TEST REPORT

CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501

Report No.: CTK-2019-01365 Page (1) / (44) Pages

1. Client

- Name : NEOLAB CONVERGENCE
- Address : #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389
- Date of Receipt : 2019-03-19

2. Manufacturer

- Name : NEOLAB CONVERGENCE
- Address : #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389
- 3. Use of Report : For FCC Certification & Canadian Certification
- 4. Test Sample / Model: Neo Smartpen / NWP-F51
- 5. Date of Test : 2019-04-03 to 2019-04-12
- 6. Test Standard (method) used : FCC 47 CFR part 15 subpart C 15.247,
 - RSS-247, RSS-Gen
- 7. Testing Environment: Temp.: (21 ± 5) °C, Humidity: (50 ± 3) % R.H.
- 8. Test Results : Compliance

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full.

Affirmation	Tested by Bong-seok Kim: (Signature)	Technical Manager Young-taek Lee: (Signature)		
		2019-04-12		
Republic of KOREA CTK Co., Ltd.				

Report No.: CTK-2019-01365 Page (2) / (44) Pages

REPORT REVISION HISTORY

Date	Revision	Page No
2019-04-12	Issued (CTK-2019-01365)	all
	, , , , , , , , , , , , , , , , , , ,	

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Report No.: CTK-2019-01365 Page (3) / (44) Pages

CONTENTS

4
4
4
4
5
5
5
5
6
6
6
7
8
8
10
12
17
21
25
31
38
11
13
14

1. General Product Description

1.1 Client Information

Company	NEOLAB CONVERGENCE	
Contact Point	#1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389	
Contact Person	Name : Cho Mingoo E-mail : mgcho@neolab.net Tel : +82-70-4377-0741 Fax : +82-2-3462-2983	

1.2 Product Information

FCC ID	2AALG-NWP-F51
IC	21452-NWPF51
Product Description	Neo Smartpen
Model name	NWP-F51
Operating Frequency	2 402 MHz - 2 480 MHz
RF Output Power	0.25 dBm (1.059 mW)
Antenna Specification	Antenna type : Chip antenna Peak Gain : 2.9 dBi
Number of channels	79
Channel Spacing	1 MHz
Type of Modulation	GFSK(1Mbps)
Power Source	DC 3.7 V
Firmware Version Id Number(FVIN)	REV. 1.0
Test SW Version	WCN_COMBO_TOOL
RF Power setting in Test SW	Initial value

1.3 Peripheral Devices

Device	Manufacturer	Model No.	Serial No.
Notebook	SAMSUNG Electronics	NT-R540	ZW3B93AZ900402F
AC Adapter	Tech-Power Electric Co.,Ltd.	NT01	09708530

2. Facility and Accreditations

2.1 Test Facility

The measurement facility is located at (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yong-in-si, Gyeonggi-do, Korea.

2.2 Laboratory Accreditations and Listings

Country	Agency	Scope of Accreditation	Registration Number	Logo
USA	FCC	FCC Part 15 & 18 EMI (Electromagnetic Interference / Emission)	805871	FC
CANADA	ISED	IC EMI (3/10m test site)	8737A-2	*
JAPAN	VCCI	VCCI V-3 EMI (Electromagnetic Interference / Emission)	C-986 T-1843 R-3627 G-387	V ©I
KOREA	NRRA	EMI (Electromagnetic Interference / Emission) EMS (Electromagnetic Susceptibility / Immunity)	KR0025	

2.3 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

3. Test Specifications

3.1 Standards

Section in FCC	Section in RSS	Requirement(s)	Status (Note 1)	Test Condition	
15.247(a)	RSS-247 5.1(b)	Carrier Frequency Separation	С		
15.247(a)	RSS-247 5.1(d)	Number of Hopping Frequencies	С		
15.247(a)	RSS-247 5.1(a)	20 dB Bandwidth	С	O an durate d	
15.247(a)	RSS-247 5.1(d)	Time of occupancy (Dwell Time)	С	Conducted	
15.247(b)	RSS-247 5.1(b)	Maximum peak conducted output power	С		
15.247(d)	RSS-247 5.5	Unwanted emission	С		
15.209	RSS-Gen 6.13	Transmitter emission	С	Radiated	
15 207(a) PSS-Gen 8.8 AC Conducted Emission C				Line Conducted	
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable					
Note 2: The data in this test report are traceable to the national or international standards. <u>Note 3</u> : The sample was tested according to the following specification: FCC Part 15.247, ANSI C63.10-2013, RSS-247 Issue 2, RSS-Gen Issue 5					

3.2 Mode of operation during the test

The EUT is operated in a manner representative of the typical of the equipments. During at testing, system components were manipulated within the confines of typical usage to maximize each emission. All modulation modes were tests. The results are only attached worst cases.

Test Frequency

Lowest channel	Middle channel	Highest channel	
2 402 MHz	2 441 MHz	2 480 MHz	

Test mode

Modulation	Packet type	Data rate	
GFSK	DH5	1 Mbps	

Report No.: CTK-2019-01365 Page (7) / (44) Pages

3.3 Maximum Measurement Uncertainty

The value of the measurement uncertainty for the measurement of each parameter. Coverage factor k = 2, Confidence levels of 95 %

Description	Uncertainty
Conducted RF Output Power	1.5 dB
Occupied Bandwidth	0.1 MHz
Unwanted Emission(conducted)	3.0 dB
Radiated Emissions (f \leq 1 GHz)	4.0 dB
Radiated Emissions (f > 1 GHz)	5.0 dB

4. Technical Characteristic Test

4.1 Carrier Frequency Separation

Test Procedures(ANSI C63.10-2013 7.8.2)

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function enabled. After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

 The spectrum analyzer is set to:

 Span : wide enough to capture the peaks of two adjacent channels

 RBW : approximately 30% of the channel spacing;

 adjust as necessary to best indentify the center of each individual channel.

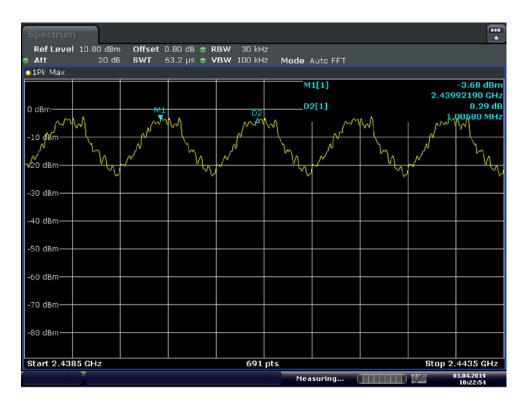
 VBW ≥ RBW
 Sweep : auto

 Detector function = peak
 Trace = max hold

 EUT
 Coax cable

Figure 1 : Measurement setup for the carrier frequency separation

Limit


FHSS operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater.

Test Results

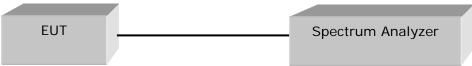
Channel	Adjacent Hopping Channel Separation [kHz]	Two-third of 20dB bandwidth [kHz]	Minimum Bandwidth [kHz]	Result
Middle	1 005.8	641.333	25	Complies

See next pages for actual measured spectrum plots.

Report No.: CTK-2019-01365 Page (10) / (44) Pages

4.2 Number of Hopping Frequencies

Test Procedures (ANSI C63.10-2013 7.8.3)


The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Frequency range	1: Start = 2389.5 MHz, Stop = 2439.5 MHz
	2: Start = 2439.5 MHz, Stop = 2489.5 MHz

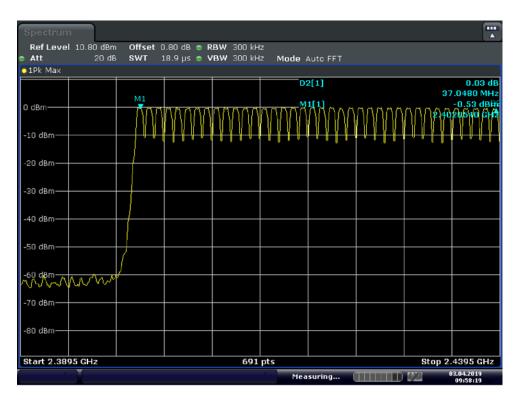
RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

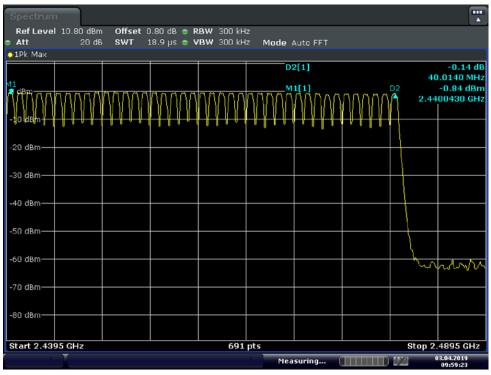
$VBW \ge RBW$	Sweep = auto
Detector function = peak	Trace = max hold

Limit

FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels.

Test Results


Test mode : GFSK


Total number of Hopping Channels	Result
79	Complies

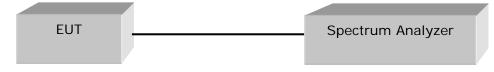
See next pages for actual measured spectrum plots.

Report No.: CTK-2019-01365 Page (11) / (44) Pages

4.3 20 dB bandwidth & 99% Bandwidth

Test Procedures(ANSI C63.10-2013 6.9.2)

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.


Test Procedures(ANSI C63.10-2013 6.9.3)

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels Span = between 2 times and 5 times the OBW RBW = 1% to 5% of the OBW Sweep = auto VBW : approximately 3 times RBW Detector function = peak Trace = max hold

Limit

Limit : N/A

Report No.: CTK-2019-01365 Page (13) / (44) Pages

Test Results

Channel	Frequency [MHz]	20 dB Bandwidth [MHz]	99% Bandwidth [MHz]	Result
Low	2 402	0.962	0.890	Complies
Middle	2 441	0.962	0.890	Complies
High	2 480	0.970	0.883	Complies

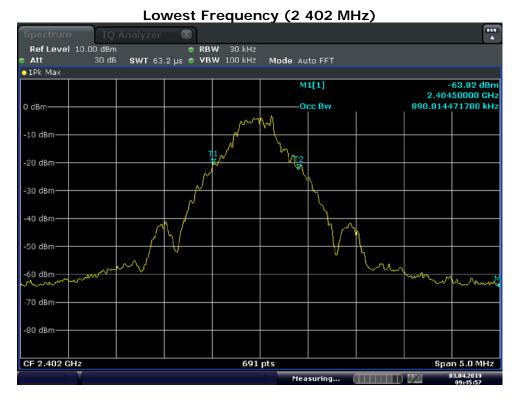
See next pages for actual measured spectrum plots.

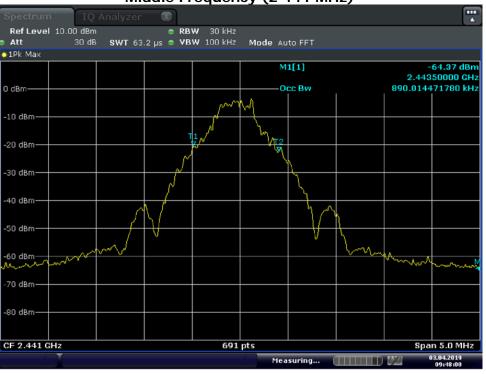
Report No.: CTK-2019-01365 Page (14) / (44) Pages

..... RBW 30 kHz Ref Level 10.00 dBm SWT 63.2 µs • VBW 100 kHz Mode Auto FFT Att 30 dB 🔾 1Pk Max M1[1] 3.27 dBm 2.40212300 GHz 0 dBmndB 20.00 dB 962.400000000 kHz BW -10 dBm· O factor 2496.0 -20 dBm· -30 dBm· -40 dBm -50 dBm· -60 dBm -70 dBm -80 dBm· 691 pts CF 2.402 GHz Span 5.0 MHz Marker Y-value Function Type Ref Trc X-value Function Result -3.27 dBm -23.52 dBm М1 2.402123 GHz ndB down 962.4 kHz Τ1 1 2.4014863 GHz ndB 20.00 dB 2.4024486 GHz Q factor -23.37 dBm 2496.0 Measuring... 03.04.2019

20 dB Bandwidth Lowest Frequency (2 402 MHz)

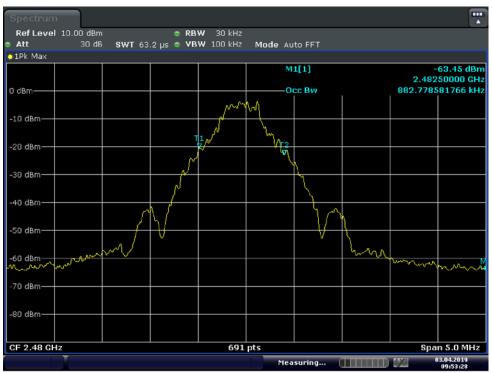
Middle Frequency (2 441 MHz)





Highest Frequency (2 480 MHz)

99% Bandwidth



Middle Frequency (2 441 MHz)

Report No.: CTK-2019-01365 Page (17) / (44) Pages

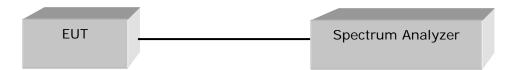
4.4 Time of Occupancy

Test Procedures (ANSI C63.10-2013 7.8.4)

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function enabled.

a) Span: Zero span, centered on a hopping channel.

b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.


c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak.

e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

Number of hops in the period specified in the requirements = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

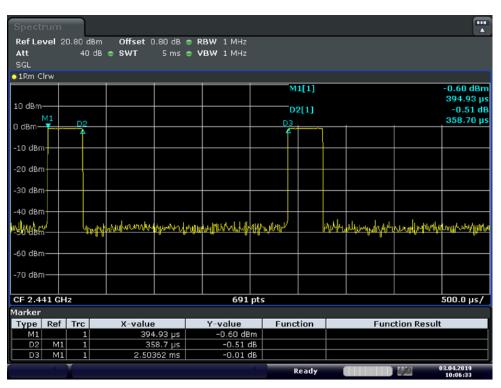
Report No.: CTK-2019-01365 Page (18) / (44) Pages

Test Results

Mode	Number of hops Channels	Transmit time per hop(msec)	Result (msec)	Limit (msec)
DH1	79	0.359	114.88	400
DH3	79	1.616	258.56	400
DH5	79	2.855	304.53	400

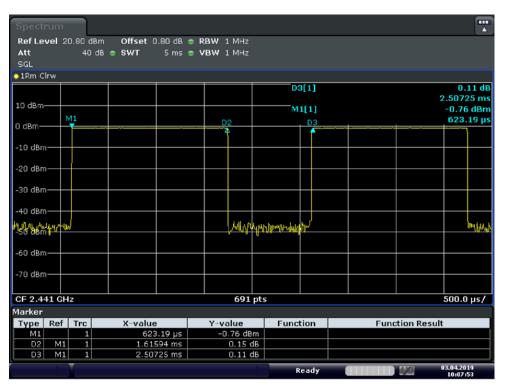
*** Remark:**

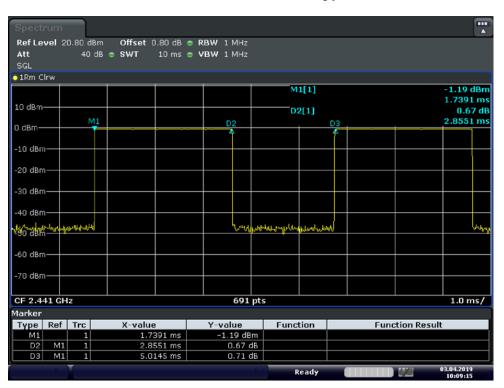
Average time of occupancy = Transmit time per hop * Number of hopping channels in 31.6s


According the BLUETOOTH STANDARD SPECIFICATION, the nominal hop rate is 1600 hop/s. All bluetooth units participating in the piconet are time and hop synchronized to the channel.

- The maximum number of hopping channels in 31.6s for DH1 = 1600 / 2 / 79 * 31.6 = 320

- The maximum number of hopping channels in 31.6s for DH3 = 1600 / 4 / 79 * 31.6 = 160- The maximum number of hopping channels in 31.6s for DH3 = 1600 / 4 / 79 * 31.6 = 107


See next pages for actual measured spectrum plots.



Transmit time for PACKET Type DH1

Transmit time for PACKET Type DH3

Transmit time for PACKET Type DH5

4.5 Maximum peak Conducted Output Power

Test Procedures (ANSI C63.10-2013 7.8.5)

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test.

Limit

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.

Report No.: CTK-2019-01365 Page (22) / (44) Pages

Test Results

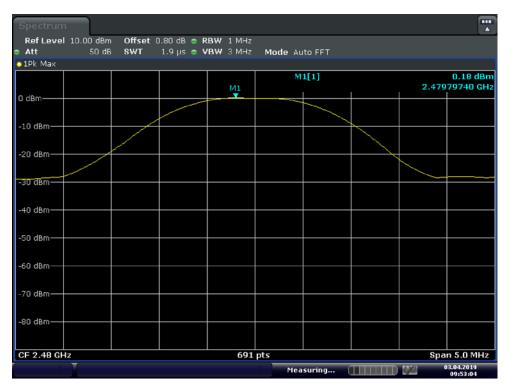
Test mode : GFSK

Frequency [MHz]	Channel No.	Output Power [dBm]	Output power [mW]	Result
2 402	0	0.25	1.02	Complies
2 441	39	-0.11	0.98	Complies
2 480	78	0.18	1.04	Complies

See next pages for actual measured spectrum plots.

[Lowest channel] • X
 Ref Level
 10.00 dBm
 Offset
 0.80 dB
 Compared Bar 1 MHz

 Att
 50 dB
 SWT
 1.9 μs
 SWHS
 MHz
 Att Mode Auto FFT 🔵 1Pk Max 0.25 dBm 2.40186980 GHz M1[1] 0 dBm--10 dBm--20 dBm· -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm--80 dBm-CF 2.402 GHz Span 5.0 MHz 691 pts 03.04.2019 Measuring...


[Middle channel]

Spectrum	ı IQ	Analyzer						
Ref Level Att	10.00 dBm 50 dB).80 dB 😑 R 1.9 μs 😑 V		Mode Au			
o 1Pk Max	30 UB	awı	r a ha 🖨 🔺		Mode Au			
				M1	М	1[1]		-0.11 dBm 80460 GHz
0 dBm								
-10 dBm—								
-20 dBm—								
-30 dBm								
-40 dBm								
-50 dBm—								
-60 dBm								
-70 dBm								
-80 dBm								
CF 2.441 G	Hz			691	pts			n 5.0 MHz
					Mea	suring (100	03.04.2019 09:47:36

Report No.: CTK-2019-01365 Page (24) / (44) Pages

[Highest channel]

Report No.: CTK-2019-01365 Page (25) / (44) Pages

4.6 Unwanted Emissions (Conducted)

Test Procedures (ANSI C63.10-2013 7.8.6 / ANSI C63.10-2013 7.8.8)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB.

The bandwidth at 20 dB down from the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT has its hopping function disabled at the highest, middle and the lowest available channels.

The spectrum analyzer is set to:

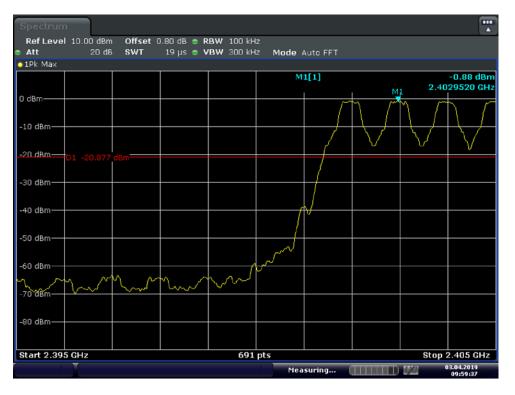
RBW : 100 kHz VBW : 300 kHz Span : 30 MHz to 10 times the operating frequency in GHz Detector function = peak Trace : max hold Sweep = auto

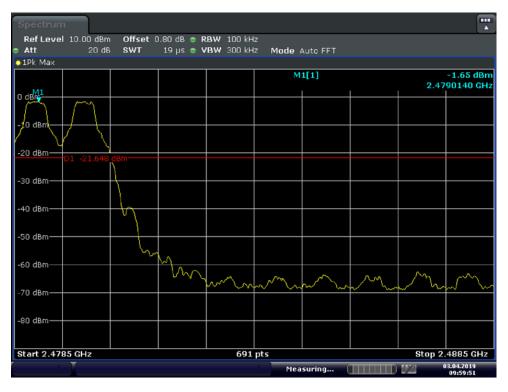
Limit

> 20 dBc

Test Results

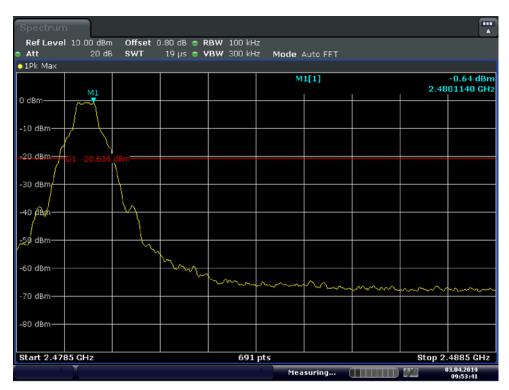
All conducted emission in any 100 kHz bandwidth outside of the spectrum band was at least 20 dB lower than the highest level of the in-band spectral density. Therefore the applying equipment meets the requirement.

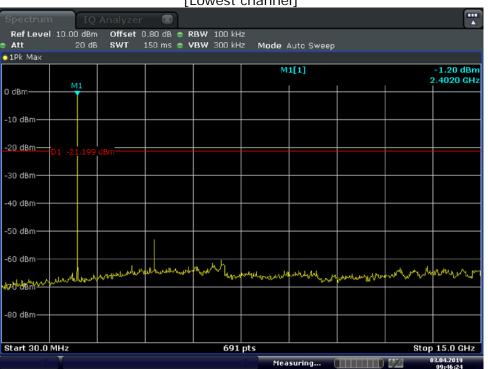

See next pages for actual measured spectrum plots.



Report No.: CTK-2019-01365 Page (26) / (44) Pages

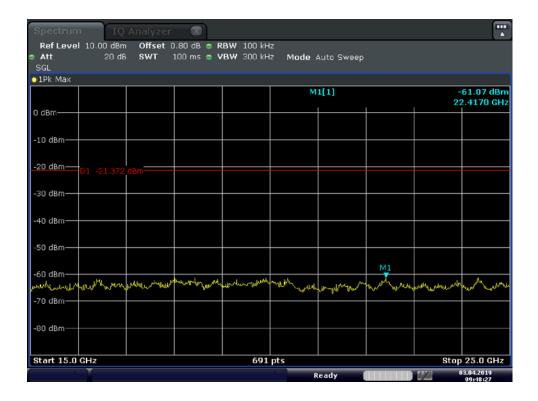
Band Edge



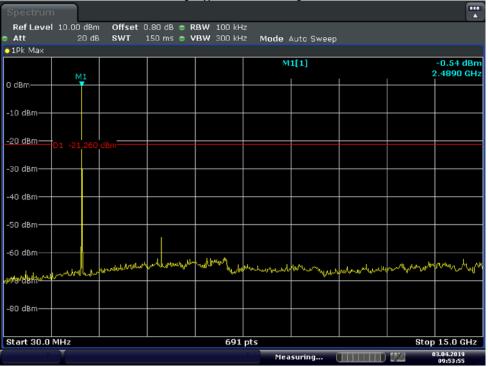

Test Mode : Non-Hopping mode

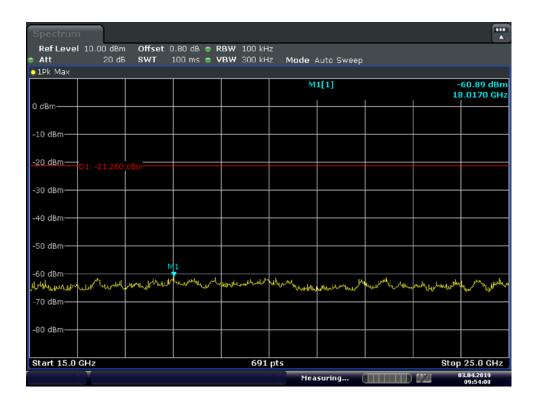
Report No.: CTK-2019-01365 Page (28) / (44) Pages

Spurious Emission


Spectrum	IQ /	Analyzer	X						
RefLevel 1 Att SGL	0.00 dBm 20 dB	Offset 0 SWT 1		BW 100 kH ' BW 300 kH		Auto Sweep			
○1Pk Max									
					м	1[1]			61.06 dBm 3.4230 GHz
0 dBm									5.4230 GH2
-10 dBm									
-20 dBm-01	-21.199 c	iBm							
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm			M1						
, איייאנאייע -70 dBm	Murin	www.phayb	melound-ere vile	all and the second s	where where	worked relation	hand and the work	عامل الملاطر المله	when
-80 dBm									
Start 15.0 GH	z			691	pts			Stop	25.0 GHz
					R	tead y (1920	3.04.2019 09:46:37

[Lowest channel]


[Middle channel]


Spectrum	IQ	Analyzer							
Ref Level Att	10.00 dBm 20 dB			. BW 100 kH 'BW 300 kH		ute Cureen			
Att 1Pk Max	20 UB	501	150 ms 🖶 🗸	BW 300 KH	z mode /	Auto Sweep			
0 dBm	MI				м	1[1]			-1.37 dBm 2.4460 GHz
-10 dBm	Ĭ								
20 d8m									
-20 dBm	D1 -21.372	dBm 							
-30 uBm									
-40 ubiii									
60 db									
-ou asm	materia	monumbar	when when	montellage	millighter	unolow yun	marchand Magazinan	munulum	MM Jon Jape
-80 dBm									
-80 UBIII									
Start 30.0	MHz			691	pts				15.0 GHz
					Mea	suring (1)XI 0	3.04.2019 09:48:14

[Highest channel]

Report No.: CTK-2019-01365 Page (31) / (44) Pages

4.7 Radiated Emission

Test Location

 \boxtimes 10 m SAC (test distance : \square 10 m, \boxtimes 3 m) \boxtimes 3 m SAC (test distance : 3 m)

Test Procedures

- 1) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency rage above 30 MHz, Bi-Log Test Antenna(30 MHz to 1 GHz) and Horn Test Antenna(above 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

Instrument Settings

Frequency Range = 9 kHz ~ 25 GHz (2.4 GHz 10^{th} harmonic)

- a) RBW = 1 MHz for f \geq 1 GHz, 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz
- b) VBW \geq RBW
- c) Sweep time = auto couple

Limit :

Unwanted emissions that do not fall within the restricted frequency bands of Table 1 shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz
0.09-0.11	8.37626-8.38675	73-74.6	399.9-410	2690-2900	10.6-12.7
¹ 0.495-0.505	8.41425-8.41475	74.8-75.2	608-614	3260-3267	13.25-13.4
2.1735-2.1905	12.29-12.293	108-121.94	960-1240	3332-3339	14.47-14.5
4.125-4.128	12.51975-12.52025	123-138	1300-1427	3345.8-3358	15.35-16.2
4.17725-4.17775	12.57675-12.57725	149.9-150.05	1435-1626.5	3600-4400	17.7-21.4
4.20725-4.20775	13.36-13.41	156.52475- 156.52525	1645.5-1646.5	4500-5150	22.01-23.12
6.215-6.218	16.42-16.423	156.7-156.9	1660-1710	5350-5460	23.6-24
6.26775-6.26825	16.69475-16.69525	162.0125-167.17	1718.8-1722.2	7250-7750	31.2-31.8
6.31175-6.31225	16.80425-16.80475	167.72-173.2	2200-2300	8025-8500	36.43-36.5
8.291-8.294	25.5-25.67	240-285	2310-2390	9000-9200	² Above 38.6
8.362-8.366	37.5-38.25	322-335.4	2483.5-2500	9300-9500	

Table 1. Restricted Frequency Bands

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

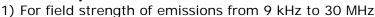
FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

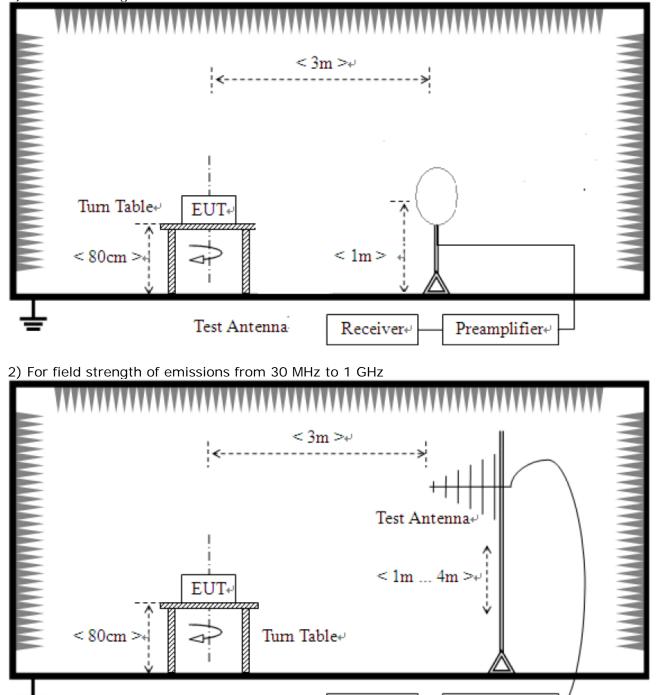
Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 2 Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Frequency(MHz)	Field Strength uV/m@3m	Field Strength dBuV/m@3m	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705-30	30	-	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46	3
Above 960	500	54	3

Table 2. General Field Strength Limits for Licence-Exempt Transmitters

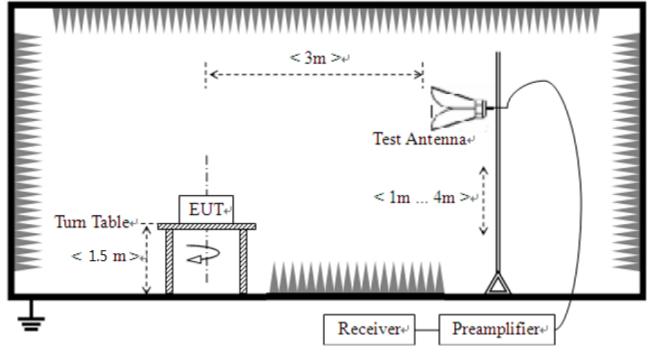
** Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.


Note :


- For above 1 GHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- For above 1 GHz, limit field strength of harmonics : 54 dBuV/m@3m (AV) and 74 dBuV/m@3m (PK)

Report No.: CTK-2019-01365 Page (34) / (44) Pages

Test Setup:


Receiver⊬

Preamplifier₽

Report No.: CTK-2019-01365 Page (35) / (44) Pages

3) For field strength of emissions above 1 GHz

Test results

1) 9 kHz to 30 MHz

The requirements are:

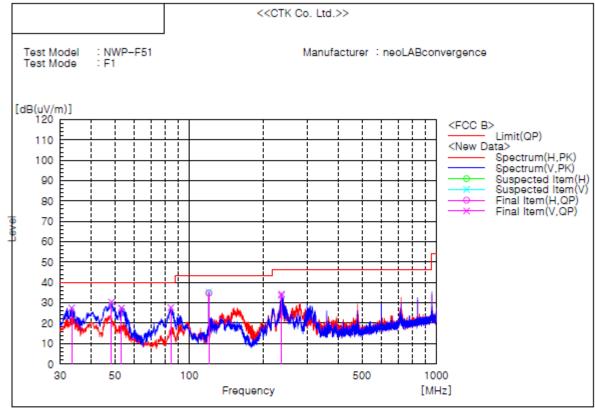
Complies

Frequency (MHz)	Measured Data (dBuV/m)	Margin (dB)	Remark
-	-	-	See note

Note :

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB)



Report No.: CTK-2019-01365 Page (36) / (44) Pages

2) 30 MHz to 1 GHz

The requirements are: Complies

Test Data

Spectrum Selection

No.	Frequency	(P)	Reading	o.f	Result PK	Limit	Margin QP	Height	Angle
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	33.375	V	42.6	-15.1	27.5	40.0	12.5	99.8	9.9
2	48.399	V	42.8	-12.4	30.4	40.0	9.6	99.8	355.1
3	53.080	V	39.9	-12.5	27.4	40.0	12.6	99.8	339.4
4	84.216	V	45.3	-17.6	27.7	40.0	12.3	99.8	339.4
5	119.925	V	51.3	-15.8	35.5	43.5	8.0	99.8	34.3
6	119.925	н	50.6	-15.8	34.8	43.5	8.7	99.8	292.5
7	235.542	V	47.0	-13.3	33.7	46.0	12.3	99.8	215.3
8	236.522	V	47.6	-13.3	34.3	46.0	11.7	99.8	249.7

Remark :

- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain
- 4. This data is the Peak(PK) value.

3) 1 GHz to 25 GHz

The requirements are: \square Complies

Test Data

Test mode : Lowest frequency(2 402 MHz)

Frequency [MHz]	Ant. Pol. (V/H)	Reading* [dBuV/m]	c.f [dB/m]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Remark
1 919.7	Н	47.00	-4.00	43.00	54	11.00	Peak

Test mode : Middle frequency(2 440 MHz)

Frequency	Ant. Pol.	Reading*	c.f	Result	Limit	Margin	Remark
[MHz]	(V/H)	[dBuV/m]	[dB∕m]	[dBuV/m]	[dBuV/m]	[dB]	
1 919.7	Н	48.70	-4.00	44.70	54	9.30	Peak

Test mode : Highest frequency(2 480 MHz)

Frequency	Ant. Pol.	Reading*	c.f	Result	Limit	Margin	Remark
[MHz]	(V/H)	[dBuV/m]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]	
1 919.7	V	47.60	-4.00	43.60	54	10.40	Peak

Remarks

- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

Report No.: CTK-2019-01365 Page (38) / (44) Pages

4.8 AC Power Line Conducted Emissions

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits.

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

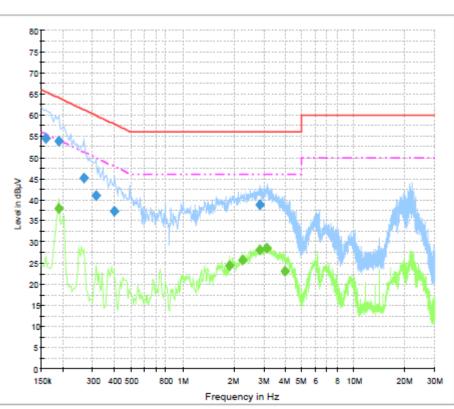
Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

Frequency	Conducted Limit (dBuV)					
(MHz)	Quasi-peak	Average**				
0.15 ~ 0.5	66 to 56*	56 to 46*				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

* The level decreases linearly with the logarithm of the frequency.

** A linear average detector is required.



Report No.: CTK-2019-01365 Page (39) / (44) Pages

Test Results

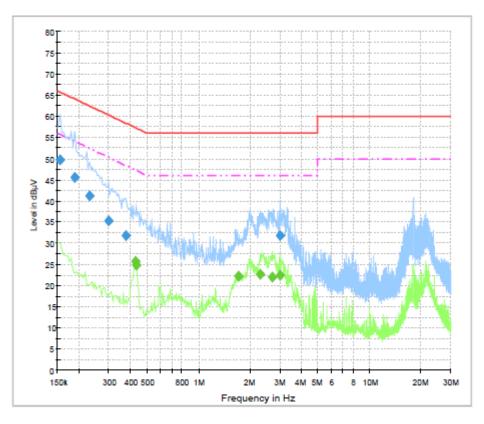
The requirements are: \square Complies

Test Data

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.159000	54.5	1000.0	9.000	On	L1	10.2	11.0	65.5
0.190500	53.9	1000.0	9.000	On	L1	10.2	10.2	64.0
0.267000	45.2	1000.0	9.000	On	L1	10.0	16.0	61.2
0.312000	41.0	1000.0	9.000	On	L1	10.0	18.9	59.9
0.402000	37.3	1000.0	9.000	On	L1	10.1	20.5	57.8
2.854500	38.8	1000.0	9.000	On	L1	10.0	17.2	56.0

Final Result 2


Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.190500	38.0	1000.0	9.000	On	L1	10.2	16.0	54.0
1.896000	24.3	1000.0	9.000	On	L1	9.9	21.7	46.0
2.251500	25.8	1000.0	9.000	On	L1	10.0	20.2	46.0
2.854500	28.2	1000.0	9.000	On	L1	10.0	17.8	46.0
3.106500	28.5	1000.0	9.000	On	L1	10.0	17.5	46.0
3.993000	23.0	1000.0	9.000	On	L1	10.0	23.0	46.0

Test mode : Charging Mode [L1] Class B_L1

Report No.: CTK-2019-01365 Page (40) / (44) Pages

[NEUTRAL] Class B_N

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.154500	49.7	1000.0	9.000	On	N	10.4	16.1	65.8
0.190500	45.5	1000.0	9.000	On	N	10.5	18.5	64.0
0.231000	41.3	1000.0	9.000	On	N	10.3	21.1	62.4
0.298500	35.4	1000.0	9.000	On	N	10.3	24.9	60.3
0.375000	31.7	1000.0	9.000	On	N	10.5	26.7	58.4
3.007500	31.7	1000.0	9.000	On	N	10.3	24.3	56.0

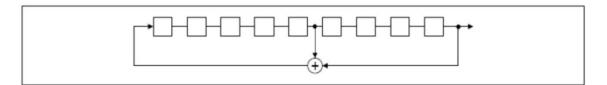
Final Result 2

Frequency (MHz)	CAverage (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.429000	25.8	1000.0	9.000	On	N	10.5	21.4	47.3
0.433500	24.8	1000.0	9.000	On	N	10.5	22.4	47.2
1.711500	22.2	1000.0	9.000	On	N	10.3	23.8	46.0
2.296500	22.6	1000.0	9.000	On	N	10.3	23.4	46.0
2.710500	21.9	1000.0	9.000	On	N	10.3	24.1	46.0
3.007500	22.5	1000.0	9.000	On	N	10.3	23.5	46.0

Report No.: CTK-2019-01365 Page (41) / (44) Pages

4.9 Frequency Hopping System Requirements

Standard Applicable


According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence

The pseudo random sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: $2^9-1 = 511$ bits Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

0246	62 64	78 1	73 75 77
			<u> </u>

Each frequency used equally on the average by each transmitter. The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: CTK-2019-01365 Page (42) / (44) Pages

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

*Example for a Bluetooth device using channel numbers would be : Ch 44, 35, 78, 03, 15, 21, 76, 40, 56, 13, 02, 19, 67, 39, 78, 20, 21, 64, 75 etc.

Report No.: CTK-2019-01365 Page (43) / (44) Pages

APPENDIX A – Test Equipment Used For Tests

No.	Name of Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
1	Signal Analyzer	R&S	FSV30	100925	2019-01-21	2020-01-21
2	Signal Generator	Rohde & Schwarz	SMB100A	175528	2018-10-24	2019-10-24
3	DC Power Supply	Agilent	E3632A	MY40011638	2018-10-24	2019-10-24
4	EMI Test Receiver	Rohde & Schwarz	ESCI7	100814	2018-10-25	2019-10-25
5	Bilog Antenna	Schaffner	CBL6111C	2551	2018-05-10	2020-05-10
6	Active Loop Antenna	SCHWARZBECK	FMZB 1513	1513-125	2018-05-02	2020-05-02
7	6dB Attenuator	R&S	DNF	272.4110.50-2	2018-10-25	2019-10-25
8	AMPLIFIER	SONOMA	310	291721	2019-01-28	2020-01-28
9	EMI Test Receiver	Rohde & Schwarz	ESU40	100336	2019-01-29	2020-01-29
10	Preamplifier	Agilent	8449B	3008A02011	2018-12-03	2019-12-03
11	Horn Antenna	ETS-Lindgren	3117	00154525	2017-09-14	2019-09-14
12	Horn Antenna	ETS-Lindgren	3116	00062916	2017-04-25	2019-04-25

No.	Name of Equipment	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable (conducted)	Junkosha Inc.	MWX221	1510S087	2019-02-02
2	RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	2019-02-02
3	RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	N/A (below 1GHz)	2019-02-02
4	RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27573/4	2018-11-30
5	RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 106	N/A (above 1GHz)	2018-11-30

Report No.: CTK-2019-01365 Page (44) / (44) Pages

APPENDIX B – EUT Photographs

