

Test Report # 319353 B (RFx)

Equipment Under Test:	KOLO LoRa Module	
Test Date(s):	November 26 th , 2019 to Oct	ober 7 th , 2020
Prepared for:	Georgia Pacific Attn: Kim Cannon 1915 Marathon Avenue Neenah, WI 54956	
Report Issued by: Zach W	ilson, EMC Engineer	
Signature: Juch ne	2	Date: 10/23/2020
Report Reviewed by: Ada	m Alger, Quality Manager	
Signature: Aduar O Alge		Date: 10/9/2020
Report Constructed by: Z	ach Wilson, EMC Engineer	
Signature: Juh Ma	2	Date: 10/8/2020

This test report may not be reproduced, except in full, without approval of Laird Connectivity, Inc.

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 1 of 16	Model: ASM-0000001076
Job: C-3372		Serial: Engineering Sample

CONTENTS

C	ontents	
	Laird C	Connectivity Test Services in Review
1	Test	Report Summary4
2	Clie	nt Information5
	2.1	Equipment Under Test (EUT) Information5
	2.2	Product Description5
	2.3	Modifications Incorporated for Compliance5
	2.4	Deviations and Exclusions from Test Specifications5
	2.5	Radio Programming Information6
	2.6	Radio Power Information6
	2.7	Distance to User and Use Environment6
3	Refe	erences7
4	Unc	ertainty Summary8
5	Test	Data9
	5.1	LoRa Fundamental Emission9
	5.2	BLE Fundamental Emission11
6	Excl	usion Calculation13
	6.1	Technical Brief13
	6.2	FCC – LoRa MPE Calculation13
	6.3	FCC – BLE MPE Calculation14
	6.4	FCC – Simultaneous Transmission MPE total14
	6.5	Industry Canada15
7	Rev	sion History

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 2 of 16	Model:ASM-000001076
Job: C-3372		Serial: Engineering Sample

Laird Connectivity Test Services in Review

The Laird Connectivity, Inc. laboratory located at W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA is recognized through the following organizations:

A2LA – American Association for Laboratory Accreditation Accreditation based on ISO/IEC 17025:2017 with Electrical (EMC) Scope A2LA Certificate Number: 1255.01 Scope of accreditation includes all test methods listed herein unless otherwise noted

Federal Communications Commission (FCC) – USA Accredited Test Firm Registration Number: 953492 Recognition of two 3 meter Semi-Anechoic Chambers

Innovation, Science and Economic Development Canada

Accredited U.S. Identification Number: US0218 Recognition of two 3 meter Semi-Anechoic Chambers

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 3 of 16	Model:ASM-000001076
Job: C-3372		Serial: Engineering Sample

1 TEST REPORT SUMMARY

During November 26th, 2019 – October 7th, 2020 the Equipment Under Test (EUT), KOLO LoRa Module, as provided by Georgia Pacific was tested to the following requirements of the Federal Communications Commission and Innovation, Science and Economic Development Canada :

Test Requirements	Description	Specification	Method	Compliant
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus	Reported	RSS-102 Section 2.5.2	Reported
FCC Part 1.1307, 2.1091, 2.1093	RF Exposure and equipment authorization requirements	Reported	FCC KDB 447498 D01	Reported

Notice:

The results relate only to the item tested as configured and described in this report. Any additional configurations, modes of operation, or modifications made to the equipment under test after the specified test date(s) are at the decision of the client and may not apply to the data seen in this test report.

The decision rule for Pass / Fail assessment to the specification or standard listed in this test report has been agreed upon by the client and laboratory to be as follows:

Measurement Type	Rule
Emissions – Amplitude	N/A
Emissions – Frequency	N/A
Immunity	N/A

		Name: KOLO LoRa Module
Report: TR319353 B	Page 4 of 16	Model:ASM-000001076
Job: C-3372		Serial: Engineering Sample

2 CLIENT INFORMATION

Company Name	Georgia Pacific
Contact Person	Kim Cannon
Address	1915 Marathon Avenue Neenah, WI 54956

2.1 Equipment Under Test (EUT) Information

The following information has been supplied by the client

Product Name	KOLO LoRa Module
Model Number	ASM-000001076
Serial Number	Engineering Sample
LoRa Radio FCC ID	2AALY-531GP
LoRa Radio IC ID	21620-531GP
BLE Radio FCC ID	SQGBL654
BLE Radio IC ID	3147A-BL654

2.2 Product Description

The EUT contains a custom LoRa radio with a Molex 206764 flexible dipole antenna with a U.FL connector and a peak gain of 1.3 dBi. The EUT also contains the pre-certified Laird BL654 BLE radio utilizing an internal PCB F-type antenna with a maximum gain of -1.0 dBi.

The EUT input voltage was 3.3 VDC provided by a lab power supply. The EUT can also be powered by removable batteries.

The radios can transmit simultaneously.

2.3 Modifications Incorporated for Compliance

None noted at time of test

2.4 Deviations and Exclusions from Test Specifications

None noted at time of test

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 5 of 16	Model:ASM-0000001076
Job: C-3372		Serial: Engineering Sample

2.5 Radio Programming Information

EUT programmed using Tera Term v4.99. The radio manufacturer provided the commands to put the radio into the correct test modes. The firmware version was PRT-0000000174. The tested LoRa channels were, 903.0 MHz (Low), 907.8 MHz (Mid), and 914.2 MHz (High). The tested BLE channels were 2402 MHz (Low), 2440 MHz (Mid), and 2480 MHz (High).

2.6 Radio Power Information

The end user will have the capability of changing the power levels. The minimum power setting is -17. The maximum power setting is 14. The EUT was tested at both power levels.

2.7 Distance to User and Use Environment

Per customer, the radio will be greater than 20cm from the user's body/head. The EUT is a mobile device used in an uncontrolled environment.

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 6 of 16	Model:ASM-000001076
Job: C-3372		Serial: Engineering Sample

REFERENCES

Publication	Edition	Date
CFR Title 47	-	2020
RSS-102	5	2015
FCC KDB 447498 D01	v06	2015

		Name: KOLO LoRa Module Model:ASM-0000001076	
Report: TR319353 B	Page 7 of 16		
Job: C-3372		Serial: Engineering Sample	

4 UNCERTAINTY SUMMARY

Using the guidance of the following publications the calculated measurement uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k = 2.

References	Version / Date
CISPR 16-4-1	Ed. 2 (2009-02)
CISPR 16-4-2	Ed. 2 (2011-06)
CISPR 32	Ed. 1 (2012-01)
ANSI C63.23	2012
A2LA P103	February 4, 2016
A2LA P103c	August 10, 2015
ETSI TR 100-028	V1.3.1 (2001-03)

Measurement Type	Configuration	Uncertainty ±
Radiated Emissions	Biconical Antenna	5.0 dB
Radiated Emissions	Log Periodic Antenna	5.3 dB
Radiated Emissions	Horn Antenna	4.7 dB
AC Line Conducted Emissions	Artificial Mains Network	3.4 dB
Telecom Conducted Emissions	Asymmetric Artificial Network	4.9 dB
Disturbance Power Emissions	Absorbing Clamp	4.1 dB
Radiated Immunity	3 Volts/meter	2.2 dB
Conducted Immunity	CDN/EM/BCI	2.4/3.5/3.4 dB
EFT Burst/Surge	Peak pulse voltage	164 volts
ESD Immunity	15 kV level	1377 Volts

Parameter	ETSI U.C. ±	U.C. ±
Radio Frequency, from F0	1x10 ⁻⁷	0.55x10 ⁻⁷
Occupied Channel Bandwidth	5 %	2 %
RF conducted Power (Power Meter)	1.5 dB	1.2 dB
RF conducted emissions (Spectrum Analyzer)	3.0 dB	1.7 dB
All emissions, radiated	6.0 dB	5.3 dB
Temperature	1° C	0.65° C
Humidity	5 %	2.9 %
Supply voltages	3 %	1 %

Company: Georgia Pacific		Name: KOLO LoRa Module Model:ASM-0000001076	
Report: TR319353 B	Page 8 of 16		
Job: C-3372		Serial: Engineering Sample	

5 TEST DATA

5.1 LoRa Fundamental Emission

Operator	Aidi Zainal	QA	Anthony Smith
Temperature	22.1°C	R.H. %	40.8
Test Date	10/7/2020	Location	Conducted Radio Bench
Requirement	FCC 15.247	Method	ANSI C63.10

Test Parameters

Frequency	903-914.2 MHz
RBW	1 MHz
VBW	3 MHz
EUT Power	3.3VDC
EUT Mode	LoRa Transmit, Single Channel, DTS Mode as Worst Case, Power Setting 14
Example Calculation	Conducted Power (e.i.r.p.) = Conducted Power (dBm) + Antenna Gain (dBi)

Instrumentation

Laird

	Date	: 7-Oct-2020	Test	: Conducted Rad	io		Job	C-3372
		: Zach Wilson	Customer	: Georgia Pacific			Quote	318246
No.	Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due Date	Equipment Status
	AA 960144	Cable	Gore	EKD01D010720	5800373	12/9/2018	12/9/2020	Active Verification
	EE 960087	Analuzer - Spectrum	Agilent	N9010A	MY53400296	7/14/2018	7/14/2021	Active Calibration

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 9 of 16	Model:ASM-0000001076
Job: C-3372		Serial: Engineering Sample

Table

Peak Output Power					
Frequency (MHz)	Data Rate	Power Setting	Antenna Gain (dBi)	Peak Output Power (dBm)	e.i.r.p (dBm)
903.0	DR4	14.0	1.3	13.3	14.6
907.8	DR4	14.0	1.3	13.3	14.6
914.2	DR4	14.0	1.3	13.3	14.6

Plots

Worst Case Conducted Peak Output Power DR4, 500 kHz, DTS Mode, 914.2 MHz

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 10 of 16	Model:ASM-0000001076
Job: C-3372		Serial: Engineering Sample

5.2 BLE Fundamental Emission

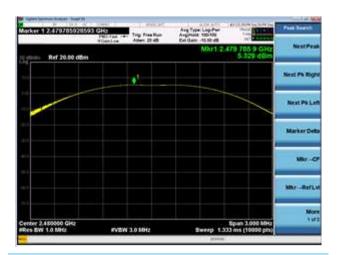
Operator	Zach Wilson	QA	Anthony Smith
Temperature	20.5C	R.H. %	31.6%
Test Date	11/26/2019	Location	Conducted Radio Bench
Requirement	FCC 15.247	Method	ANSI C63.10

Test Parameters

Frequency	2402 MHz, 2440 MHz, 2480 MHz
RBW	1 MHz
VBW	3 MHz
EUT Power	3VDC
EUT Mode	BLE Single Channel, Max Power
Example Calculation	Conducted Power (e.i.r.p.) = Conducted Power (dBm) + Antenna Gain (dBi)

Instrumentation

	Date :	26-Nov-2019	Test :	Conducted Radio			Job :	C-3164
	PE:	Zach Wilson	Customer :	Georgia Pacific			Quote :	318246
No.	Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due Date	Equipment Status
1	AA 960172	Cable	A.H. Systems, Inc	SAC-26G-1	387	6/4/2018	6/4/2020	Active Verification
2	EE 960087	Analyzer - Spectrum	Agilent	N9010A	MY 53400296	4/24/2019	4/24/2020	Active Calibration


Company: Georgia Pacific		Name: KOLO LoRa Module	
Report: TR319353 B	Page 11 of 16	Model:ASM-000001076	
Job: C-3372		Serial: Engineering Sample	

Data Table

BLE Radio Peak Output Power						
Frequency (MHz)	Data Rate	Peak Output Power (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)		
2402	BLE	5.1	-1.0	4.1		
2440	BLE	4.9	-1.0	3.9		
2480	BLE	5.3	-1.0	4.3		

Plots

Worst Case Conducted Peak Output Power BLE, 2480 MHz

Company: Georgia Pacific		Name: KOLO LoRa Module Model:ASM-0000001076	
Report: TR319353 B	Page 12 of 16		
Job: C-3372		Serial: Engineering Sample	

6 EXCLUSION CALCULATION

6.1 Technical Brief

LoRa Worst Case: 13.3 dBm (Pout) + 1 dB (Tune-Up Tolerance) = 14.3 dBm

BLE Worst Case: 5.3 dBm (Pout) + 1 dB (Tune-Up Tolerance) = 6.3 dBm

Test Separation Distance: Greater than 20cm

6.2 FCC – LoRa MPE Calculation

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	14.30	(dBm)
Maximum peak output power at antenna input terminal:	26.915	(mW)
Antenna gain(typical):	1.3	(dBi)
Numeric Antenna Gain:	1.349	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:		(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.6	(mW/cm^2)
Power density at prediction frequency:	0.007223	(mW/cm^2)
Power density at prediction frequency:	0.07223	(W/m^2)

Company: Georgia Pacific		Name: KOLO LoRa Module
Report: TR319353 B	Page 13 of 16	Model:ASM-0000001076
Job: C-3372		Serial: Engineering Sample

6.3 FCC – BLE MPE Calculation

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	5.30	(dBm)
Maximum peak output power at antenna input terminal:	3.388	(mW)
Antenna gain(typical):	-1	(dBi)
Numeric Antenna Gain:	0.794	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2400	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1.0	(mW/cm^2)
Power density at prediction frequency:	0.000535	(mW/cm^2)
Power density at prediction frequency:	0.00535	(W/m^2)

6.4 FCC – Simultaneous Transmission MPE total

MPE 900 MHz Limit = (frequency in MHz)/1500 = 0.6

MPE 2400 MHz Limit = 1.0

 $\frac{MPE 900}{MPE \ Limit \ 900} + \frac{MPE \ 2400}{MPE \ Limit \ 2400} < 1$

 $\frac{0.007223 \ mW/cm^2}{0.6 \ mW/cm^2} + \frac{0.000535 \ mW/cm^2}{1.0 \ mW/cm^2} = 0.012573$

Routine SAR testing is *excluded* as 0.012573 is less than 1.

Company: Georgia Pacific		Name: KOLO LoRa Module	
Report: TR319353 B	Page 14 of 16	Model:ASM-000001076	
Job: C-3372		Serial: Engineering Sample	

6.5 Industry Canada

BLE EIRP = OP + ANTENNA GAIN

5.3 dBm + (-1.0 dBi) = 4.3 dBm (0.002 W)

BLE SOURCE-BASED TIME-AVERAGE MAXIMUM EIRP

f= 2480 MHz

1.31 x 10⁻² = 0.0131

0.0131 x 2480^{0.6834} = 2.71 W (Limit)

LORA EIRP = OP + ANTENNA GAIN

13.3 dBm + 1.3 dBi = 14.6 dBm (0.028 W)

LORA SOURCE-BASED TIME-AVERAGE MAXIMUM EIRP

f= 914.9 MHz

1.31 x 10⁻² = 0.0131

0.0131 x 914.9^{0.6834} = 1.38 W (Limit)

SIMULTANEOUS TRANSMISSION LIMIT

1.38W

BLE MPE + LORA MPE SIMULTANEOUS TRANSMISSION POWER

0.002 W + 0.028 W = 0.03 W < 1.38 W

CONFORMANCE STATEMENT

Routine SAR testing is *excluded* as 0.03 W is less than 1.38 W.

Company: Georgia Pacific		Name: KOLO LoRa Module Model:ASM-0000001076	
Report: TR319353 B	Page 15 of 16		
Job: C-3372		Serial: Engineering Sample	

7 **REVISION HISTORY**

Version	Date	Notes	Person
v0.1	10-8-2020	Initial Draft	Zach Wilson
v0.2	10-9-2020	Revised per internal review	Zach Wilson
2	10-23-2020	Revised per ACB comments	Zach Wilson

END OF REPORT

Company: Georgia Pacific	Page 16 of 16	Name: KOLO LoRa Module
Report: TR319353 C		Model:ASM-000001076
Job: C-3372		Serial: Engineering Sample