TEST REPORT

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (1) / 30) Pages

1. Client

• Name : NeoLAB Convergence

∘ Address: #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389

• Date of Receipt: 2020-03-27

2. Manufacturer

• Name : NeoLAB Convergence

Address: #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389

3. Use of Report: For FCC Certification

4. Test Sample / Model : NEO SMARTPEN / NPR-R100

5. Date of Test: 2020-03-30 to 2020-04-13

6. Test Standard(method) used: FCC 47 CFR part 15 subpart C 15.247,

ANSI C63.10-2013

7. Testing Environment: Temp.: (23 ± 1) °C, Humidity: (51 ± 3) % R.H.

8. Test Results: Compliance

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full.

	Tested by	Technical Manager
Affirmation	Bong-seok Kim: (Signature)	Young-taek Lee: (Signature)

2020-04-14

Republic of KOREA CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (2) / (30) Pages

REPORT REVISION HISTORY

Date	Revision	Page No
2020-04-14	Issued (CTK-2020-01709)	all

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (3) / (30) Pages

CONTENTS

1. General Product Description	4
1.1 Client Information	4
1.2 Product Information	4
1.3 Peripheral Devices	4
2. Facility and Accreditations	5
2.1 Test Facility	5
2.2 Laboratory Accreditations and Listings	5
2.3 Calibration Details of Equipment Used for Measurement	5
3. Test Specifications	6
3.1 Standards	6
3.2 Mode of operation during the test	6
3.3 Maximum Measurement Uncertainty	7
4. Technical Characteristic Test	3
4.1 6dB Bandwidth & 99% Bandwidth	3
4.2 Maximum peak Conducted Output Power	1
4.3 Power Spectral Density	3
4.4 Band Edge & Conducted Spurious emission1	5
4.5 Radiated Emission	8
4.6 AC Power Line Conducted Emissions	7
APPENDIX A – Test Equipment Used For Tests	Э

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (4) / (30) Pages

1. General Product Description

1.1 Client Information

Company	NeoLAB Convergence
Contact Point #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Se 08389	
Contact Person	Name: Cho Min-gu E-mail: mgcho@neolab.net Tel: +82-2-2284-9241 Fax: +82-2-3462-2983

1.2 Product Information

FCC ID	2AALG-NPR-R100
Product Description	NEO SMARTPEN
Model name	NPR-R100
Variant Model name	-
Operating Frequency	2 402 MHz - 2 480 MHz
RF Output Power	0.37 dBm (1.089 mW)
Antenna Specification	Antenna type : Chip Antenna Peak Gain : 3.4 dBi
Number of channels	40
Channel Spacing	2 MHz
Type of Modulation	GFSK(BLE)
Power Source	DC 3.7 V
RF Power setting in Test SW	Initial value

1.3 Peripheral Devices

-For Conducted Measurement and Radiated Measurement

Device	Manufacturer	Model No.	Serial No.
Notebook	SAMSUNG Electronics	NT951SBE	1A8691AM500016R
AC Adapter	Chicony Power Technology	W18-065N1A	PD-65AWNKR

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (5) / (30) Pages

2. Facility and Accreditations

2.1 Test Facility

The measurement facility is located at (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yong-in-si, Gyeonggi-do, Korea.

2.2 Laboratory Accreditations and Listings

Country	Country Agency Registration	
USA	FCC	805871
CANADA	ISED	8737A-2
KOREA	NRRA	KR0025

2.3 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (6) / (30) Pages

3. Test Specifications

3.1 Standards

Section in FCC	Requirement(s)	Status (Note 1)	Test Condition	
15.247(a)	6 dB Bandwidth	С		
15.247(e)	Transmitter power spectral density	С	O a made carbon d	
15.247(b)	Maximum peak conducted output power	С	Conducted	
15.247(d)	Unwanted emission	С		
15.209	Transmitter emission	С	Radiated	
15.207(a)	AC Conducted Emission	С	Line Conducted	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				
Note 2: The data in this test report are traceable to the national or international standards.				
Note 3: The sample was tested according to the following specification: FCC Part 15.247, ANSI C63.10-2013				
Note 4: The tests were performed according to the method of measurements prescribed in KDB No.558074.				

3.2 Mode of operation during the test

The EUT is operated in a manner representative of the typical of the equipments. During at testing, system components were manipulated within the confines of typical usage to maximize each emission. All modulation modes were tests. The results are only attached worst cases.

Test Frequency

Lowest channel	Middle channel	Highest channel
2 402 MHz	2 440 MHz	2 480 MHz

Test mode

Modulation	Duty Cycle
GFSK	61 %

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (7) / (30) Pages

3.3 Maximum Measurement Uncertainty

The value of the measurement uncertainty for the measurement of each parameter. Coverage factor k=2, Confidence levels of 95 %

Description	Uncertainty
Conducted RF Output Power	1.5 dB
Occupied Bandwidth	0.1 MHz
Unwanted Emission(conducted)	3.0 dB
Radiated Emissions (f ≤ 1 GHz)	4.0 dB
Radiated Emissions (f > 1 GHz)	5.0 dB

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (8) / (30) Pages

4. Technical Characteristic Test

4.1 6dB Bandwidth & 99% Bandwidth

Test Procedures (ANSI C63.10-2013 6.9.2)

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Procedures (ANSI C63.10-2013 6.9.3)

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz

b) VBW \geq 3 x RBW

c) Detector = peak

d) Trace mode = Max hold

- e) Sweep = auto couple
- f) Allow trace to fully stabilize
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Limit:

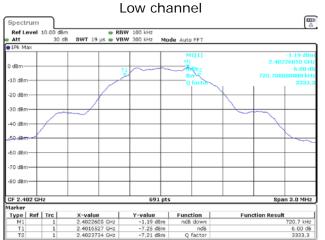
6 dB Bandwidth > 500 kHz

Fax: +82-31-624-9501

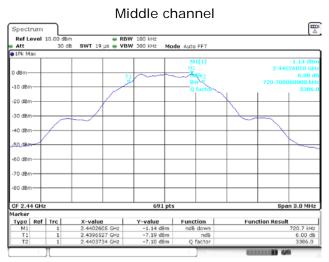
Report No.: CTK-2020-01709 Page (9) / (30) Pages

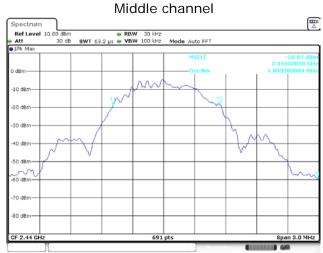
Test Data:

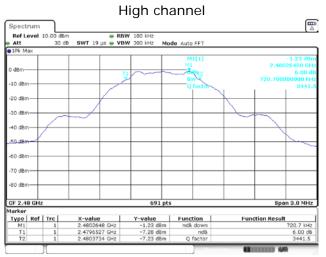
Channel	Frequency [MHz]	6 dB Bandwidth [MHz]	99 % Bandwidth [MHz]	Result
Low	2 402	0.721	1.033	Complies
Middle	2 440	0.721	1.033	Complies
High	2 480	0.721	1.033	Complies


See next pages for actual measured spectrum plots.


(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2020-01709 Page (10) / (30) Pages


6 dB Bandwidth[MHz]




99% Bandwidth[MHz]

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (11) / (30) Pages

4.2 Maximum peak Conducted Output Power

Test Procedures (ANSI C63.10-2013 11.9.1)

The following procedure can be used when the maximum available RBW of the instrument is less than the DTS bandwidth:

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW ≥ DTS Bandwidth

b) VBW \geq 3 x RBW

c) span ≥ 3 x RBW

d) Sweep time = auto couple

e) Detector = peak

f) Trace mode= max hold

- g) Allow trace to fully stabilize
- h) Use peak marker function to determine the peak amplitude level.

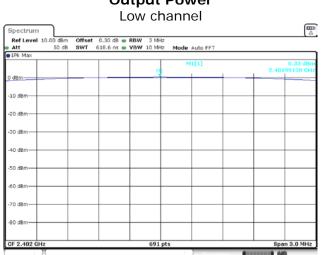
Limit:

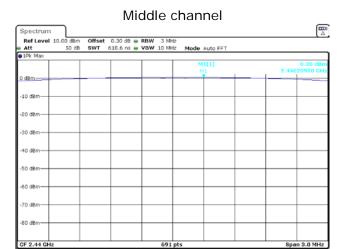
Maximum Output Power < 1 W (30 dBm)

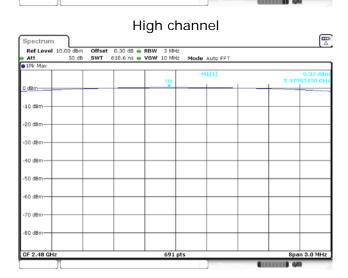
Test Data:

Channel	Frequency [MHz]	Measurement data [dBm]	Limit [dBm]	Result	
Low	2 402	0.33	30	Complies	
Middle	2 440	0.36	30	Complies	
High	2 480	0.37	30	Complies	

See next pages for actual measured spectrum plots.




(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (12) / (30) Pages

Output Power

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (13) / (30) Pages

4.3 Power Spectral Density

Test Procedures (ANSI C63.10-2013 11.10.2)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW : $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$

b) VBW \geq 3 x RBW

c) span \geq 1.5 x DTS bandwidth

d) Sweep time = auto couple

e) Detector = peak

f) Trace mode= max hold

g) Allow trace to fully stabilize

h) Use the peak marker function to determine the maximum amplitude level within the RBW.

Limit:

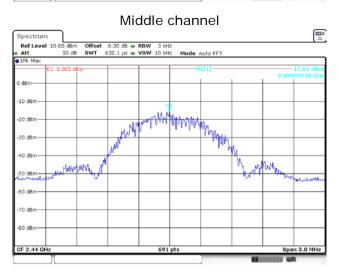
Power Spectral Density < 8 dBm @ 3 kHz BW

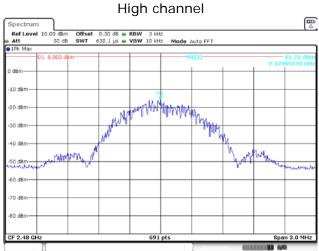
Test Data:

Channel	Frequency [MHz]	Measurement data [dBm]	Limit [dBm]	Result	
Low	2 402	-15.72	8	Complies	
Middle	2 440	-15.61	8	Complies	
High	2 480	-15.72	8	Complies	

See next pages for actual measured spectrum plots.




(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (14) / (30) Pages

Power Spectral Density

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (15) / (30) Pages

4.4 Band Edge & Conducted Spurious emission

Test Procedures (ANSI C63.10-2013 11.11.3)

The Unwanted emission from the EUT were measured according to the dictates PKPSD measurement procedure in section 11.11 of ANSI C63.10-2013.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz

b) VBW \geq 3 x RBW

c) Detector = peak

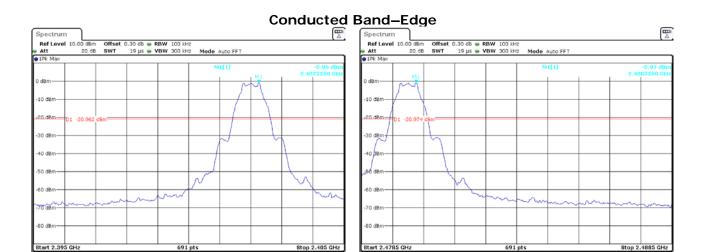
d) Sweep time = auto couple

- e) Trace mode= max hold
- f) Allow trace to fully stabilize
- g) Use the peak marker function to determine the maximum amplitude level.

Limit:

Emission level < 20 dBc

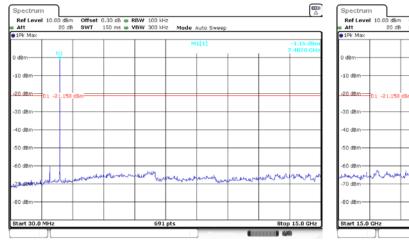
Test results: Complies

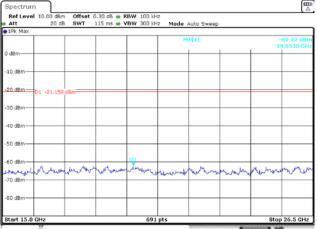

 All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest in-band spectral density. Therefore the applying equipment meets the requirement.

See next pages for actual measured spectrum plots.

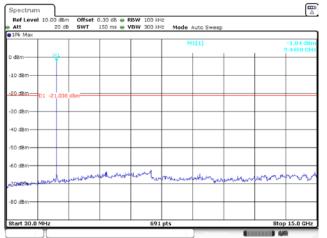
Fax: +82-31-624-9501

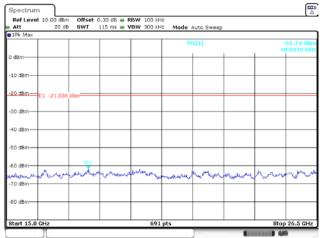
Report No.: CTK-2020-01709 Page (16) / (30) Pages

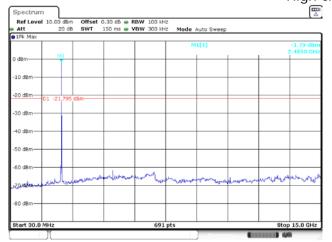

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

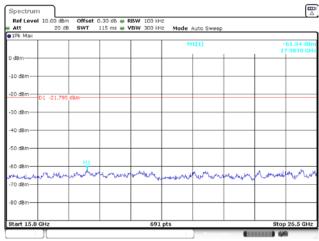

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (17) / (30) Pages


Conducted Spurious Emission






Middle channel

High channel

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (18) / (30) Pages

4.5 Radiated Emission

est		

 \boxtimes 10 m SAC (test distance : \square 10 m, \boxtimes 3 m)

 $\overline{\boxtimes}$ 3 m SAC (test distance : 3 m)

Test Procedures

- 1) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency rage above 30 MHz, Bi-Log Test Antenna (30 MHz to 1 GHz) and Horn Test Antenna (above 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

Instrument Settings

Frequency Range = 9 kHz ~ 25 GHz (2.4 GHz 10th harmonic)

- a) RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz
- b) VBW ≥ RBW
- c) Sweep time = auto couple

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (19) / (30) Pages

Limit:

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Table 1. Restricted Frequency Bands

MHz	MHz	MHz	MHz	MHz	GHz
0.09-0.11	8.37626-8.38675	73-74.6	399.9-410	2690-2900	10.6-12.7
¹ 0.495-0.505	8.41425-8.41475	74.8-75.2	608-614	3260-3267	13.25-13.4
2.1735-2.1905	12.29-12.293	108-121.94	960-1240	3332-3339	14.47-14.5
4.125-4.128	12.51975-12.52025	123-138	1300-1427	3345.8-3358	15.35-16.2
4.17725-4.17775	12.57675-12.57725	149.9-150.05	1435-1626.5	3600-4400	17.7-21.4
4.20725-4.20775	13.36-13.41	156.52475- 156.52525	1645.5-1646.5	4500-5150	22.01-23.12
6.215-6.218	16.42-16.423	156.7-156.9	1660-1710	5350-5460	23.6-24
6.26775-6.26825	16.69475-16.69525	162.0125-167.17	1718.8-1722.2	7250-7750	31.2-31.8
6.31175-6.31225	16.80425-16.80475	167.72-173.2	2200-2300	8025-8500	36.43-36.5
8.291-8.294	25.5-25.67	240-285	2310-2390	9000-9200	² Above 38.6
8.362-8.366	37.5-38.25	322-335.4	2483.5-2500	9300-9500	

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (20) / (30) Pages

FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 2 Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

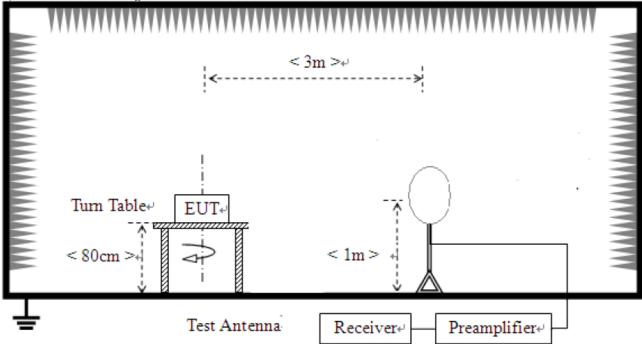
Table 2. General Field Strength Limits for Licence-Exempt Transmitters

Frequency(MHz)	Field Strength uV/m@3m	Field Strength dBuV/m@3m	Measurement Distance (meters)		
0.009-0.490	2400/F(kHz)	-	300		
0.490-1.705	24000/F(kHz)	-	30		
1.705-30	30	-	30		
30-88	100**	40	3		
88-216	150**	43.5	3		
216-960	200**	46	3		
Above 960	500	54	3		

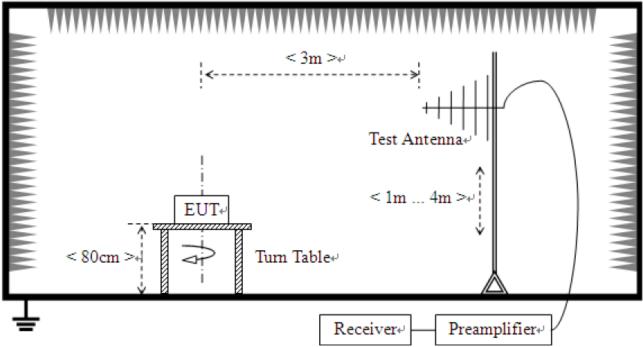
^{**} Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

Note:

- 1) For above 1 GHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- 2) For above 1 GHz, limit field strength of harmonics : 54 dBuV/m@3m (AV) and 74 dBuV/m@3m (PK)
- 3) For measurement above 1GHz, the resolution bandwidth is set to 1 MHz and video bandwidth is set to 3 MHz and detector is peak for peak measurement and detector RMS and Trace Averaging type for average measurement.


(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

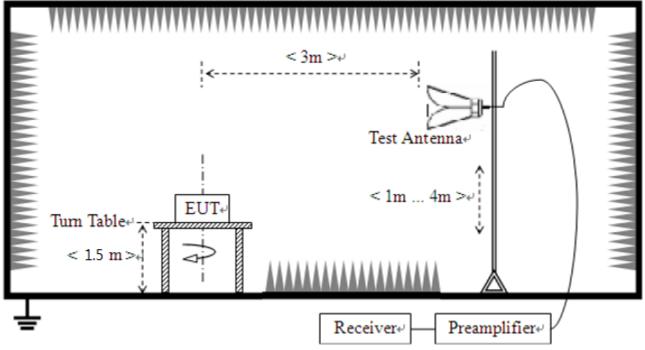
Fax: +82-31-624-9501


Report No.: CTK-2020-01709 Page (21) / (30) Pages

Test Setup:

1) For field strength of emissions from 9 kHz to 30 MHz

2) For field strength of emissions from 30 MHz to 1 GHz

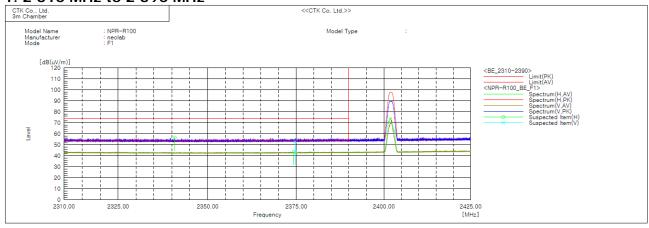


Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (22) / (30) Pages

3) For field strength of emissions above 1 GHz

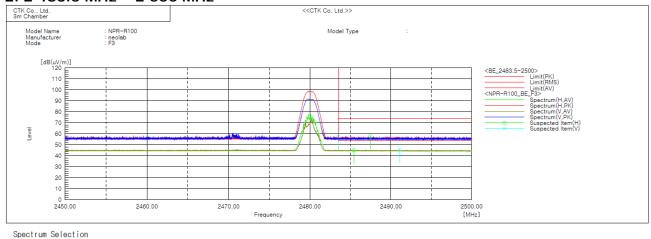
(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (23) / (30) Pages

Test results

1) Restricted Frequency Bands


1. 2 310 MHz to 2 390 MHz

Spectrum Selection

No.	Frequency	(P)	Reading	c.f	Result PK	Result AV	Limit PK	Limit AV	Margin PK	Margin AV	Height	Angle
1	[MHz] 2374.673	٧	[dB(uV)] 38.6	[dB(1/m)] 5.1	[dB(uV/m)]	[dB(uV/m)] 43.7	[dB(uV/m)]	[dB(uV/m)] 54.0	[dB]	[dB] 10.3	[cm] 345.0	[deg] 359.9
2	2374.357 2374.673	H	38.6 47.9	5.1 5.1	53.0	43.7	74.0	54.0	01.0	10.3	99.8	0.0
4	2340.763	H	51.7	4.9	56.6		74.0		17.4		464.0 355.2	188.3 40.0

2. 2 483.5 MHz - 2 500 MHz

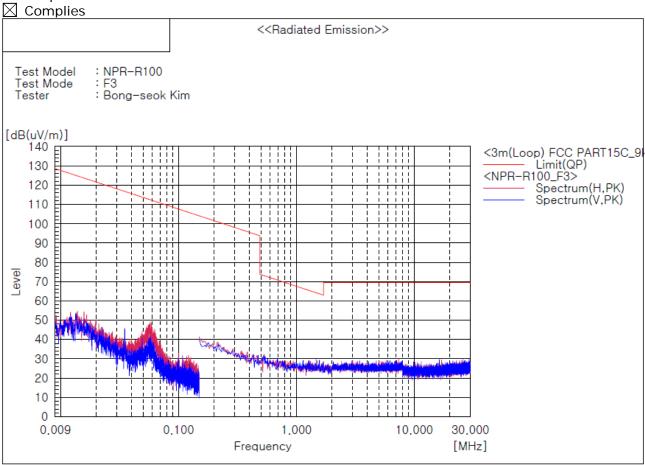
No.	Frequency	(P)	Reading	c.f	Result PK	Result AV	Limit PK	Limit AV	Margin PK	Margin AV	Height	Angle
1	[MHz] 2485.419	Н	[dB(uV)] 38.5	[dB(1/m)] 6.8	[dB(uV/m)]	[dB(uV/m)] 45.3	[dB(uV/m)]	[dB(uV/m)] 54.0	[dB]	[dB] 8.7	[cm] 464.1	[deg] 0.0
2	2491.087	٧	38.9	6.8		45.7		54.0		8.3	344.2	0.0
3	2483.512	٧	50.9	6.8	57.7		74.0		16.3		464.1	147.7
4	2487.462	Н	51.3	6.8	58.1		74.0		15.9		464.1	25.9

Remark:

- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501


Report No.: CTK-2020-01709 Page (24) / (30) Pages

2) Spurious

1. 9 kHz to 30 MHz

Test mode: Transmit, Middle Channel (Worst case)

The requirements are:

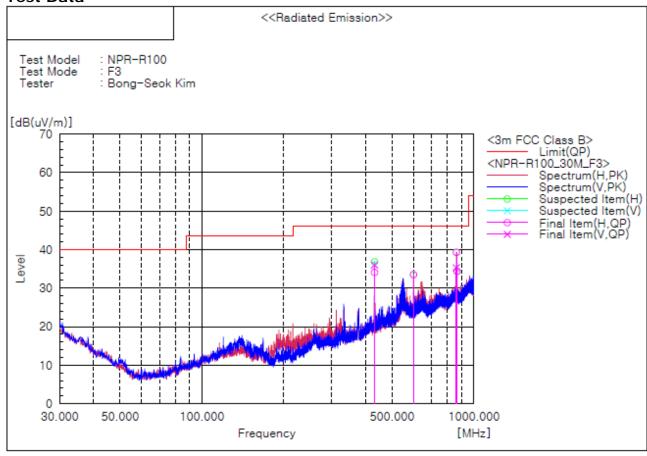
Note:

- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain
- * All emissions were greater than 20 dB below the limit.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (25) / (30) Pages


2. 30 MHz to 1 GHz

Test mode: Transmit, Middle Channel (Worst case)

The requirements are:

□ Complies

Test Data

Final Result

No.	Frequency	(P)	Reading QP	c.f	Result	Limit QP	Margin QP	Height	Angle
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	431.095	٧	39.7	-3.7	36.0	46.0	10.0	100.0	240.0
2	431.216	Н	37.8	-3.7	34.1	46.0	11.9	208.0	273.0
3	599.996	Н	33.5	0.0	33.5	46.0	12.5	100.0	297.0
4	861.896	٧	29.8	5.5	35.3	46.0	10.7	195.0	266.0
5	862.503	Н	33.8	5.5	39.3	46.0	6.7	100.0	340.0
6	867.474	Н	28.9	5.5	34.4	46.0	11.6	100.0	355.0

Remark:

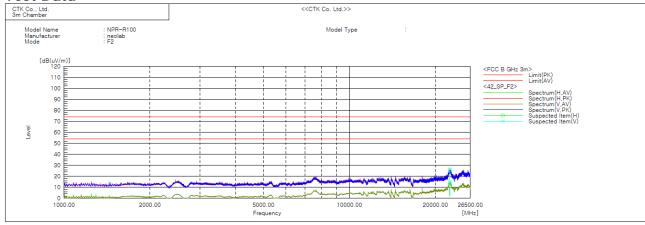
- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain

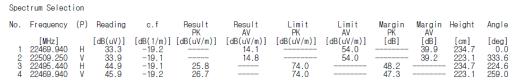
* Reading data is the peak value.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (26) / (30) Pages


3. 1 GHz to 26.5 GHz


Test mode: Transmit, Middle Channel (Worst case)

The requirements are:

□ Complies

Test Data

Remarks

- 1. The Unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(correction factor)
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (27) / (30) Pages

4.6 AC Power Line Conducted Emissions

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits.

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

Frequency	Conducted Limit (dBuV)				
(MHz)	Quasi-peak	Average**			
0.15 ~ 0.5	66 to 56*	56 to 46*			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

^{*} The level decreases linearly with the logarithm of the frequency.

Test Results

The requirements are:

Frequency	Measured Data	Margin	Remark	
[MHz]	[dBuV]	[dB]		
0.15	52.1	13.9	Quasi-peak	

Remarks

The test was tested at the state of charge mode.

^{**} A linear average detector is required.

Fax: +82-31-624-9501

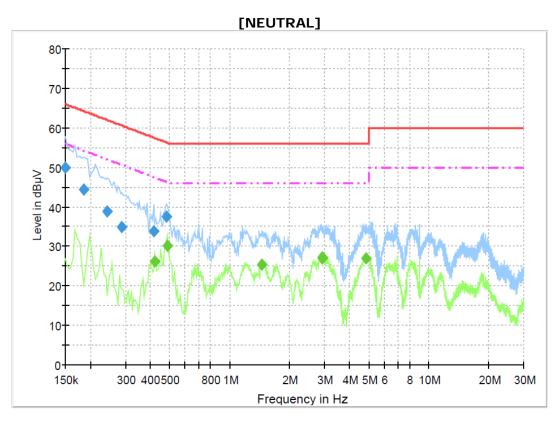
Report No.: CTK-2020-01709 Page (28) / (30) Pages

Test Data

Test mode: Charging

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit			
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)			
		(ms)					, ,				
0.150000	52.1	1000.0	9.000	On	L1	9.8	13.9	66.0			
0.190500	44.8	1000.0	9.000	On	L1	9.8	19.2	64.0			
0.231000	41.1	1000.0	9.000	On	L1	9.8	21.3	62.4			
0.294000	35.9	1000.0	9.000	On	L1	9.8	24.5	60.4			
0.411000	34.6	1000.0	9.000	On	L1	10.0	23.1	57.6			
0.483000	38.3	1000.0	9.000	On	L1	10.0	17.9	56.3			


Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.150000	37.8	1000.0	9.000	On	L1	9.8	18.2	56.0
0.415500	28.1	1000.0	9.000	On	L1	10.0	19.4	47.5
0.478500	31.3	1000.0	9.000	On	L1	10.0	15.1	46.4
2.868000	28.1	1000.0	9.000	On	L1	9.8	17.9	46.0
3.075000	28.0	1000.0	9.000	On	L1	9.8	18.0	46.0
4.911000	27.7	1000.0	9.000	On	L1	9.9	18.3	46.0

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (29) / (30) Pages

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	49.8	1000.0	9.000	On	N	9.8	16.2	66.0
0.186000	44.3	1000.0	9.000	On	N	9.8	19.9	64.2
0.244500	38.9	1000.0	9.000	On	N	9.7	23.0	61.9
0.289500	34.9	1000.0	9.000	On	N	9.8	25.6	60.5
0.415500	33.9	1000.0	9.000	On	N	10.0	23.6	57.5
0.483000	37.5	1000.0	9.000	On	N	10.0	18.8	56.3

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.424500	26.2	1000.0	9.000	On	N	10.0	21.1	47.4
0.487500	30.1	1000.0	9.000	On	N	10.0	16.1	46.2
1.459500	25.4	1000.0	9.000	On	N	9.8	20.6	46.0
2.913000	27.2	1000.0	9.000	On	N	9.8	18.8	46.0
2.931000	26.8	1000.0	9.000	On	N	9.8	19.2	46.0
4.857000	26.9	1000.0	9.000	On	N	9.9	19.1	46.0

Fax: +82-31-624-9501

Report No.: CTK-2020-01709 Page (30) / (30) Pages

APPENDIX A – Test Equipment Used For Tests

No.	Name of Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	SPECTRUM ANALYZER	R&S	FSV30	100925	2020-01-17	2021-01-17
2	EMI Test Receiver	Rohde & Schwarz	ESCI7	100814	2019-10-22	2020-10-22
3	Active Loop Antenna	SCHWARZBECK	FMZB 1513	1513-126	2019-01-17	2021-01-17
4	Bilog Antenna	Schaffner	CBL6111C	2551	2019-04-17	2021-04-17
5	AMPLIFIER	SONOMA	310	291721	2020-01-22	2021-01-22
6	6dB Attenuator	R&S	DNF	272.4110.50-2	2019-10-25	2020-10-25
7	EMI Test Receiver	Rohde & Schwarz	ESU40	100336	2020-01-17	2021-01-17
8	Double Ridged Guide Antenna	ETS-Lindgren	3117	00154525	2019-02-22	2021-02-22
9	Double Ridged Guide Antenna	ETS-Lindgren	3116	00062916	2019-04-22	2021-04-22
10	Preamplifier	Agilent	8449B	3008A02011	2018-11-25	2020-11-25
11	Band Reject Filter	Micro Tronics	BRM50702	G233	2020-01-21	2021-01-21
12	Signal Generator	R&S	SMB100A	175528	2019-10-16	2020-10-16
13	DC Power Supply	Agilent	E3632A	MY40011638	2019-10-15	2020-10-15

No.	Name of Equipment	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable (conducted)	Junkosha Inc.	MWX221	1510S087	2020-02-02
2	3m Loop Cable (Radiated)	HUBER+SUHNER	N/A	N/A	2019-10-25
3	3 m 1GHz Above Below RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	2020-01-28
4	3 m 1GHz Above Below RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	N/A (below 1GHz)	2020-01-28
4	3 m 1GHz Above RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27573/4	2019-12-12
5	3 m 1GHz Above RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 104	801924/4	2019-12-12
6	3 m 1GHz Above RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY4728/2	2020-02-02
7	3 m 1GHz Above RF Cable (Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY2374/2	2020-02-02