

TEST REPORT

Report Number.: R14476982-E2

- Applicant : Qolsys Inc. 1919 S. Bascom Ave. Suite 600 Campbell, CA 95008
 - Model : IQPanel 4
 - FCC ID : 2AAJXQS-IQP4
- Contains FCC ID : XMR2019SC650TNA, 2AAJXQS-ZB, WP3PGMODEMLP, 2AAJXQS-SRF319-4
 - **IC** : 11205A-QSIQP4
 - Contains IC : 10224A-19SC650TNA, 11205A-QSZB, 1467C-PGMODEMLP, 11205A-SRF3194
- **EUT Description** : Home Management System
- Test Standard(s)
 :
 FCC 47 CFR PART 15 SUBPART C: 2022

 FCC 47 CFR PART 15 SUBPART E: 2022
 FCC 47 CFR PART 24E

 ISED RSS-247 ISSUE 2: 2017
 ISED RSS-210 ISSUE 10 + A1: 2020

 ISED RSS-133 ISSUE 6 + A1: 2018
 ISED RSS-GEN ISSUE 5 + A2: 2021

Date Of Issue: 2022-11-29

Prepared by: UL LLC 12 Laboratory Dr. Research Triangle Park, NC 27709 U.S.A. TEL: (919) 549-1400

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	2022-11-29	Initial Issue	Noah Bennett

Page 2 of 50

1.	AT	TESTATION OF TEST RESULTS	.5
2.	TE	ST RESULTS SUMMARY	.7
3.	TE	ST METHODOLOGY	.8
4.	FA	CILITIES AND ACCREDITATION	.8
5.	DE	CISION RULES AND MEASUREMENT UNCERTAINTY	.9
ł	5.1.	METROLOGICAL TRACEABILITY	.9
ł	5.2.	DECISION RULES	.9
4	5.3.	MEASUREMENT UNCERTAINTY	.9
	5.4.	SAMPLE CALCULATION	
6.	EQ	UIPMENT UNDER TEST1	0
(5.1.	EUT DESCRIPTION1	10
(5.2.	MAXIMUM OUTPUT POWER1	
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	
	5. <i>5</i> .	SOFTWARE AND FIRMWARE	
	5. <i>5.</i>	WORST-CASE CONFIGURATION AND MODE1	
	5. <i>5.</i> 5.6.	DESCRIPTION OF TEST SETUP1	
(5.0.	DESCRIPTION OF TEST SETOF	5
7.	ME	ASUREMENT METHOD1	4
7. 8.		ASUREMENT METHOD1 ST AND MEASUREMENT EQUIPMENT1	
	TE		5
8. 9.	TE	ST AND MEASUREMENT EQUIPMENT1	5
8. 9.	TE: AN 9.1. 9.2.	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2	5 7 7 21
8. 9.	TE AN 9.1. 9.2. 9.2	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 .1 CALCULATION 2	5 7 7 21
8. 9.	TE AN 9.1. 9.2. 9.2 9.2	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 .1 CALCULATION 2 .2 TRANSMISSION IN A 100MS WINDOW 2	5 7 7 21 22
8. 9.	TE: AN 9.1. 9.2. 9.2 9.2 9.2	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 .1 CALCULATION 2 .2 TRANSMISSION IN A 100MS WINDOW 2 .3 LONG PULSE WIDTH 2	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE AN 9.1. 9.2. 9.2 9.2 9.2 9.2	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 1. CALCULATION 2 2. TRANSMISSION IN A 100MS WINDOW 2 3. LONG PULSE WIDTH 2	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE : AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 1. CALCULATION 2 2. TRANSMISSION IN A 100MS WINDOW 2 3. LONG PULSE WIDTH 2 4. SHORT PULSE WIDTH 2	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE : AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 1. CALCULATION 2 2. TRANSMISSION IN A 100MS WINDOW 2 3. LONG PULSE WIDTH 2 4. SHORT PULSE WIDTH 2 5. NUMBER OF SHORT/LONG PULSES 2 DIATED TEST RESULTS 2	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE: AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2 9.2 9.2 10.1. 10.1.	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 1. CALCULATION 2 2. TRANSMISSION IN A 100MS WINDOW 2 3. LONG PULSE WIDTH 2 4. SHORT PULSE WIDTH 2 5. NUMBER OF SHORT/LONG PULSES 2 DIATED TEST RESULTS 2 TRANSMITTER ABOVE 1 GHz 2 1.1. SCAN 1 RESULTS 2	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE: AN 9.2. 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.	ST AND MEASUREMENT EQUIPMENT1TENNA PORT TEST RESULTS1DUTY CYCLE AND ON TIME1DUTY CYCLE AND ON TIME FOR SRF3192.1CALCULATION.2TRANSMISSION IN A 100MS WINDOW.3LONG PULSE WIDTH.4SHORT PULSE WIDTH.5NUMBER OF SHORT/LONG PULSES.2TRANSMITTER ABOVE 1 GHz.1SCAN 1 RESULTS.2SCAN 2 RESULTS.3.3	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE: AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2 9.2 9.2 10.1. 10. 10. 10.	ST AND MEASUREMENT EQUIPMENT1TENNA PORT TEST RESULTS1DUTY CYCLE AND ON TIME1DUTY CYCLE AND ON TIME FOR SRF3192.1. CALCULATION2.2. TRANSMISSION IN A 100MS WINDOW2.3. LONG PULSE WIDTH2.4. SHORT PULSE WIDTH2.5. NUMBER OF SHORT/LONG PULSES2DIATED TEST RESULTS2TRANSMITTER ABOVE 1 GHz2.1. SCAN 1 RESULTS3.3. SCAN 3 RESULTS3	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE: AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2 9.2 9.2 10.1. 10. 10. 10. 10.	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 1. CALCULATION 2 2. TRANSMISSION IN A 100MS WINDOW 2 3. LONG PULSE WIDTH 2 4. SHORT PULSE WIDTH 2 5. NUMBER OF SHORT/LONG PULSES 2 DIATED TEST RESULTS 2 TRANSMITTER ABOVE 1 GHz 2 1.1. SCAN 1 RESULTS 2 1.2. SCAN 2 RESULTS 3 1.3. SCAN 3 RESULTS 3 1.4. SCAN 4 RESULTS 3	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE: AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2 9.2 10.1. 10. 10. 10. 10. 10.	ST AND MEASUREMENT EQUIPMENT1TENNA PORT TEST RESULTS1DUTY CYCLE AND ON TIME1DUTY CYCLE AND ON TIME FOR SRF3192.1CALCULATION.2TRANSMISSION IN A 100MS WINDOW.3LONG PULSE WIDTH.4SHORT PULSE WIDTH.5NUMBER OF SHORT/LONG PULSES.6NUMBER OF SHORT/LONG PULSES.7TRANSMITTER ABOVE 1 GHz.1SCAN 1 RESULTS.2SCAN 2 RESULTS.3SCAN 3 RESULTS.3.3.4SCAN 4 RESULTS.3.3.5SCAN 5 RESULTS.3.3.5SCAN 5 RESULTS.3.3.5SCAN 5 RESULTS.3 <td>5 7 7 7 7 7 7 7 7 7 7</td>	5 7 7 7 7 7 7 7 7 7 7
8. 9.	TE: AN 9.1. 9.2. 9.2 9.2 9.2 9.2 9.2 9.2 9.2 10.1. 10. 10. 10. 10. 10. 10.	ST AND MEASUREMENT EQUIPMENT 1 TENNA PORT TEST RESULTS 1 DUTY CYCLE AND ON TIME 1 DUTY CYCLE AND ON TIME FOR SRF319 2 1. CALCULATION 2 2. TRANSMISSION IN A 100MS WINDOW 2 3. LONG PULSE WIDTH 2 4. SHORT PULSE WIDTH 2 5. NUMBER OF SHORT/LONG PULSES 2 DIATED TEST RESULTS 2 TRANSMITTER ABOVE 1 GHz 2 1.1. SCAN 1 RESULTS 2 1.2. SCAN 2 RESULTS 3 1.3. SCAN 3 RESULTS 3 1.4. SCAN 4 RESULTS 3	5 7 7 7 7 7 7 7 7 7 7

Page 3 of 50

11.	AC POWER LINE CONDUCTED EMISSIONS	4
12.	SETUP PHOTOS4	7

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Qolsys Inc. 1919 S. Bascom Ave. Suite 600 Campbell, CA 95008			
EUT DESCRIPTION:	Home Management System			
MODEL:	IQ Panel4			
SERIAL NUMBER:	QP4004X162224G04858, QP4004X162	2224G04876		
SAMPLE RECEIPT DATE:	2022-09-19 and 2022-09-22			
DATE TESTED:	2022-10-14 to 2022-11-08			
APPLICABLE STANDARDS				
S	TANDARD	TEST RESULTS		
CFR 47	Part 15 Subpart C	See Section 2		
CFR 47	Part 15 Subpart E	See Section 2		
CFR 47	Part 24 Subpart E	See Section 2		
ISED F	RSS-247 Issue 2	See Section 2		
ISED RSS-G	EN Issue 5 + A1 + A2	See Section 2		
ISED RSS	S-210 Issue 10+A1	See Section 2		
ISED RS	S-133 Issue 6+A1	See Section 2		

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document.

Page 5 of 50

Approved & Released For UL LLC. By:

More

Jeff Moser Operations Manager Consumer Technology Division UL LLC. Prepared By:

hand

Noah Bennett Electrical Engineer Consumer Technology Division UL LLC.

Page 6 of 50

2. TEST RESULTS SUMMARY

This report contains data/info provided by the applicant which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer. Below is a list of data/info provided:

- 1. Antenna Gain (Section 6.3)
- 2. Real Life Duty Cycle (Section 9.1)

FCC Clause	ISED Clause	Requirement	Result	Comment
15.209, 15.205, 24.238 (a)	RSS-GEN 8.9, 8.10, RSS-133 6.5.1	Radiated Emissions	See Comment	See Note 2.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions		See Note 1.

Note 1: This test report covers the assessment of the original radio modules installed in a new host under FCC KDB 996369 D04 Module Integration Guide v02. Radiated and AC Line Conducted simultaneous emissions spot checks were performed to verify continued compliance. It is the responsibility of the end product manufacturer to provide the original module reports to show full compliance to the applicable requirements (FCC Parts 15C, 15E, 24E, ISED RSS-133, RSS-210, RSS-247 and RSS-GEN) requirements.

Original module testing was covered under the individual FCC/ISED IDs as listed below:

Radio	FCC ID	ISED ID
BT, 2.4 WLAN (2402-2480)	XMR2019SC650TNA	10224A-19SC650TNA
5 GHz WLAN (5150-5825)		
LTE BAND 25 (1850-1915)		
Zigbee (2405-2480)	2AAJXQS-ZB	11205A-QSZB
Zwave (908.4-921.4)	2AAJXQS-IQP4	11205A-QSIQP4
PowerG (915.8)	WP3PGMODEMLP	1467C-PGMODEMLP
SRF-319 (319)	2AAJXQS-SRF319-4	11205A-SRF3194

Note 2: Radiated spot-checks were performed on worst-case data rates and channels as specified in section 6.5.

Page 7 of 50

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC CFR 47 Part 24E, ANSI C63.10-2013, ANSI C63.26-2015, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, FCC KDB 996369 D04 Module Integration Guide v02, RSS-GEN Issue 5 + A1 + A2, RSS-247 Issue 2, RSS-210 Issue 10 and RSS-133 Issue 6.

4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, Certificate Number 200246-0, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 2800 Suite Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	US0067	27265	825374

Page 8 of 50

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
All emissions, radiated	6.01 dB
Conducted Emissions (0.150-30MHz) - LISN	3.40 dB
Temperature	0.57°C
Humidity	3.39%
DC Supply voltages	0.57%
Time	3.39%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

Page 9 of 50

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a home management system that supports a BT, WLAN, Zwave, Zigbee, WWAN, PowerG and SRF-319 Radios. This report covers the simultaneous transmission of these radios. Please refer to section 6.5 for the radiated emissions performed.

6.2. MAXIMUM OUTPUT POWER

Previously Tested. This test report covers the assessment of the original radio modules installed in a new host under FCC KDB 996369 D04 Module Intregration Guide v02. Radiated Emissions and AC Line Conducted Emissions spotchecks were performed to verify continued compliance. It is the responsibility of the end product manufactuer to provide the oringinal module reports to show full compliance with the FCC and RSS stantards. It's also the responsibility of the end product manufactuer to ensure the radio is used during testing and within the final installation per rules of the certification grant, including antenna type, and gain, and measured output power.

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

Radio Type and Frequency Range (MHz)	Antenna Gain (dBi)	Antenna Type
BT, 2.4 WLAN (2402-2480)	1.25	Ceramic Loop
5 GHz WLAN (5150-5825)	2.17	Ceramic Loop
LTE BAND 25 (1850-1915)	-2.0	SMD Dielectric
Zigbee (2405-2480)	1.0	Single integrated embedded chip
Zwave (908.4-921.4)	1.0	ISM Band Loop
PowerG (915.8)	1.5	ISM Band Loop
SRF-319 (319)	-0.3	Flex PCB

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was msm8953_64-userdebug 9 PKQ1.190723.001, and Android Debug Bridge v29, and PowerG Modem Firmware v4.

The test utility software used during testing was Android Debug Bridge v29 for Zwave, Zigbee, PowerG, and SRF-319. QRCT3, rev v3.0-00296, was used for BT, and WLAN,

Page 10 of 50

6.5. WORST-CASE CONFIGURATION AND MODE

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the worst case channels and data rates based on previous filings reports.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X orientation was worst-case orientation for all radios besides Zigbee, which was Y orientation; therefore, all final radiated testing was performed with the EUT in both X and Y orientation. However, only the scans with the closest margins are included in this report.

The EUT supports LTE Bands 2/25, 4/66, 5, 7, 12/17, 13, 14, and 26. All testing was performed on Band 25 using QPSK modulation to represent the worst case scenario.

Worst-case data rates used in the below scans were:

Bluetooth: GFSK; PSet:9 802.11n HT40mode: MCS0 Zigbee: 125 Kbps All other radios only operate in 1 data-rate only.

The Following scans were performed to test the EUT while simultaneously transmitting with its radios:

<u>Scan 1</u>

High Bandedge:

2.4 WLAN: 2452 MHz, 11nHT40, MCS0, Power Setting: 15 Zigbee: 2480 MHz 915 MHz radio Power G 319 MHz radio Z Wave: 916 MHz Pset 10

<u>Scan 2</u>

High Bandedge:

BT: 2480 MHz, GFSK, DH5, Power Setting: 9 Zigbee: 2480 MHz 915 MHz radio Power G 319 MHz radio Z Wave: 916 MHz Pset 10

<u>Scan 3</u>

Spurious Emissions: 2.4 WLAN: 2437 MHz, 11nHT40, MCS0, Power setting: 15 Zigbee: 2440 MHz Power G: 915 MHz radio 319 MHz radio Z Wave: 916 MHz Pset 10

Page 11 of 50

<u>Scan 4</u>

Spurious Emissions: BT: 2441 MHz, GFSK DH5, Power Setting: 9 Zigbee: 2440 MHz Power G: 915 MHz radio 319 MHz radio Z Wave: 916 MHz Pset 10

<u>Scan 5</u>

Spurious Emissions:

BT: 2480 MHz, GFSK, DH5, Power Setting: 9
5 WLAN: 5180 MHz, 11nHT20, MCS0, Power Setting: 17
Zigbee: 2480 MHz
Power G 915 MHz radio
319 MHz radio
Z Wave: 916 MHz Pset 10

<u>Scan 6:</u>

Spurious Emissions: 2.4 WLAN: 2462 MHz, 11nHT40, MCS0, Power setting: 15 Zigbee: 2480 MHz WWAN: LTE Band 25, low channel (1850.7 MHz), bandwidth 1.4 MHz Power G: 915 MHz radio Pset 10 319 MHz radio Z Wave: 916 MHz

<u>Scan 7</u>

Spurious Emissions: BT: 2480 MHz, GFSK DH5, Power Setting: 9 Zigbee: 2480 MHz WWAN: LTE Band 25, low channel (1850.7 MHz), bandwidth 1.4 MHz Power G: 915 MHz radio 319 MHz radio Z Wave: 916 MHz Pset 10

<u>Scan 8</u>

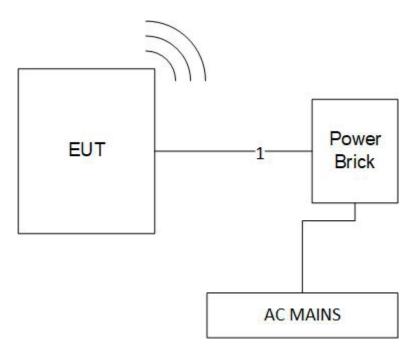
Spurious Emissions: BT: 2480 MHz, GFSK, DH5, Power Setting: 9 5 WLAN: 5510 MHz, 11nHT40, MCS0, Power Setting: 15 Zigbee: 2480 MHz WWAN: LTE Band 25, low channel (1850.7 MHz), bandwidth 1.4 MHz Power G 915 MHz radio 319 MHz radio Z Wave: 916 MHz Pset 10

Page 12 of 50

6.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
DescriptionManufacturerModelSerial NumberFCC ID							
Laptop	HP	15-p100dx	5CD43938XL	N/A			
Laptop	Lenovo	L470	PF0ZV66P	N/A			


I/O CABLES

	I/O Cable List						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC Power	1	Barrell	Shielded	<3m	Used to connect Host Device to AC Mains	

TEST SETUP

The EUT is connected to a test laptop computer before the tests. Test software configured the radio to transmit continuously during the entire test.

SETUP DIAGRAM

Page 13 of 50

7. MEASUREMENT METHOD

Duty Cycle: ANSI C63.10-2013 Section 11.6

<u>General Radiated Emissions</u> ANSI C63.10 Subclauses 6.3 and 6.6 and ANSI C63.26 Subclause 5.5.

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1, 6.10.5

Page 14 of 50

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
CBL087	Coax cable, RG223, N- male to BNC-male, 20-ft.	Pasternack	PE3W06143-240	2022-04-05	2023-04-05
HI0091	Environmental Meter	Fisher Scientific	15-077-963	2022-07-20	2023-07-20
PS215	AC Power Source	Elgar	CW2501M (s/n 1523A02397)	NA	NA
SOFTEMI	EMI Software	UL	Version 9.5 (18 Oct 2021)		21)
	Miscellaneous (if needed)				
CDECABLE001	ANSI C63.4 1m extension cable.	UL	Per Annex B of ANSI C63.4	2022-09-12	2023-09-12
LISN008	LISN, 50-ohm/50-uH, 2- conductor, 25A (For support gear only.)	Solar Electronics	8012-50-R-24-BNC	NA	NA

Test Equipment Used - Line-Conducted Emissions – Voltage (Morrisville – Conducted 1)

Page 15 of 50

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville – Chamber 1)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.		
	1-18 GHz						
AT0072	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2022-05-11	2023-05-11		
	Gain-Loss Chains						
C1-SAC03	Gain-loss string: 1-18GHz	Various	Various	2022-05-05	2023-05-05		
	Receiver & Software						
197954	Spectrum Analyzer	Rohde & Schwarz	ESW44	2022-04-14	2023-04-14		
SOFTEMI	EMI Software	UL	Version 9.5 (18 Oct 2021)				
	Additional Equipment used						
HI0096	Environmental Meter	Fisher Scientific	14-650-118 s/n 181562858	2022-09-26	2023-09-26		
PS214	AC Power Source	Elgar	CW2501M (s/n 1523A02396)	NA	NA		
212967	Wideband Radio Communications Tester	Rohde and Schwarz	CMW500	2021-11-15	2022-11-15		
HPF012	1GHz high-pass filter, 2W, F _{high} =18GHz	Micro-Tronics	HPM18129	2022-02-17	2023-02-17		
HPF004	1GHz high-pass filter, 2W, F _{high} =18GHz	Micro-Tronics	HPM50115-01	2022-02-17	2023-02-17		
BRF010	1.85-1.97GHz notch filter, 2W, F _{high} = 9GHz	Micro-Tronics	BRM50714-01	2022-02-17	2023-02-17		

Page 16 of 50

9. ANTENNA PORT TEST RESULTS

9.1. DUTY CYCLE AND ON TIME

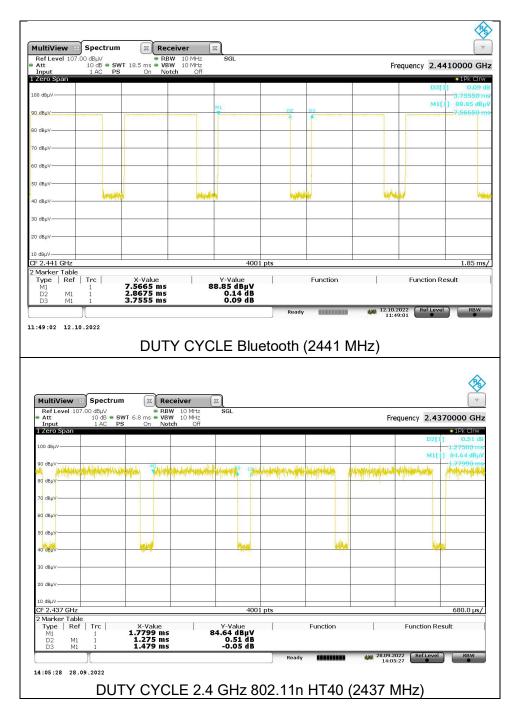
<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

ANSI C63.10 Section 11.6 KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS


Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
Bluetooth	2.868	3.756	0.764	76.35%	2.34	0.349
2.4 GHz 802.11n HT40	1.275	1.479	0.862	86.21%	1.29	0.784
5GHz 802.11n HT20	1.276	1.475	0.865	86.51%	1.26	0.784
Power G_915.863 MHz	100.000	100.000	1.000	100.00%	0.00	0.010
ZigBee - 2440 MHz	100.000	100.000	1.000	100.00%	0.00	0.010
Z-wave- 919.8 MHz	100.000	100.000	1.000	100.00%	0.00	0.010

Note: The manufacture has declared a maximum transmission time of 4ms and a 90 second Pulse period for the Power G radio. The Power G radio is also a FHSS device and protocol limited. The correction factor, therefore, would be 20log(Ton/T), where Ton is the declared pulse duration of 4ms, and T is the period of the pulse train, or 100ms if the period is longer than 100ms. The duty cycle correction would then result to 20log(4ms/100ms) = -27.96dB. According to KDB 558074 D01, Section 9B, and ANSI C63.10:2013, section 7.5, this -27.96dB can be manually subtracted from peak measurements to derive the RMS average value over a 100ms window. This correction has been performed as applicable on radiated measurements in section 10.

Page 17 of 50

Tester ID: 86150/11993; 19289 Tested Date: 2022-09-28; 2022-10-12

DUTY CYCLE PLOT

Level 112 ut	00 dBµV 10 dB • SW 1 AC PS	T 4.9 ms • VBV On Not	V 10 MHz	SGL			Fr	equency 5.5000	000 GHz
o Span								D2f1	1Pk Clrw 0.30 dB
			MI			BACKLE (65)		76450 ms	
			and publican	and the set of the set of the set		102 D3	and the state of the	M1[1]	9 8.74 dBµV; 759100 ms
									39100 ms
-VI									
VL									
VL									
-VI			a later a t			MILLE			a bri e Ball
JV-			Contract of			a a a a a a a a a a a a a a a a a a a			alstel
Vu									
									100.0 (
5 GHz rker Table				6001	pts				490.0 µs/
pe Ref		X-Value 1.7591 ms		Y-Value		Function		Function Result	
2 M1 3 M1	1 1	1.27645 ms 1.4749 ms		98.74 dBµV 0.30 dB 0.02 dB					
	Π				Ready	RECEIPTION OF THE RECEIPTION O	12.10.3	2022 Ref Level	RBW
:04 12.1	Dl			5 GHz 8(02.11r	n HT20	(5500	MHz)	
tiView 8	DL	n XR	eceiver	5 GHz 80	02.11r	n HT20	(5500	MHz)	<
tiView 8		n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	<u>1 HT20</u>		MHZ) requency 915.8	
tiView 8	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	hHT20		requency 915.8	630000 M
tiView 8 f Level 107	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20		Pequency 915.8	630000 M • 1Pk Cli 0.02 10:00000
tiView 8 Level 107 ut To Span	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20		requency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView 9 f Level 107 out o Span apv	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20		Pequency 915.8	630000 M • 1Pk Cl 0.02 10:00000 89.51 d
tiView 8 f Level 107 out o Span 3µV	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20		Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView 9 f Level 107 out o Span apv	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView = (Level 107 ut το Span aμν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView 8 Level 107 ut o Span aµv µv µv	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	h HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView = (Level 107 ut το Span aμν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView 9 Level 107 ut ο Span μν μν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	h HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView = Level 107 iut σ Span aμν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	h HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView 9 Level 107 ut ο Span μν μν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		D2.11r	n HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView = Level 107 o Span μν μν μν μν μν μν μν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView ε Level 107 ο Span αμν μν μν μν μν μν μν μν	Spectrum	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	n HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView ε [Level 107 o Span aμν μν μν μν μν μν μν μν μν μν	DL Spectrum 15 dB ev 1 AC ev	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		¥	h HT20	-	Pequency 915.8	530000 M • IPIKCI 0.02 - 10:00000 99.51 dl - 50:00000
tiView ε f Level 107 o Span aμν μν μν μν μν μν μν μν μν μν	DU Spectrum 15 dB v 1 AC * P	n III Re • R WT 100 ms • V	eceiver BW 10 MHz BW 10 MHz		02.11r	h HT20	-	Pequency 915.8	630000 M • 1Pk Cli 0.02 10.00000 89.51 dl
tiView = [Level 107 о Span ару и и и и и и и и и и и и и и и и и и и	DU Spectrum 15 dB eV 1 AC eP	n 🗶 Rd R Rd WT 100 ms = Vi S On N	eceiver BW 10 MHz BW 10 MHz		¥	Function	-	Pequency 915.8	10.0 m
tiView c Level 107 o Span μν μν μν μν μν μν μν μν μν μν μν μν μν	DU Spectrum 15 dB eV 1 AC eP	n 🖾 Rd R R WT 100 ms = V S On N	eceiver BW 10 MHz BW 10 MHz		¥		-	Pequency 915.8	10.0 m
tiView = [Level 107 о Span ару и и и и и и и и и и и и и и и и и и и	DU Spectrum 15 dB eV 1 AC eP	n 🗶 Rd R Rd WT 100 ms = Vi S On N	eceiver BW 10 MHz BW 10 MHz		01 pts	Function	F	Pequency 915.8	10.0 n 10.0 n 10.0 n
tiView е [Level 107 о Span ару и и и и и и и и и и и и и и и и и и и	DU Spectrum 15 dB v 1 AC P 1 AC P	n (▼ Ru	eceiver BW 10 MHz BW 10 MHz		01 pts		F	Pequency 915.8	10.0 m 10.0 m 10.0 m 10.0 m 10.0 m 10.0 m 10.0 m

86150/11993					
MultiView 😁 Spect					
Ref Level 102.00 dBµV ● Att 5 dB ● Input 1 AC	SWT 100 ms SWT 100 ms VBW PS On Notch	10 MHz SGL 10 MHz Mode Sweep Off	·	Fre	equency 2.4400000 GHz
1 Frequency Sweep				N	• 1Pk Clrw 1[1]
					2.44000000499980 GHz
90 dBµV					
80 dBµV					
70 dBµV		MI			
60 dBµV					
50 dBµV					
40 dBμV					
30 dBµV					
20 dBµV					
10 dBµV					
CF 2.440000005 GHz		8000 pts	1.0 Hz/		Span 10.0 Hz
		booo pra	Ready	11.10.2 14:12	022 (Reflevel) RBW
14:12:25 11.10.2022					
	DU	TY CYCLE Zig	Bee. 2440 M	Hz	
			, ,		
19289					
	rum 🕅 Rece	iver 🕅			
MultiView B Spect	• RBW	10 MHz SGL		Frequ	
MultiView :: Specta Ref Level 107.00 dBµV • Att 10 dB Input 1 AC 1 Zero Span		10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz • 1Pk Clrw
MultiView Specta Ref Level 107.00 dBµV Att 10 dB Input 1 AC I Zero Span	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz
MultiView Spectra Ref Level 107.00 dBµ/ Att 10 dB Input 1 AC I Zero Span 100 dBµ/	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect Ref Level 107.00 dbµV Att 10 db Att 10 db Input 1 AC Izero Span 100 dbµV 90 dbµV 90 dbµV	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz • 1Pk Claw 03[1] 1.08 dB 10.0000 ms
MultiView Spect Ref Level 107.00 dbµV Att 10 db Att 10 db Input 1 AC Izero Span 100 dbµV 90 dbµV 90 dbµV	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect RefLevel 107.00 db,M * At 10 db,M Input 1 AC 12 dero Span 1 AC 90 db,W 90 db,W 90 db,W 90 db,W 70 db,W 90 db,W	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect Ref Level 107.00 dBµV 10 dB ± Att 10 dB ± Input 1 AC 1 Zero Span 10 dB ± 100 dBµV 90 dBµV 80 dBµV 80 dBµV	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz	da ta	Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect RefLevel 107.00 dbµ/ Att 10 db 100 Input 1 AC 12 1200 Span 100 dbµ/ 90 dbµ/ 90 70 dbµ/ 60 60 dbµ/ 60	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz	Ca Ca	Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect Ref Level 107.00 db,M Att 10 db 107.00 db,M Att 10 db 100 db,M 1 AC Izdaro Span 1 AC 10 db,V 1 AC 90 db,V 90 db,V 80 db,V 60 db,V 70 db,V 60 db,V 80 db,V 40 db,V	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz	C ²³	Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect Ref Level 107.00 dBµ Att 10 dB Input 10 dB 100 dBµV 90 dBµV 80 dBµV 90 dBµV 70 dBµV 60 dBµV 80 dBµV 90 dBµV 30 dBµV 90 dBµV 90 dBµV 90 dBµV	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz		Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
Multiview Spect Ref Level 107.00 dBµW Att Input 10 dB 100 dBµV 90 dBµV 90 dBµV 90 dBµV 80 dBµV 90 dBµV 90 dBµV 90 dBµV	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz	cp 	Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect Ref Level 107.00 db,M At Input 10 db Input 1 AC 12 dro Span 1 AC 100 db,V 90 db,V 90 db,V 90 db,V 80 db,V 60 db,V 90 db,V 60 db,V 90 db,V 90 db,V	• RBW • SWT 100 ms • VBW	IO MH2: SGL IO MH2: OFF		Frequ	ency 908,4200000 MHz •ifkClub 03[1] 1.08 dB 10,0000 ms
MultiView Spect Ref Level 107.00 dbjW Att 10 db Input 10 db 100 dbjW 1 AC 12 Zero Span 1 AC 100 dbjW 90 dbjW 90 dbjW </td <td>• RBW • SWT 100 ms • VBW</td> <td>10 MHz SGL 10 MHz SGL 0 MHz MHz SGL 0 Hz SG</td> <td></td> <td>Frequ</td> <td>ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV</td>	• RBW • SWT 100 ms • VBW	10 MHz SGL 10 MHz SGL 0 MHz MHz SGL 0 Hz SG		Frequ	ency 908.4200000 MHz • 19k clinw D3[1] 1.08 dB 10.0000 ms • 11[1]-53.45 dBpV
MultiView Spect Ref Level 107.00 db,M Att Att 10 db 4 Input 1 db 4 100 db,V 1 AC 90 db,V 90 db,V 90 db,V	* BBW * SWT 100 ms * VBW PS On Notch	I 0 MHz SGL 10 MHz SGL Off V 0 MHz SGL 0 MHZ SGL		Frequ	ency 908,4200000 MHz •ifkClub 03[1] 1.08 dB 10,0000 ms
MultiView Spect Ref Level 107.00 dByW Att 10 dB e Input 10 dB e 100 dByW 90 dByW 90 dByW 60 dByW 90 dByW 90 dByW 90 dByW	×-Value	IO MHZ SGL IO MHZ OFF	pts Function		ency 908.4200000 MHz • 19k God B 10.0000 ms - M1{1} 53.45 dBµV 50.0000 ms - M1{1}-53.45 dBµV
MultiView Spect Ref Level 107.00 dBµV 10 dB e Input 10 dB e 100 dBµV 90 dBµV 90 dBµV </td <td>* BBW * SWT 100 ms * VBW PS On Notch</td> <td>I 0 MHz SGL 10 MHz SGL Off V 0 MHz SGL 0 MHZ SGL</td> <td>pts</td> <td>Frequ</td> <td>ency 908.4200000 MHz • 19/6 Close 10.0000 ms 10.0000 ms 11-06 db 10.0000 ms 50.0000 ms 50.0000 ms 10.00 ms 10.0 ms/ Function Result 10.0 ms/</td>	* BBW * SWT 100 ms * VBW PS On Notch	I 0 MHz SGL 10 MHz SGL Off V 0 MHz SGL 0 MHZ SGL	pts	Frequ	ency 908.4200000 MHz • 19/6 Close 10.0000 ms 10.0000 ms 11-06 db 10.0000 ms 50.0000 ms 50.0000 ms 10.00 ms 10.0 ms/ Function Result 10.0 ms/
MultiView Spect Ref Level 107.00 dBµV 10 dB e Input 10 dB e 100 dBµV 90 dBµV 90 dBµV 10 dBµV	× SWT 100 ms * VBW SWT 100 ms * VBW PS On Notch	I 0 MHz SGL 10 MHz SGL Off V 0 MHz SGL 0 MHZ SGL	pts Function	15.09.2 14:0:	ency 908.4200000 MHz • 19/6 Close 10.0000 ms 10.0000 ms 11-06 db 10.0000 ms 50.0000 ms 50.0000 ms 10.00 ms 10.0 ms/ Function Result 10.0 ms/

9.2. DUTY CYCLE AND ON TIME FOR SRF319

LIMITS

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

9.2.1. CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

Tester:	11993
Date:	2022-06-15

One	Long Pulse	# of	Short	# of	Duty	20*Log
Period	Width	Long	Width	Short	Cycle	Duty Cycle
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)
((1 41000	(1 41000		(42)

Page 21 of 50

9.2.2. TRANSMISSION IN A 100MS WINDOW

Tester:	11993
Date:	2022-06-15

		RF	50 Ω	DC):Wide ←	Trig Del Trig: Vic			ALIGN AUTO e: Log-Pwr	01:33:37 PM Jun 1 TRACE 1 2 TYPE WW DET P N	3 4 5 6	System
0 dB/d	iv R	ef 0	.00 dE	3m	IFGa	in:Low	Atten: 1	0 dB			DEITEN	NNNN	Show
													Power On
20.0											1		Alignments
0.0													I/O Config
0.0												[Restore Defaults
'0.0 10.0 <mark>111</mark>				llµwy	llynnah	hillywylle	vy latta tata	aller and the second	\4\yange	hharthalfrei	minallidityratiolidi	hyunfun	Control Panel
20.0													Moi 1 of
	319.5 N 100			12		VBW	100 kHz			Sweep 1	Span 00.0 ms (100′	1 pts)	
SG										STATUS			

Tester:	11993
Date:	2022-07-22

9.2.3. LONG PULSE WIDTH

Tester:	11993
Date:	2022-06-15


9.2.4. SHORT PULSE WIDTH

Tester:	11993
Date:	2022-06-15

	R	Analyzer - Sw F 50 S	2 DC					Dela	NSE:I ay-2.(ms	Avg	а Тур	ALIG	IN AU		01:47	TRACE	un 15, 2 1 2 3 4	5 6		erties
					Wide n:Low	•		:: Lin en: 1										DET	WWWW PNNN	NN N	Select	Marker
0 dB/div	Re	ef 8.00 d	Bm													Δ	Mkr	6 11 0.	6.0 80 c	µs 1B		6
2.00		1 <mark>2∆1</mark>		<mark>∧4∆</mark> 3					5_6	Δ5											Bala	tive To
2.0		YY F	Y	¥ F] [Ĥ		ſ		П	-		F				\square	ſ	Reid	5
12.0																						(is Scal
2.0										Ļ												Time
2.0							-			_										+	Auto	Ma
2.0							-			-							_			-	Marke	r Trace
2.0	-	11			1	-	-	a.	++		1		_	. 41	-	++				+	Trace1,	
12.0	Ip	<u> </u>	1	-11	-11	- 1	<u></u>	T.	- 1	1	-44		M			M	- WY		-Y	W-		-
		00000 M	Hz								_								an 0			Line
es BW					VB	W 1	00 k								<u> </u>		000 m	•		,	On	<u>0</u>
KR MODE 1 N	TRC SC		Х	444.	0 µs		Y -7.	30 d	Bm	ł	UNCT	ION	Fl	JNCTIC	DN WI	DTH	FU	NCTION	VALUE			
2 Δ1 3 N	1 t 1 t	(Δ)		116. 940.	0µs 0µs	Δ)		0.66 07 d														
4 Δ3 5 N	1 t	(Δ)			0 µs	(Δ)		0.80 09 d	dB													
6 Δ5	1 t 1 t	(Δ)			0 µs	(Δ)		0.80												E		
7 8																				-11		
9																						
1																				-		
								11		_										•		

9.2.5. NUMBER OF SHORT/LONG PULSES

Tester:	11993
Date:	2022-06-15

10. RADIATED TEST RESULTS

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uA/m) at 3 m	Field Strength Limit (dBuA/m) at 3 m
0.009-0.490	6.37/F(kHz) @ 300 m	-
0.490-1.705	63.7/F(kHz) @ 30 m	-
1.705 - 30	0.08 @ 30m	-
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

FCC: §24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

RSS133§6.5.1

Equipment shall comply with the limits in (i) and (ii) below.

- In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p(watts).
- (ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10p(watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

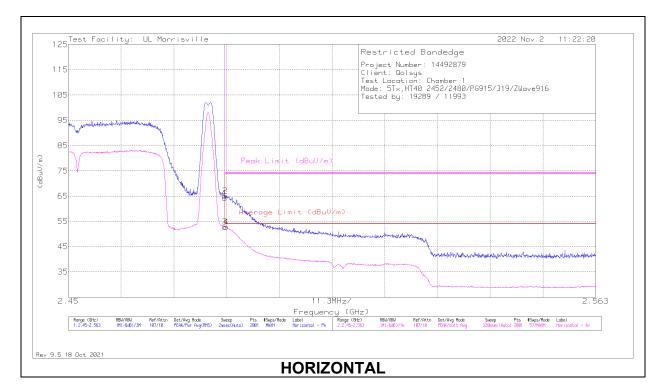
Page 26 of 50

TEST PROCEDURE

The EUT is placed on a non-conducting table 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10 and ANSI C63.26. The EUT is set to transmit in a continuous mode.

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements. For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements. For this test program depending on the signal, average measurements were completed with a) linear voltage averaging RBW – 1MHz, VBW – 3MHz or b) peak detection and VBW of 1/Ton where Ton was the appropriate on time for the signal. Refer to the duty cycle section for the appropriate on times for each signal type.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the channels that allow for the most overlap for spurious or harmonic signals in each applicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

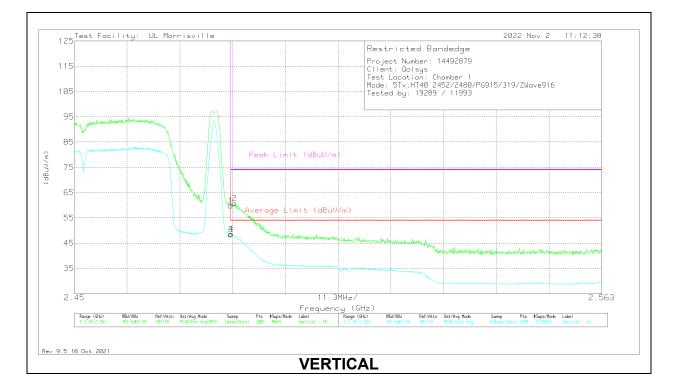
OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Page 27 of 50

10.1. TRANSMITTER ABOVE 1 GHz

10.1.1. SCAN 1 RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.4835	56.13	Pk	32.5	-24.4	64.23	-	-	74	-9.77	96	160	Н
2	* ** 2.48356	56.97	Pk	32.5	-24.4	65.07	-	-	74	-8.93	96	160	Н
3	* ** 2.4835	44.76	V1TV	32.5	-24.4	52.86	54	-1.14	-	-	96	160	Н
4	* ** 2.48384	44.68	V1TV	32.5	-24.4	52.78	54	-1.22	-	-	96	160	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

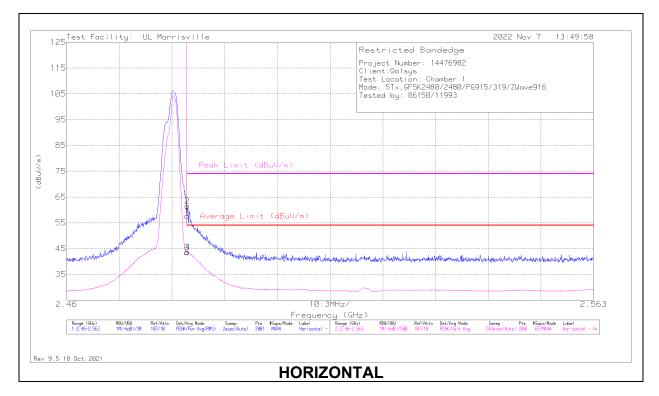
** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

V1TV - VB=1/Ton, Averaging where: Ton is packet duration. Note – worst-case on time was WLAN at 1.275 ms for the signal present. Therefore 1/Ton = min. 785 Hz.

Page 28 of 50

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.4835	51.77	Pk	32.5	-24.4	59.87	-	-	74	-14.13	42	235	V
2	* ** 2.4843	52.54	Pk	32.5	-24.3	60.74	-	-	74	-13.26	42	235	V
3	* ** 2.4835	40.3	V1TV	32.5	-24.4	48.4	54	-5.6	-	-	42	235	V
4	* ** 2.48356	40.4	V1TV	32.5	-24.4	48.5	54	-5.5	-	-	42	235	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band

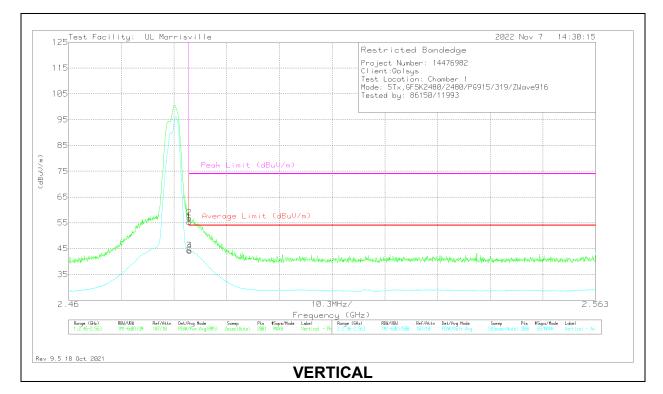
Pk - Peak detector

V1TV - VB=1/Ton, Linear Voltage Average where: Ton is packet duration. Note – worst-case on time was WLAN at 1.275 ms for the signals present. Therefore 1/Ton = min. 785 Hz.

Page 29 of 50

10.1.2. SCAN 2 RESULTS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Corrected Reading (dBuV/m)	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.48354	49.51	Pk	32.5	-24.4	57.61	-	-	74	-16.39	9	130	Н
2	* ** 2.48359	53.39	Pk	32.5	-24.4	61.49	-	-	74	-12.51	9	130	Н
3	* ** 2.48354	35.37	V1TV	32.5	-24.4	43.47	54	-10.53	-	-	9	130	Н
4	* ** 2.48359	35.64	V1TV	32.5	-24.4	43.74	54	-10.26	-	-	9	130	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

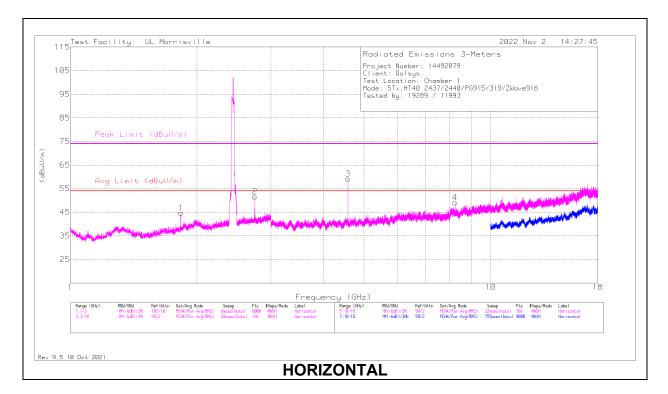
** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

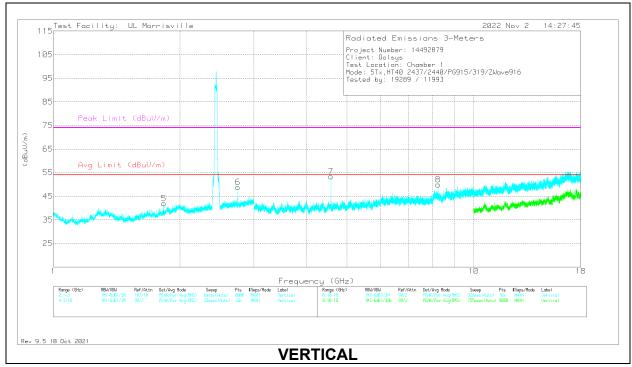
V1TV - VB=1/Ton, Linear Voltage Average where: Ton is packet duration. Note – worst-case on time was Bluetooth at 2.8 ms for the signals present. Therefore 1/Ton = min. 360 Hz.

Page 30 of 50

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.48354	47.25	Pk	32.5	-24.4	55.35	-	-	74	-18.65	276	114	V
2	* ** 2.48359	48.86	Pk	32.5	-24.4	56.96	-	-	74	-17.04	276	114	V
3	* ** 2.48354	36.25	V1TV	32.5	-24.4	44.35	54	-9.65	-	-	276	114	V
4	* ** 2.48369	36.06	V1TV	32.5	-24.4	44.16	54	-9.84	-	-	276	114	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band


Pk - Peak detector

V1TV - VB=1/Ton, Linear Voltage Average where: Ton is packet duration. Note – worst-case on time was Bluetooth at 2.8 ms for the signals present. Therefore 1/Ton = min. 360 Hz.

Page 31 of 50

10.1.3. SCAN 3 RESULTS

Page 32 of 50

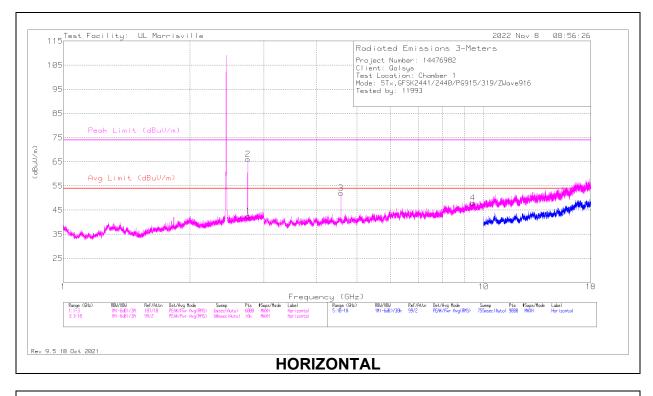
Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Filter (dB)	DCCF	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	Margin (dB)	Azimut h (Degs)	Height (cm)	Polarity
1	** 1.83181	38.29	Pk	30.8	-24.7	.4	-	44.79	54	-9.21	74	-29.21	0-360	200	Н
2	* ** 2.74771	44.61	PK2	32.5	-24.2	.4	-	53.31	-	-	74	-20.69	195	109	Н
	* ** 2.74765	40.96	V1TV	32.5	-24.2	.4	-	49.66	54	-4.34	-	-	195	109	Н
5	** 1.83181	35.46	Pk	30.8	-24.7	.4	-	41.96	54	-12.04	74	-32.04	0-360	101	V
6	* ** 2.74751	42.29	PK2	32.5	-24.2	.4	-	50.99	-	-	74	-23.01	164	191	V
	* ** 2.74757	37.68	V1TV	32.5	-24.2	.4	-	46.38	54	-7.62	-	-	164	191	V
3#	* ** 4.57936	58.43	PK2	34	-32.2	.3	-	60.53	-	-	74	-13.47	112	269	Н
	* ** 4.57937	58.43	PK2	34	-32.2	.3	-27.96	32.57	54	-21.43	-	-	112	269	Н
4	* ** 8.24295	44.95	PK2	35.8	-28.9	.4	-	52.25	-	-	74	-21.75	116	269	Н
	* ** 8.24292	37.87	V1TV	35.8	-28.9	.4	-	45.17	54	-8.83	-	-	116	269	Н
7#	* ** 4.57945	51.77	PK2	34	-32.2	.3	-	53.87	-	-	74	-20.13	167	280	V
	* ** 4.57937	51.77	PK2	34	-32.2	.3	-27.96	25.91	54	-28.09	-	-	167	280	V
8	* ** 8.24291	44.7	PK2	35.8	-28.9	.4	-	52	-	-	74	-22	164	229	V
	* ** 8.24255	36.87	V1TV	35.8	-29	.4	-	44.07	54	-9.93	-	-	164	229	V

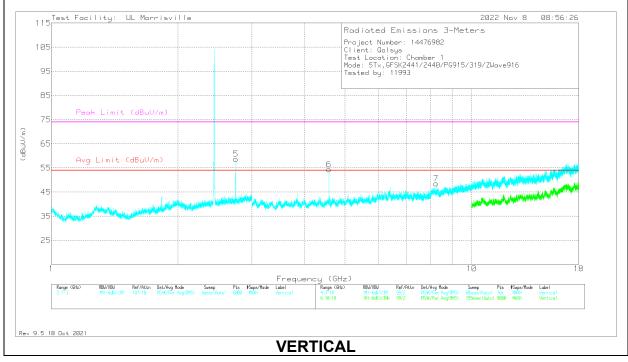
RADIATED EMISSIONS

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector


PK2 - Maximum Peak


V1TV - VB=1/Ton, Linear Voltage Average where: Ton is packet duration. Note – worst-case on time was WLAN at 1.275 ms for the signals present. Therefore 1/Ton = min. 785 Hz.

Note # - Marker 3 and Marker 7 are spurious harmonics of the PowerG radio. To prove this, a standalone scan of the PowerG radio was performed to witness harmonics, and the above scan was re-performed without the PowerG radio installed to observe emissions. It was noted that the same harmonics were **clearly visible** in the PowerG standalone scan, and the harmonics were **no longer visible** in the simultaneous tx scan with PowerG uninstalled. Therefore, it is justified to apply the duty cycle correction factor of -27.96dB as noted in section 9.1 to the Peak measurements made at these markers, to derive the RMS average measurements.

Page 33 of 50

Page 34 of 50

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	··· / ····	Filter (dB)	DCCF	Corrected Reading (dBuV/m)	AVg Limit (dBuV/m)	-	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.75596	33.53	Pk	32.5	-23.8	.4	-	42.63	54	-11.37	74	-31.37	0-360	200	Н
2#	* ** 2.74753	57.97	PK2	32.5	-24.2	.4	-	66.67	-	-	74	-7.33	287	107	Н
	* ** 2.74761	57.97	PK2	32.5	-24.2	.4	-27.96	38.71	54	-15.29	-	-	287	107	Н
5#	* ** 2.74766	57.23	PK2	32.5	-24.2	.4	-	65.93	-	-	74	-8.07	360	366	V
	* ** 2.74761	57.23	PK2	32.5	-24.2	.4	-27.96	37.97	54	-16.03	-	-	360	366	V
3#	* ** 4.57916	52.27	PK2	34	-32.2	.3	-	54.37	-	-	74	-19.63	28	378	Н
	* ** 4.57932	52.27	PK2	34	-32.2	.3	-27.96	26.41	54	-27.59	-	-	28	378	Н
4	* ** 9.43346	41.28	PK2	36.6	-27.8	.6	-	50.68	-	-	74	-23.32	171	351	Н
	* ** 9.43125	26.45	V1TV	36.6	-28	.6	-	35.65	54	-18.35	-	-	171	351	Н
6#	* ** 4.57948	55.35	PK2	34	-32.2	.3	-	57.45	-	-	74	-16.55	5	280	V
	* ** 4.57934	55.35	PK2	34	-32.2	.3	-27.96	29.49	54	-24.51	-	-	5	280	V
7	* ** 8.24301	45.02	PK2	35.8	-28.9	.4	-	52.32	-	-	74	-21.68	234	246	V
	* ** 8.24283	36.57	V1TV	35.8	-28.9	.4	-	43.87	54	-10.13	-	-	234	246	V

RADIATED EMISSIONS

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

PK2 - Maximum Peak

V1TV - VB=1/Ton, Linear Voltage Average where: Ton is packet duration

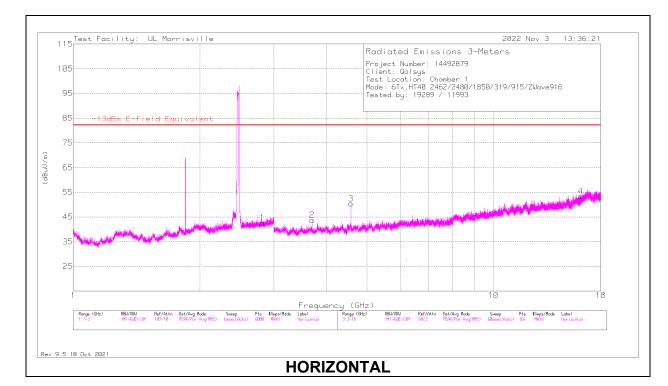
Note # - Marker 2, Marker 3, Marker 5 and Marker 6 are spurious harmonics of the PowerG radio. To prove this, a standalone scan of the PowerG radio was performed to witness harmonics, and the above scan was re-performed without the PowerG radio installed to observe emissions. It was noted that the same harmonics were **clearly visible** in the PowerG standalone scan, and the harmonics were **no longer visible** in the simultaneous tx scan with PowerG uninstalled. Therefore, it is justified to apply the duty cycle correction factor of -27.96dB as noted in section 9.1 to the Peak measurements made at these markers, to derive the RMS average measurements.

Page 35 of 50

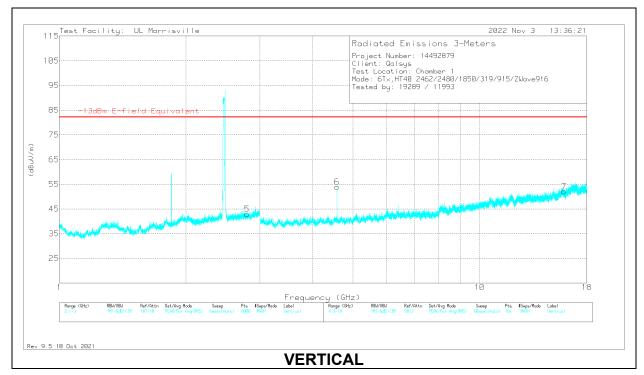
Page 36 of 50 UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709 USA This report shall not be reproduced except in full, without the written approval of UL LLC

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Filter (dB)	DCCF	Reading	Avg Limit (dBu\//m)	(dB)	Peak Limit (dBuV/m)	-	UNII Non- Restricted (dBuV/m)		Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.70396	48.5	PK-U	32.5	-24.2	.5	-	57.3	-	-	74	-16.7	68.2	-10.9	166	299	Н
	* ** 2.70457	30.12	V1TV	32.5	-24.2	.5	-	38.92	54	-15.08	-	-	-	-	166	299	н
2	* ** 2.74776	44	PK-U	32.5	-24.2	.4	-	52.7	-	-	74	-21.3	68.2	-15.5	145	178	Н
	* ** 2.74762	40.02	V1TV	32.5	-24.2	.4	-	48.72	54	-5.28	-	-	-	-	145	178	Н
5	** 1.832	39.25	Pk	30.8	-24.7	.4	-	45.75	-	-	-	-	68.2	-22.45	0-360	101	Н
6	** 1.832	34.62	Pk	30.8	-24.7	.4	-	41.12	-	-	-	-	68.2	-27.08	0-360	200	V
7	* ** 2.696	36.82	Pk	32.5	-24.1	.5	-	45.72	54	-8.28	74	-28.28	68.2	-22.48	0-360	200	V
8	* ** 2.7475	43.28	PK-U	32.5	-24.2	.4	-	51.98	-	-	74	-22.02	68.2	-16.22	172	245	V
	* ** 2.74758	38.99	V1TV	32.5	-24.2	.4	-	47.69	54	-6.31	-	-	-	-	172	245	V
3#	* ** 4.57911	47.15	PK-U	34	-21.1	.3	-	60.35	-	-	74	-13.65	68.2	-7.85	164	142	Н
	* ** 4.57938	47.15	PK-U	34	-21.1	.3	-27.96	32.39	54	-21.61	-	-	-	-	164	142	Н
4	* ** 4.95901	43.22	PK-U	34	-22.3	.3	-	55.22	-	-	74	-18.78	68.2	-12.98	159	221	Н
	* ** 4.95901	31.53	V1TV	34	-22.3	.3	-	43.53	54	-10.47	-	-	-	-	159	221	Н
10#	* ** 4.57926	45.17	PK-U	34	-21.1	.3	-	58.37	-	-	74	-15.63	68.2	-9.83	139	230	V
	* ** 4.57937	45.17	PK-U	34	-21.1	.3	-27.96	30.41	54	-23.59	-	-	-	-	139	230	V
11	* ** 4.96134	35.69	Pk	34	-22.3	.3	-	47.69	54	-6.31	74	-26.31	68.2	-20.51	0-360	200	V
9	4.4359	36.2	Pk	33.7	-20.7	.3	-	49.5	-	-	-	-	68.2	-18.7	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band


Pk - Peak detector

PK-U - Maximum Peak

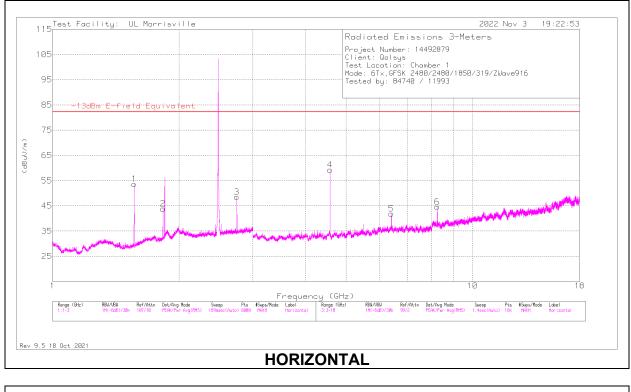

V1TV - VB=1/Ton, Linear Voltage Average where: Ton is packet duration

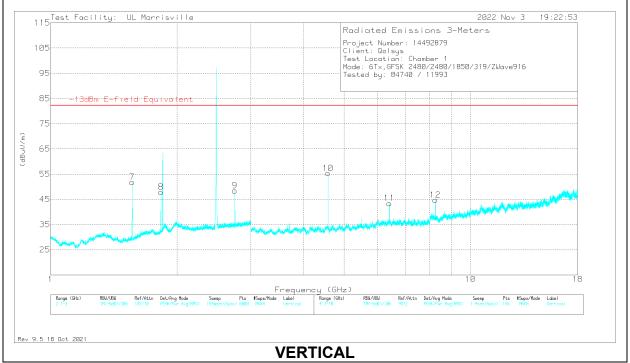
Note # - Marker 3 and Marker 10 are spurious harmonics of the PowerG radio. To prove this, a standalone scan of the PowerG radio was performed to witness harmonics, and the above scan was re-performed without the PowerG radio installed to observe emissions. It was noted that the same harmonics were clearly visible in the PowerG standalone scan, and the harmonics were no longer visible in the simultaneous tx scan with PowerG uninstalled. Therefore, it is justified to apply the duty cycle correction factor of -27.96dB as noted in section 9.1 to the Peak measurements made at these markers, to derive the RMS average measurements.

Page 37 of 50

10.1.6. SCAN 6 RESULTS

Page 38 of 50

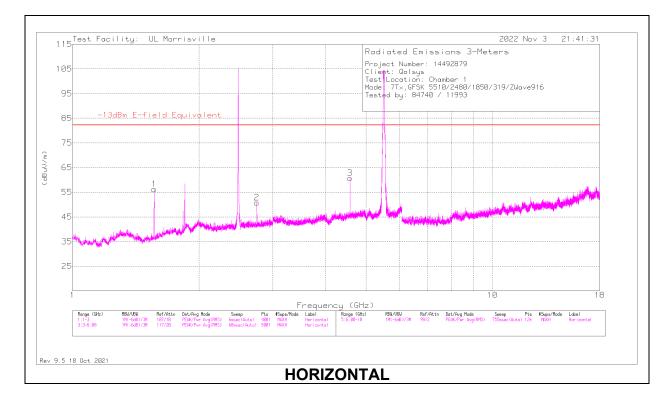

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Filter (dB)	Filter (dB)	Corrected Reading (dBuV/m)	-13dBm E-field	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.8163	32.85	Pk	32.6	-23.9	.7	.4	42.65	82.2	-39.55	0-360	101	Н
5	* ** 2.79597	33.33	Pk	32.6	-24.1	.6	.5	42.93	82.2	-39.27	0-360	200	V
2	* ** 3.70125	43.18	Pk	33	-32.4	0	0	43.78	82.2	-38.42	0-360	101	Н
3	* ** 4.57875	48.65	Pk	34	-32.2	0	0	50.45	82.2	-31.75	0-360	101	Н
4	* ** 16.11656	37.64	Pk	40.9	-25.2	0	0	53.34	82.2	-28.86	0-360	200	Н
6	* ** 4.57969	52.17	Pk	34	-32.2	0	0	53.97	82.2	-28.23	0-360	101	V
7	* ** 15.89531	36.42	Pk	40.6	-24.9	0	0	52.12	82.2	-30.08	0-360	101	V

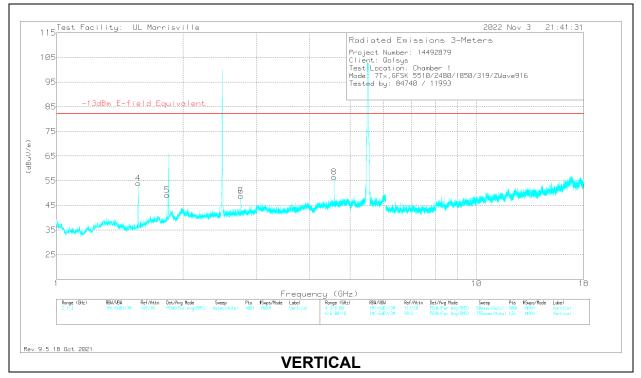

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

Page 39 of 50

Page 40 of 50 UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709 USA This report shall not be reproduced except in full, without the written approval of UL LLC


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Filter (dB)	Filter (dB)	Corrected Reading (dBuV/m)	-13dBm E- field Equivalent	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 1.56343	48.83	Pk	28.1	-24.9	.6	1	53.63	82.2	-28.57	0-360	200	Н
2	** 1.83147	35.53	Pk	30.7	-24.7	.5	1.8	43.83	82.2	-38.37	0-360	100	н
3	* ** 2.74763	39.09	Pk	32.5	-24.2	.7	.4	48.49	82.2	-33.71	0-360	200	Н
4	* ** 4.57875	57.08	Pk	34	-32.2	.4	0	59.28	82.2	-22.92	0-360	200	Н
5	6.41063	36.25	Pk	35.6	-30.5	.5	0	41.85	82.2	-40.35	0-360	200	Н
6	* ** 8.2425	37.34	Pk	35.8	-29	.5	0	44.64	82.2	-37.56	0-360	200	Н
7	* ** 1.56443	46.91	Pk	28.1	-24.8	.6	1	51.81	82.2	-30.39	0-360	200	V
8	** 1.83181	39.48	Pk	30.8	-24.7	.5	1.8	47.88	82.2	-34.32	0-360	200	V
9	* ** 2.74763	39.03	Pk	32.5	-24.2	.7	.4	48.43	82.2	-33.77	0-360	101	V
10	* ** 4.57875	53.11	Pk	34	-32.2	.4	0	55.31	82.2	-26.89	0-360	200	V
11	6.41063	37.84	Pk	35.6	-30.5	.5	0	43.44	82.2	-38.76	0-360	101	V
12	* ** 8.24438	37.33	Pk	35.8	-28.9	.5	0	44.73	82.2	-37.47	0-360	200	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

Note - VBW was set at 30 kHz. Due to margin of this plot and noise signature and margins of Scans 6 and 8, a rescan at VBW = 3MHz was deemed unnessesary.

Page 42 of 50 UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709 USA This report shall not be reproduced except in full, without the written approval of UL LLC

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AT0072 (dB/m)	Gain/Loss (dB)	Filter (dB)	Filter (dB)	Corrected Reading (dBuV/m)	-13dBm E- field Equivalent	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 1.564	51.32	Pk	28.1	-24.8	.6	1	56.22	82.2	-25.98	0-360	200	Н
2	* ** 2.748	41.43	Pk	32.5	-24.2	.7	.4	50.83	82.2	-31.37	0-360	200	Н
4	* ** 1.5645	49.07	Pk	28.1	-24.8	.6	1	53.97	82.2	-28.23	0-360	200	V
5	** 1.832	40.74	Pk	30.8	-24.7	.5	1.8	49.14	82.2	-33.06	0-360	101	V
6	* ** 2.748	39.43	Pk	32.5	-24.2	.7	.4	48.83	82.2	-33.37	0-360	101	V
7	* ** 2.748	39.43	Pk	32.5	-24.2	.7	.4	48.83	82.2	-33.37	0-360	101	V
3	* ** 4.57942	58.55	Pk	34	-32.2	.4	0	60.75	82.2	-21.45	0-360	200	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band Pk - Peak detector

Page 43 of 50 UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709 USA This report shall not be reproduced except in full, without the written approval of UL LLC

11. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

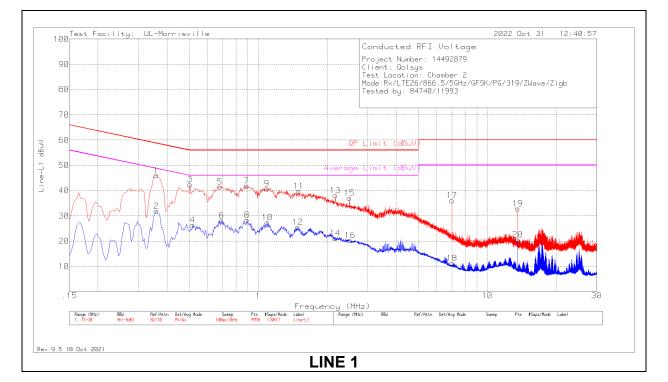
FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

* Decreases with the logarithm of the frequency.

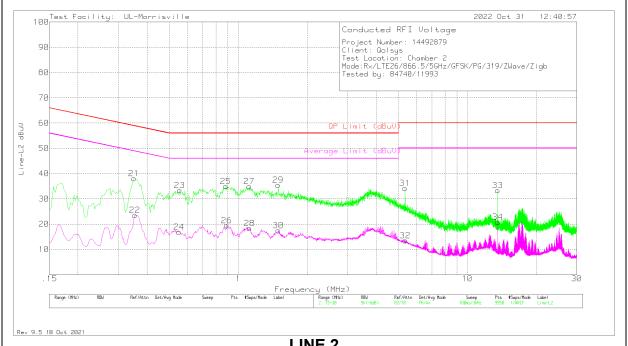
TEST PROCEDURE


The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


Page 44 of 50

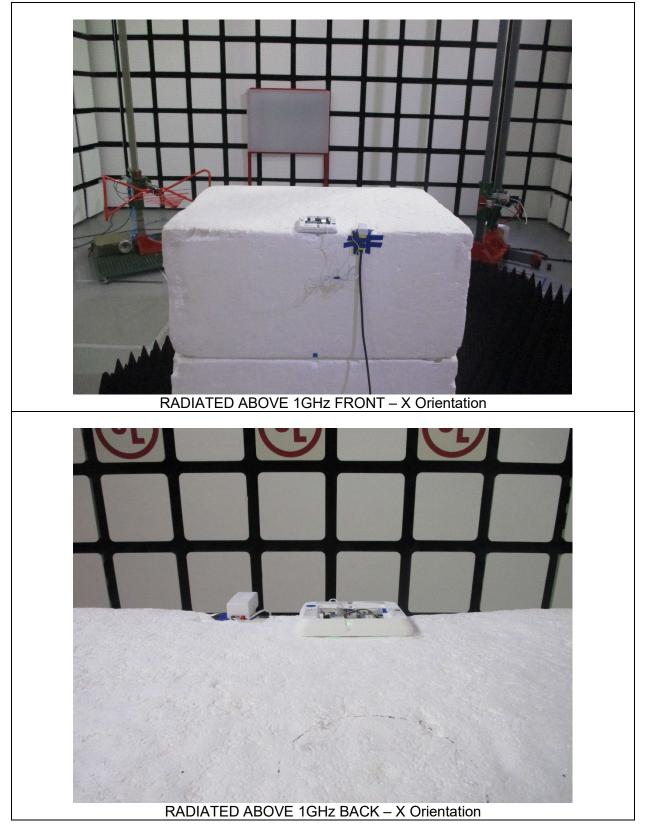
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	QP Limit (dBuV)	Margin (dB)	Average Limit (dBuV)	Margin (dB)
1	.36	36.1	Pk	.1	9.8	46	58.73	-12.73	-	-
2	.36	21.95	Av	.1	9.8	31.85	-	-	48.73	-16.88
3	.504	32.65	Pk	0	9.8	42.45	56	-13.55	-	-
4	.516	16.56	Av	0	9.8	26.36	-	-	46	-19.64
5	.681	31.75	Pk	0	9.8	41.55	56	-14.45	-	-
6	.693	18.33	Av	0	9.8	28.13	-	-	46	-17.87
7	.891	32.02	Pk	0	9.8	41.82	56	-14.18	-	-
8	.894	18.62	Av	0	9.8	28.42	-	-	46	-17.58
9	1.089	31.02	Pk	0	9.8	40.82	56	-15.18	-	-
10	1.095	17.63	Av	0	9.8	27.43	-	-	46	-18.57
12	1.488	15.72	Av	0	9.8	25.52	-	-	46	-20.48
11	1.503	30.01	Pk	0	9.8	39.81	56	-16.19	-	-
13	2.169	28.32	Pk	0	9.8	38.12	56	-17.88	-	-
14	2.169	11.45	Av	0	9.8	21.25	-	-	46	-24.75
15	2.505	27.34	Pk	0	9.8	37.14	56	-18.86	-	-
16	2.517	10.55	Av	0	9.8	20.35	-	-	46	-25.65
18	6.999	1.24	Av	.1	9.9	11.24	-	-	50	-38.76
17	7.008	26.07	Pk	.1	9.9	36.07	60	-23.93	-	-
19	13.56	22.73	Pk	.1	10	32.83	60	-27.17	-	-
20	13.56	10.43	Av	.1	10	20.53	-	-	50	-29.47

Pk - Peak detector

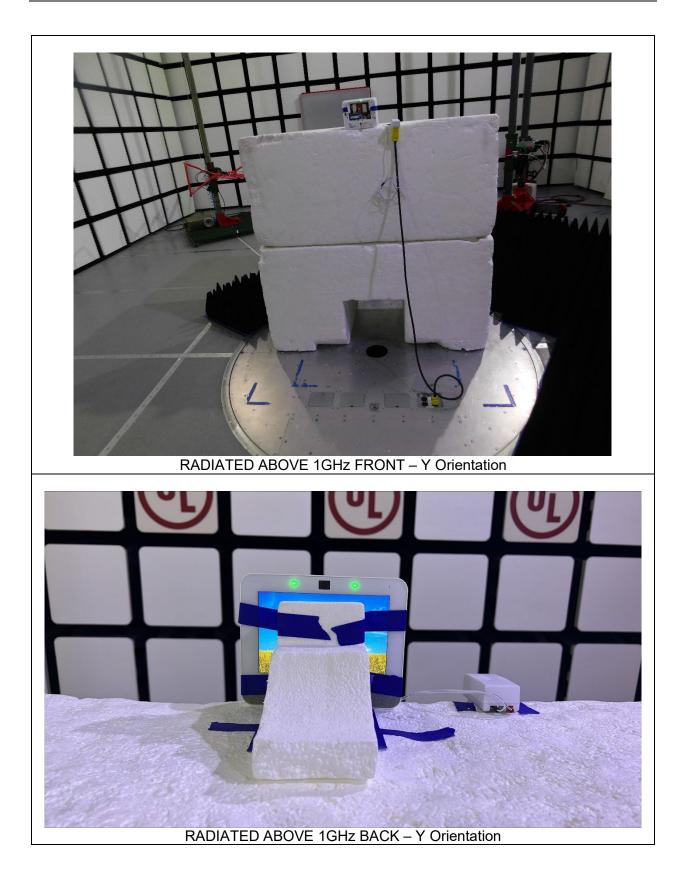
Av - Average detection

LI	Ν	E	2	

Range 2	2: Line-L2 .1	5 - 30MHz								
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN VCF (dB)	Cbl/Limiter (dB)	Corrected Reading dBuV	QP Limit (dBuV)	Margin (dB)	Average Limit (dBuV)	Margin (dB)
21	.351	28.17	Pk	.1	9.8	38.07	58.94	-20.87	-	-
22	.354	13.6	Av	.1	9.8	23.5	-	-	48.87	-25.37
24	.552	7.02	Av	0	9.8	16.82	-	-	46	-29.18
23	.555	23.53	Pk	0	9.8	33.33	56	-22.67	-	-
25	.882	25.14	Pk	0	9.8	34.94	56	-21.06	-	-
26	.891	9.69	Av	0	9.8	19.49	-	-	46	-26.51
27	1.119	25.15	Pk	0	9.8	34.95	56	-21.05	-	-
28	1.122	8.52	Av	0	9.8	18.32	-	-	46	-27.68
29	1.494	25.7	Pk	0	9.8	35.5	56	-20.5	-	-
30	1.497	7.71	Av	0	9.8	17.51	-	-	46	-28.49
31	5.349	24.35	Pk	0	9.9	34.25	60	-25.75	-	-
32	5.355	3.58	Av	0	9.9	13.48	-	-	50	-36.52
33	13.56	23.3	Pk	.1	10	33.4	60	-26.6	-	-
34	13.56	10.66	Av	.1	10	20.76	-	-	50	-29.24

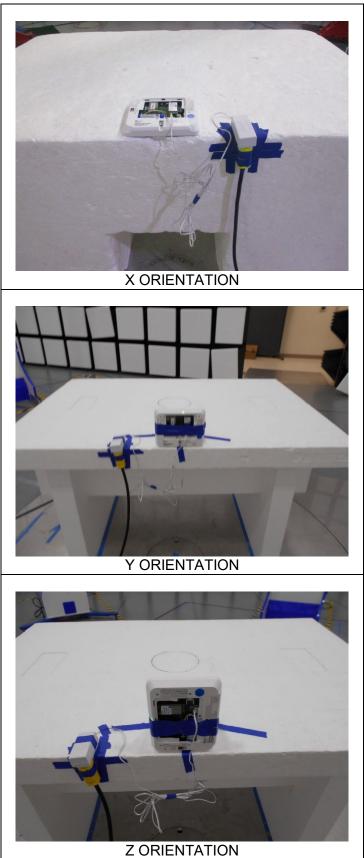

Pk - Peak detector Av - Average detection

UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709 USA This report shall not be reproduced except in full, without the written approval of UL LLC

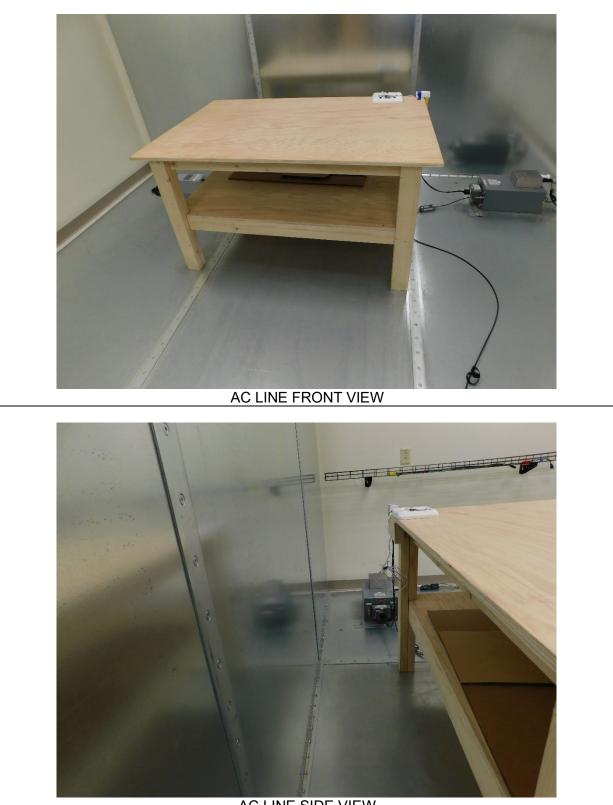

Page 46 of 50

12. SETUP PHOTOS

RADIATED MEASURMENT SETUP



Page 48 of 50


XYZ SETUP PHOTOS

Page 49 of 50

UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709 USA This report shall not be reproduced except in full, without the written approval of UL LLC

AC MAINS LINE CONDUCTED MEASUREMENT SETUP

AC LINE SIDE VIEW

END OF TEST REPORT

Page 50 of 50