	51.81	74	-22.19	peak	
2390 41.08 -5.68 35.4 54 -18.6 AVG							
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

ı٢

Vertical.

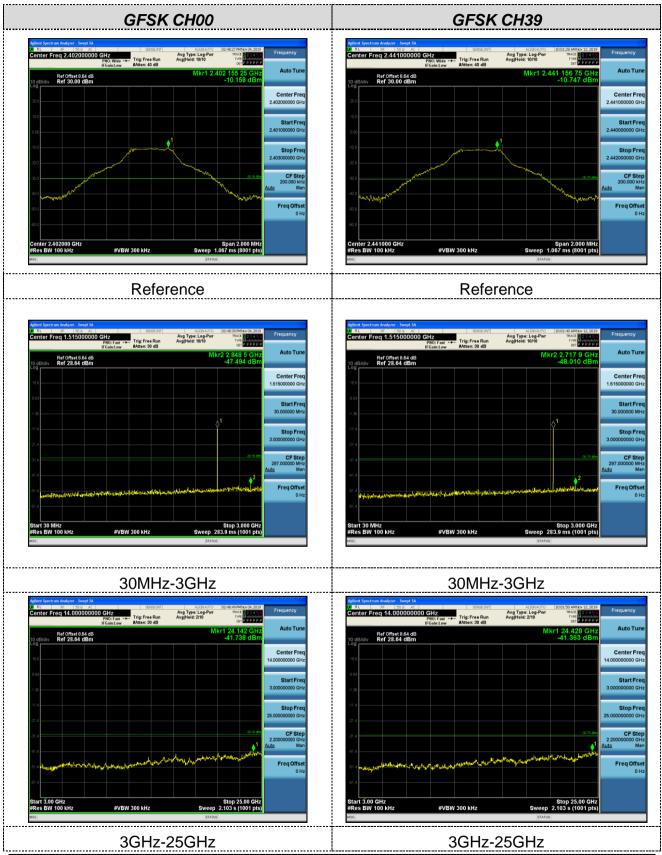
Frequency	Meter	Factor	Emission Level	Limits	Margin			
Trequency	Reading	Tactor		Linita	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2390	61.21	-5.68	55.53	74	-18.47	peak		
2390	43.05	-5.68	37.37	54	-16.63	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	59.59	-5.85	53.74	74	-20.26	peak	
2483.5	41.93	-5.85	36.08	54	-17.92	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

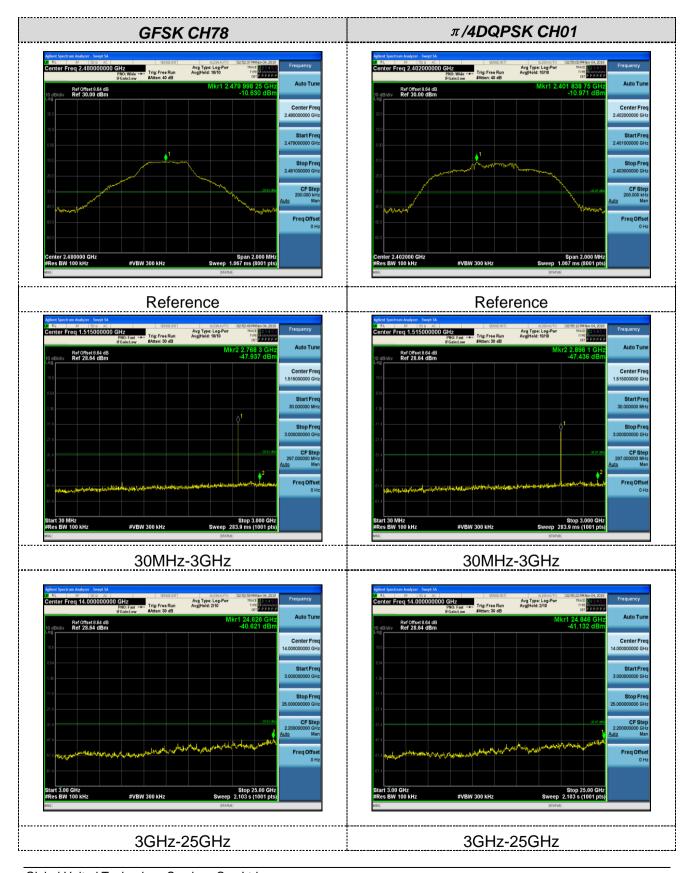
Vertical:


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	60.98	-5.85	55.13	74	-18.87	peak	
2483.5	44.01	-5.85	38.16	54	-15.84	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.							

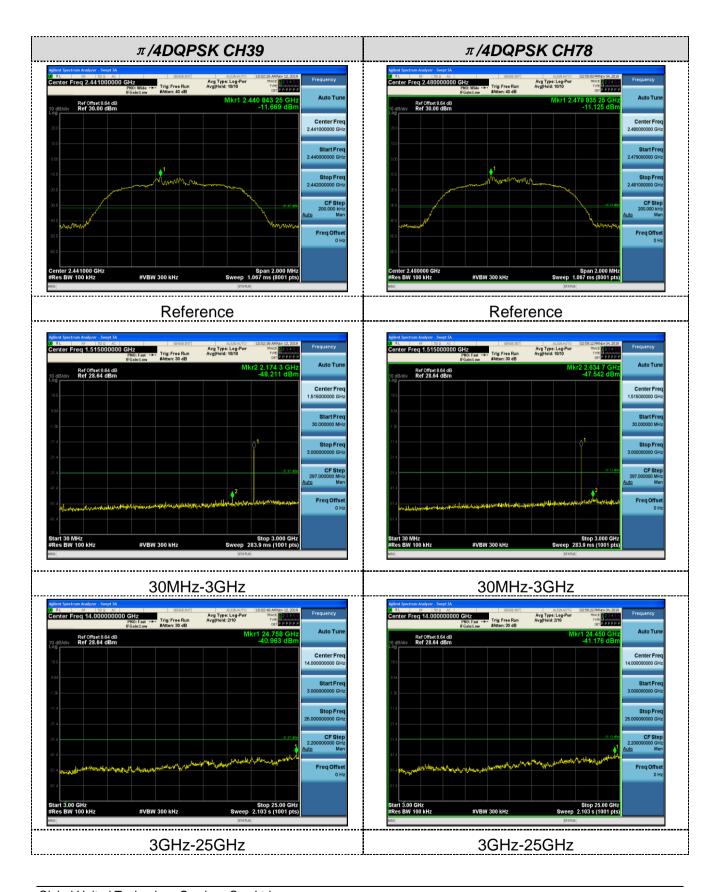
7.10 Spurious Emission

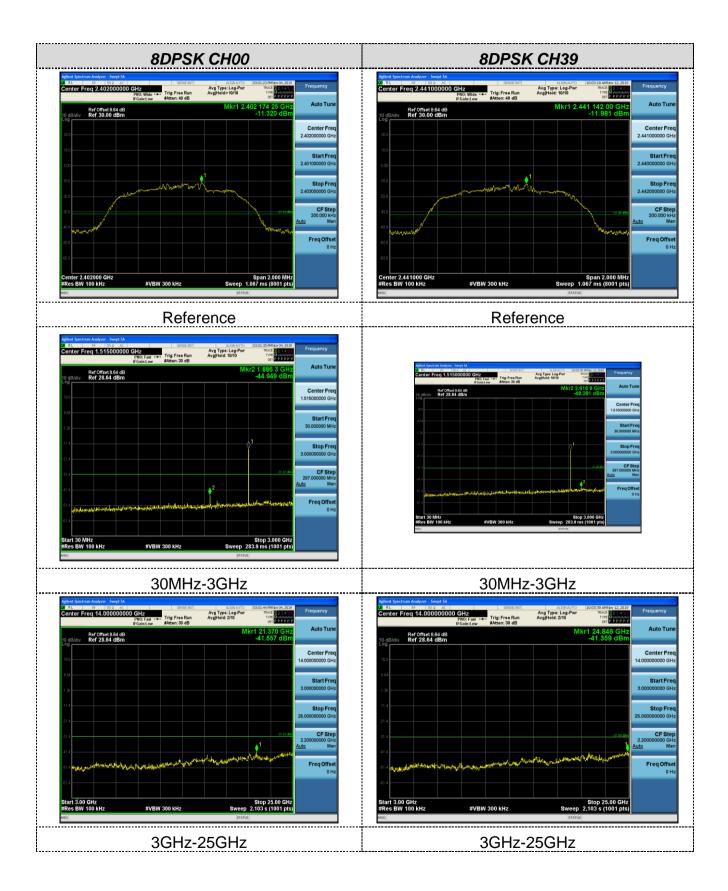
7.10.1 Conducted Emission Method

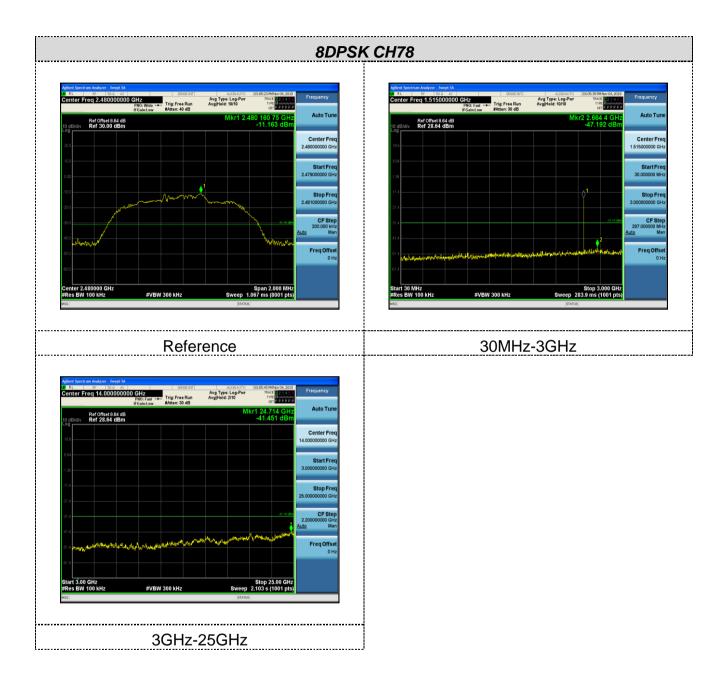
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						



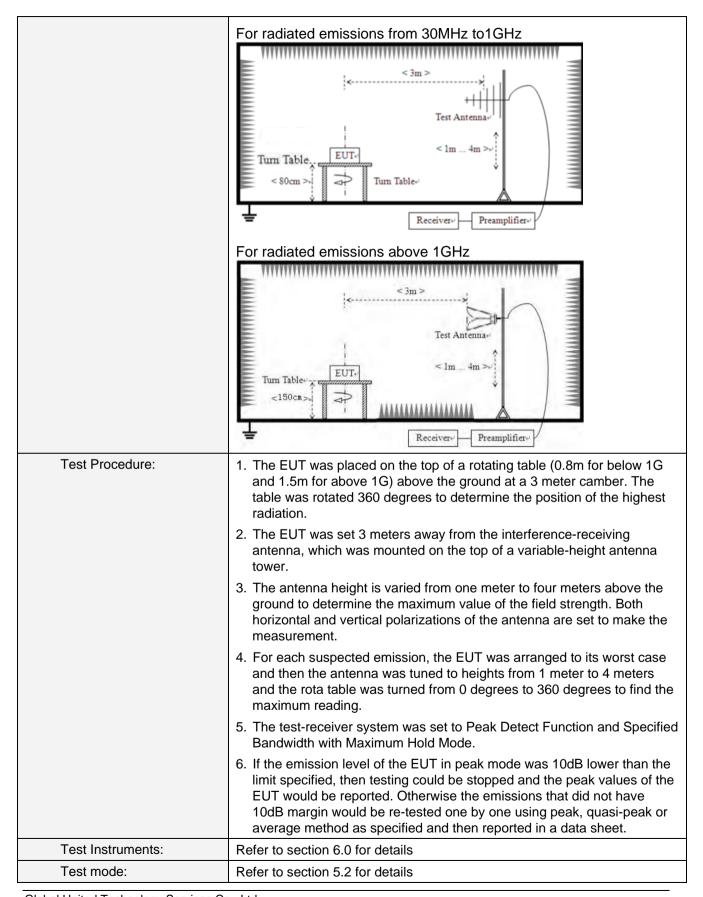
Global United Technology Services Co., Ltd.


No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



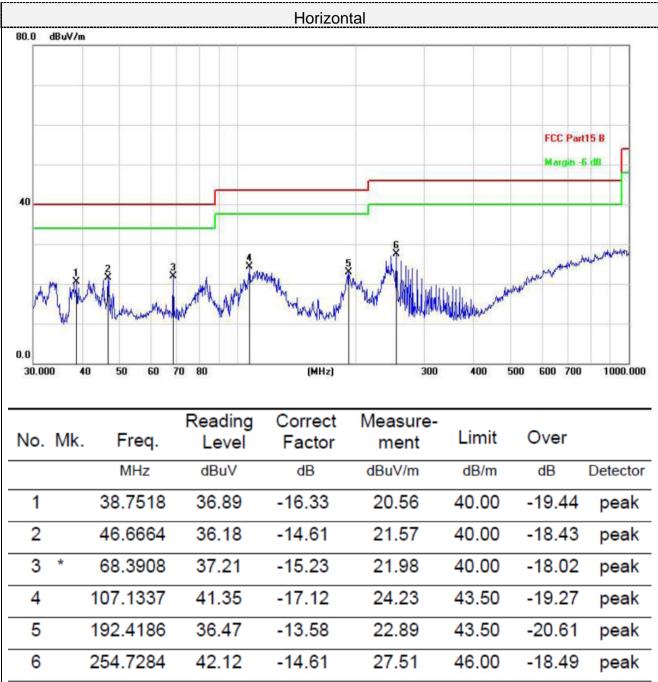
Test Requirement: FCC Part15 C Section 15.209 ANSI C63.10:2013 Test Method: Test Frequency Range: 9kHz to 25GHz Test site: Measurement Distance: 3m Receiver setup: RBW VBW Frequency Detector Value 9KHz-150KHz Quasi-peak 200Hz 600Hz Quasi-peak 150KHz-30MHz Quasi-peak 9KHz 30KHz Quasi-peak 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Peak 1MHz 3MHz Peak Above 1GHz Peak 1MHz 10Hz Average Limit: Measurement Limit (uV/m) Value Frequency Distance 0.009MHz-0.490MHz 2400/F(KHz) QP 300m 0.490MHz-1.705MHz 24000/F(KHz) QP 30m 1.705MHz-30MHz QP 30m 30 30MHz-88MHz 100 QP 150 QP 88MHz-216MHz 216MHz-960MHz 200 QP 3m 960MHz-1GHz 500 QP 500 Average Above 1GHz 5000 Peak Test setup: For radiated emissions from 9kHz to 30MHz < 3m > Test Antenna EUT. Turn Table 1m 4 < 80cm 2 Turn Table+ Receiver.

7.10.2 Radiated Emission Method

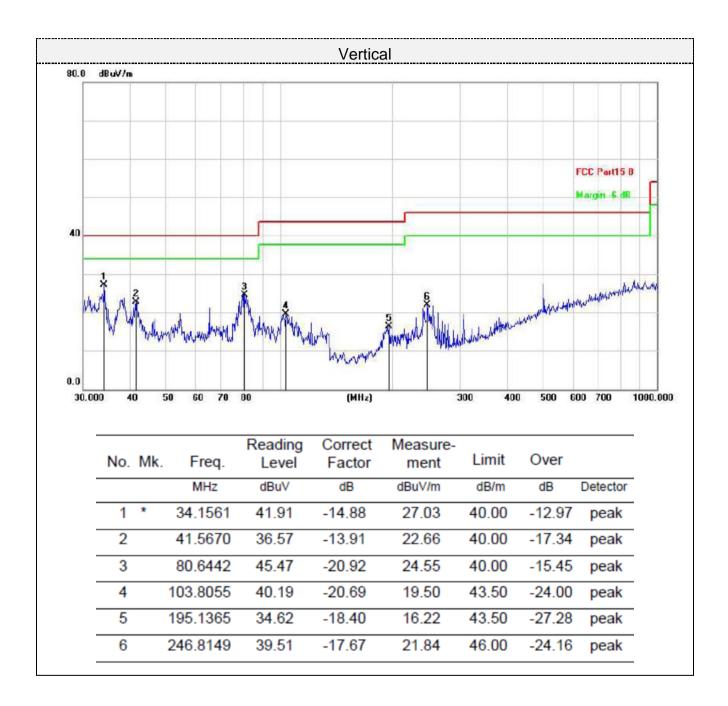
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	61.53	-3.61	57.92	74	-16.08	peak
4804	42.18	-3.61	38.57	54	-15.43	AVG
7206	57.65	-0.85	56.8	74	-17.2	peak
7206	44.09	-0.85	43.24	54	-10.76	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4804	63.18	-3.61	59.57	74	-14.43	peak		
4804	46.69	-3.61	43.08	54	-10.92	AVG		
7206	56.26	-0.85	55.41	74	-18.59	peak		
7206	43.37	-0.85	42.52	54	-11.48	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

CH Middle (2441MHz)

Frequency	Meter	Factor	Emission Level	Limits	Morain	
Frequency	Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	59.28	-3.49	55.79	74	-18.21	peak
4882	45.38	-3.49	41.89	54	-12.11	AVG
7326	56.49	-0.8	55.69	74	-18.31	peak
7326	41.51	-0.8	40.71	54	-13.29	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	61.47	-3.49	57.98	74	-16.02	peak
4882	42.65	-3.49	39.16	54	-14.84	AVG
7326	56.55	-0.8	55.75	74	-18.25	peak
7326	42.59	-0.8	41.79	54	-12.21	AVG
Remark: Facto	or = Antenna Fa	ctor + Cable Lo	oss – Pre-amplifier			

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4960	62.42	-3.41	59.01	74	-14.99	peak		
4960	47.08	-3.41	43.67	54	-10.33	AVG		
7440	58.52	-0.72	57.8	74	-16.2	peak		
7440	43.62	-0.72	42.9	54	-11.1	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Vertical:

-	Meter	- <i>.</i>				
Frequency	Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	62.47	-3.41	59.06	74	-14.94	peak
4960	47.62	-3.41	44.21	54	-9.79	AVG
7440	58.56	-0.72	57.84	74	-16.16	peak
7440	43.69	-0.72	42.97	54	-11.03	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. (2) When the test results of Peak Detected below the limits of Average Detected,

the Average Detected is not need completed.

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End------