

TEST REPORT**Report Reference No.....** : MWR1501002904**FCC ID.....** : 2AAJDFORCE

Compiled by

(position+printed name+signature) : File administrators Martin Ao

Supervised by

(position+printed name+signature) : Test Engineer Martin Ao

Approved by

(position+printed name+signature) : Manager Dixon Hao

Date of issue..... : Jan 28, 2015

Representative Laboratory Name : **Maxwell International Co., Ltd.**

Address..... : Room 509, Hongfacenter building, Baoan District, Shenzhen, Guangdong, China

Testing Laboratory Name..... : **The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau**

Address..... : No.289, 8th Industry Road, Nanshan District, Shenzhen, Guangdong

Applicant's name..... : **Etoway Technology Co., Ltd.**

Address..... : Room 1005, Building A, Stars Plaza, #38 Hongli Road, Futian, Shenzhen China

Test specification..... :Standard..... : **ANSI C95.1-1999****47CFR §2.1093**

TRF Originator..... : Maxwell International Co., Ltd.

Master TRF..... : Dated 2011-05

Maxwell International Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material.

Maxwell International Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description..... : Mobile Phone

Trade Mark..... : Etoway

Manufacturer..... : **ShenZhen Etoway Electronics Co., Ltd.**

Model/Type reference..... : Force

Listed Models : /

Operation Frequency..... : GSM 850MHz/PCS1900MHz /BT

Modulation Type..... : GSM(GMSK), Bluetooth(GFSK,8DPSK,II/4DQPSK),

Hardware version..... : CX26

Software version : D62_IV0_V139_PCB(CX26-MB-V0.1)_ETOWAY_NK_LANGUAGE(YXP)_FLASH(3232)_20141104

Rating..... : DC 3.70V

Result..... : **PASS**

TEST REPORT

Test Report No. :	MWR1501002904	Jan 28, 2015 Date of issue
--------------------------	----------------------	-------------------------------

Equipment under Test : Mobile Phone

Model /Type : Force

Listed Models : /

Applicant : **Etoway Technology Co., Ltd.**

Address : Room 1005, Building A, Stars Plaza, #38 Hongli Road, Futian, Shenzhen China

Manufacturer : **ShenZhen Etoway Electronics Co., Ltd.**

Address : Room 1005, Building A, Stars Plaza, #38 Hongli Road, Futian, Shenzhen China

Test Result:	PASS
---------------------	-------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. TEST STANDARDS	4
2. SUMMARY	5
2.1. General Remarks	5
2.2. Product Description	5
2.3. Statement of Compliance	5
2.4. Equipment under Test	6
2.5. Short description of the Equipment under Test (EUT)	6
2.6. EUT configuration	6
2.7. Internal Identification of AE used during the test	7
2.8. Note	7
3. TEST ENVIRONMENT	8
3.1. Address of the test laboratory	8
3.2. Test Facility	8
3.3. Environmental conditions	8
3.4. SAR Limits	8
3.5. Equipments Used during the Test	9
4. SAR MEASUREMENTS SYSTEM CONFIGURATION	10
4.1. SAR Measurement Set-up	10
4.2. DASY5 E-field Probe System	11
4.3. Phantoms	11
4.4. Device Holder	12
4.5. Scanning Procedure	12
4.6. Data Storage and Evaluation	13
4.7. Tissue Dielectric Parameters for Head and Body Phantoms	15
4.8. Tissue equivalent liquid properties	15
4.9. System Check	15
4.10. SAR measurement procedure	17
4.11. Power Reduction	20
5. TEST CONDITIONS AND RESULTS	21
5.1. Conducted Power Results	21
5.2. Simultaneous TX SAR Considerations	22
5.3. SAR Measurement Results	24
5.4. SAR Measurement Variability	26
5.5. General description of test procedures	26
5.6. Measurement Uncertainty (300MHz-3GHz)	27
5.7. System Check Results	31
5.8. SAR Test Graph Results	35
6. CALIBRATION CERTIFICATE	39
6.1. Probe Calibration Ceriticate	40
6.2. D835V2 Dipole Calibration Ceriticate	51
6.3. D1900V2 Dipole Calibration Ceriticate	59
6.4. DAE4 Calibration Ceriticate	67

7. TEST SETUP PHOTOS

71

1. TEST STANDARDS

The tests were performed according to following standards:

[IEEE Std C95.1, 1999](#): IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

[IEEE Std 1528™-2003](#): IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

[KDB 447498 D01 Mobile Portable RF Exposure v05r02](#): Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

[KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r03](#): describes SAR measurement procedures for devices operating between 100 MHz to 6 GHz

[FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation](#): Portable Devices

[KDB941225 D01 3G SAR Procedures v03](#) : 3G SAR MEAUREMENT PROCEDURES

[KD 648474 D04, Handset SAR v01r02](#): SAR Evaluation Considerations for Wireless Handsets

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Jan 10, 2015
Testing commenced on	:	Jan 16, 2015
Testing concluded on	:	Jan 16, 2015

2.2. Product Description

The **Etoway Technology Co., Ltd.**'s Model: Force or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	Force
FCC ID	2AAJDFORCE
Modulation Type	GMSK for GSM/GPRS;
Antenna Type	Internal
Supported Hotspot	Not Supported
GSM/EDGE/GPRS	Supported GPRS
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)
GSM Operation Frequency Band	GSM 850MHz/ PCS 1900MHz
GSM Release Version	R99
GPRS operation mode	Class B
DTM Mode	Not Supported
GPRS Multislot Class	12
EGPRS Multislot Class	Not Supported
Exposure category	General population/uncontrolled environment
EUT Type	Production Unit
Device category	Portable Device

2.3. Statement of Compliance

The maximum of results of SAR found during testing for Force are follows:

Head SAR Configuration

Mode	Test Position	Channel /Frequency(MHz)	Limit SAR _{1g} 1.6 W/kg	
			Measured SAR _{1g} (W/Kg)	Reported SAR _{1g} (W/Kg)
GSM 850	Left/Cheek	190/836.6	0.648	0.706
GSM 1900	Left/Cheek	661/1880.0	0.371	0.386

Body –worn Configuration

Mode	Test Position	Channel /Frequency(MHz)	Limit SAR _{1g} 1.6 W/kg	
			Measured SAR _{1g} (W/Kg)	Reported SAR _{1g} (W/Kg)
GSM 850	Rear Side	190/836.6	0.916	0.943
GSM 1900	Rear Side	661/1880.0	0.791	0.894

The SAR values found for the mobile phone are below the maximum recommended levels of 1.6W/Kg as averaged over any 1g tissue accordintg to the ANSI C95.1-1999.

For body worn operation, this devices has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 15mm

between this devices and the body of the user. User of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output.

Simultaneous transmission SAR for Bluetooth and GSM/

Test Position	SAR Type	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	Bluetooth Estimated SAR _{1-g} (W/Kg)	MAX. Σ SAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut. Meas. Required
Left/Cheek	1-g	0.706	0.386	0.148	0.854	1.6	no	no
Left/Tilt	1-g	0.476	0.300	0.148	0.624	1.6	no	no
Right/Cheek	1-g	0.635	0.343	0.148	0.783	1.6	no	no
Right/Tilt	1-g	0.456	0.275	0.148	0.604	1.6	no	no
Rear Side	1-g	0.943	0.894	0.148	1.091	1.6	no	no
Front Side	1-g	0.728	0.663	0.148	0.876	1.6	no	no

Note:1. The value with block color is the maximum values of standalone

2. The value with green color is the maximum values of Σ SAR_{1-g}

3. There are two SIM cards on this EUT, but the power of SIM 1 is more high then the SIM 2, so we test the SAR on SIM 1 module.

2.4. Equipment under Test

Power supply system utilised

Power supply voltage	:	<input type="radio"/>	120V / 60 Hz	<input type="radio"/>	115V / 60Hz
		<input type="radio"/>	12 V DC	<input type="radio"/>	24 V DC
		<input checked="" type="radio"/>	Other (specified in blank below)		

DC 3.70 V

2.5. Short description of the Equipment under Test (EUT)

2.5.1 General Description

Force is subscriber equipment in the GSM system. The GSM/GPRS frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, GSM/GPRS protocol processing, voice, video MMS service etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

2.5.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt	Type of Test
N01	35618106423113	CX26	D62_IVO_V139_PCB(CX26-MB-V0.1)_ETOWAY_NK_LANGUAGE(YXP)_FLASH(32 32)_20141104	2015-01-10	Radio
N02	35618106423113	CX26	D62_IVO_V139_PCB(CX26-MB-V0.1)_ETOWAY_NK_LANGUAGE(YXP)_FLASH(32 32)_20141104	2015-01-10	SAR (EMF)

NOTE: We used two Samples only for facilitate testing. All test setup photos are the color difference form External/Internal Photo, But they are the same mode. There are 4 color, they are white, green, yellow and red.

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer

- supplied by the lab

<input type="radio"/>	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
<input type="radio"/>	Multimeter	Manufacturer :	/
		Model No. :	/

2.7. Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery
AE2	Charger

AE1

Model: C663907180T
Capacitance: 1000mAh
Nominal Voltage: 3.70V

AE2:

Model: Force

*AE ID: is used to identify the test sample in the lab internally.

2.8. Note

1. The EUT is a Mobile Phone with GSM/GPRS and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS	FCC Part 22/FCC Part 24	MWR1501002901
Bluetooth-EDR	FCC Part 15 C 15.247	MWR1501002902
USB Port	FCC Part 15 B	MWR1501002903
SAR	FCC Part 2 §2.1093	MWR1501002904

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau

No.289, 8th Industry Road, Nanshan District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L2872

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: May 11, 2014. Valid time is until May 12, 2017.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.5. Equipments Used during the Test

Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration	
				Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2014/07/22	1
E-field Probe	SPEAG	ES3DV3	3292	2014/08/15	1
System Validation Dipole D835V2	SPEAG	D835V2	4d134	2014/07/24	3
System Validation Dipole 1900V2	SPEAG	D1900V2	5d150	2013/12/12	3
Network analyzer	Agilent	8753E	US37390562	2014/03/18	1
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2014/10/22	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2014/10/22	1
Power meter	Agilent	E4417A	GB41653458	2014/10/22	1
Power sensor	Agilent	8481H	MY41095360	2014/10/22	1
Power sensor	Agilent	8481H	MY47264939	2014/10/22	1
Signal generator	IFR	2032	203002/100	2014/10/22	1
Amplifier	AR	75A250	302205	2014/10/22	1

Note:

- 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evaluate with following criteria at least on annual interval.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated values;
 - c) The most recent return-loss results, measured at least annually, deviates by no more than 20% from the previous measurement;
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 50 Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

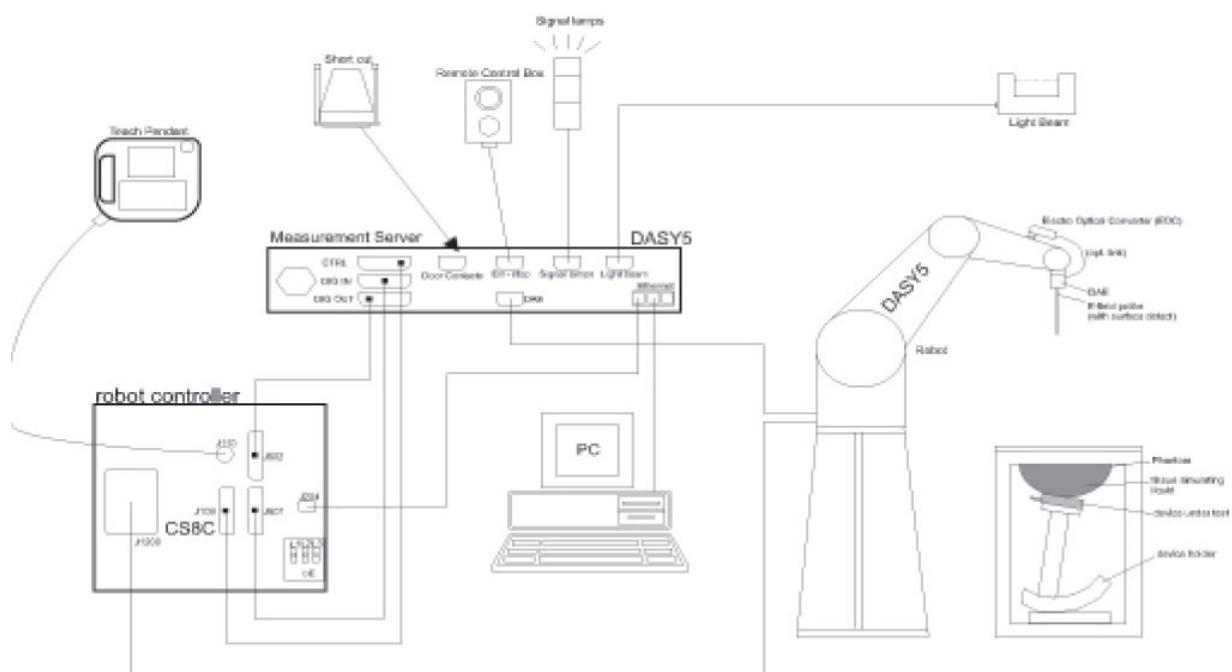
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

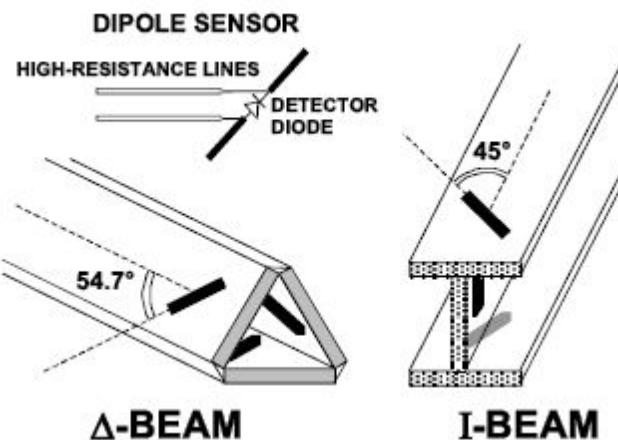
Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification


Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.



SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The “reference” and “drift” measurements are located at the beginning and end of the batch process. They

measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. $\pm 5\%$.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR. During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

Frequency	Maximum Area Scan Resolution (mm) ($\Delta x_{\text{area}}, \Delta y_{\text{area}}$)	Maximum Zoom Scan Resolution (mm) ($\Delta x_{\text{zoom}}, \Delta y_{\text{zoom}}$)	Maximum Zoom Scan Spatial Resolution (mm) $\Delta z_{\text{zoom}}(n)$	Minimum Zoom Scan Volume (mm) (x,y,z)
$\leq 2\text{ GHz}$	≤ 15	≤ 8	≤ 5	≥ 30
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed

with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcp <i>i</i>
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcpi}$$

With	Vi = compensated signal of channel i	(i = x, y, z)
	Ui = input signal of channel i	(i = x, y, z)
	cf = crest factor of exciting field	(DASY parameter)
	dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With	Vi	= compensated signal of channel i	(i = x, y, z)
	Normi	= sensor sensitivity of channel i	(i = x, y, z)
		[mV/(V/m)2] for E-field Probes	
	ConvF	= sensitivity enhancement in solution	
	aij	= sensor sensitivity factors for H-field probes	
	f	= carrier frequency [GHz]	
	Ei	= electric field strength of channel i in V/m	
	Hi	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR	= local specific absorption rate in mW/g
	Etot	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm ³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

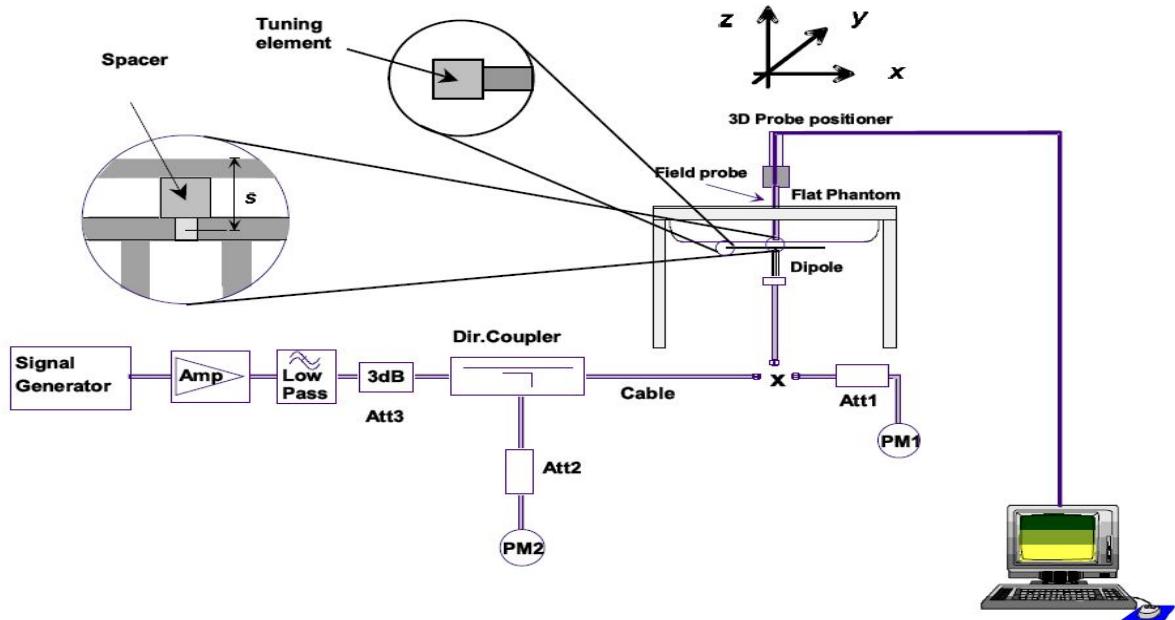
Ingredient (% Weight)	835MHz		1900MHz		1750 MHz		2450MHz		2600MHz	
	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	41.45	52.5	55.242	69.91	55.782	69.82	62.7	73.2	62.3	72.6
Salt	1.45	1.40	0.306	0.13	0.401	0.12	0.50	0.10	0.20	0.10
Sugar	56	45.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Preventol	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	44.452	29.96	43.817	30.06	36.8	26.7	37.5	27.3

Target Frequency (MHz)	Head		Body	
	ϵ_r	$\sigma(S/m)$	ϵ_r	$\sigma(S/m)$
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid

Tissue Type	Measured Frequency (MHz)	Target Tissue		Measured Tissue			Liquid Temp.	Test Data
		ϵ_r	σ	ϵ_r	Dev. %	σ		
850H	824	41.50	0.90	41.60	0.10%	0.88	-2.22%	22 degree 2015-01-16
	835	41.50	0.90	41.80	0.72%	0.91	1.11%	
	836	41.50	0.90	41.80	0.72%	0.91	1.11%	
	848	41.50	0.90	41.70	0.48%	0.92	0.00%	
1900H	1850	40.00	1.40	40.20	0.50%	1.38	-1.43%	22 degree 2015-01-16
	1800	40.00	1.40	40.20	0.50%	1.42	1.43%	
	1900	40.00	1.40	40.10	0.25%	1.42	1.43%	
	1909	40.00	1.40	40.00	0.00%	1.43	2.14%	
850B	824	55.20	0.97	53.40	-3.33%	0.98	1.03%	22 degree 2015-01-16
	835	55.20	0.97	53.50	-3.08%	0.99	2.06%	
	836	55.20	0.97	53.50	-3.06%	1.00	3.09%	
	848	55.20	0.97	53.20	-3.55%	1.02	3.03%	
1900B	1850	53.30	1.52	53.50	0.38%	1.53	0.66%	22 degree 2015-01-16
	1800	53.30	1.52	53.30	0.00%	1.55	1.97v	
	1900	53.30	1.52	53.20	-0.19%	1.55	1.97%	
	1909	53.30	1.52	53.20	-0.19%	1.56	2.63%	


4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the device test frequency. The system check is simple check of repeatability to make sure that the system works correctly

at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 30 dBm (1000mW) before dipole is connected.

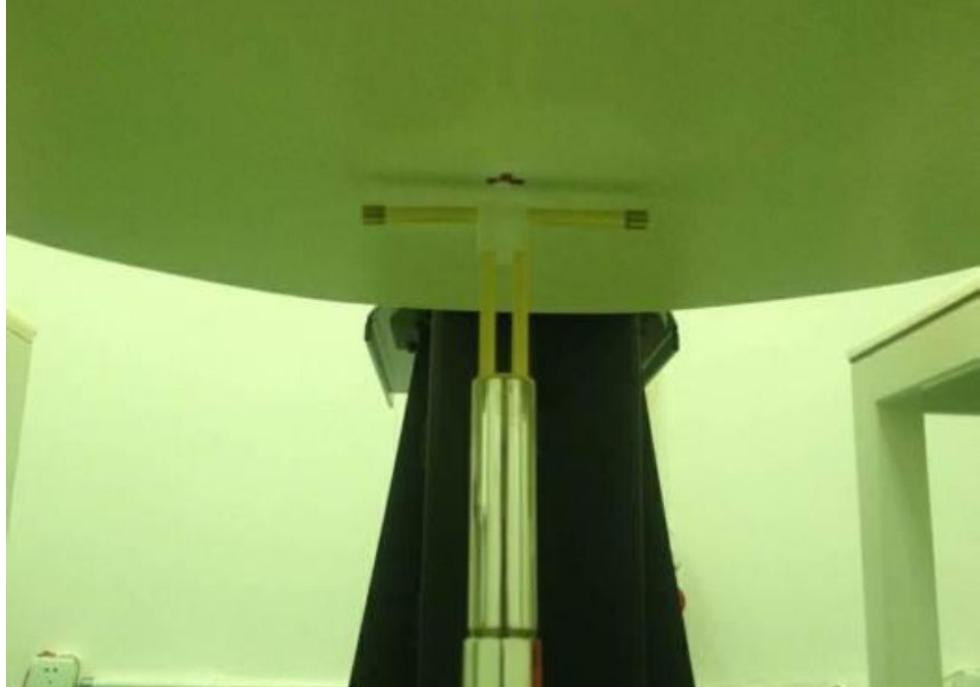


Photo of Dipole Setup
System Validation of Head

Measurement is made at temperature 22.0 °C and relative humidity 55%.

Liquid temperature during the test: 22.0 °C

Measurement Date: 835MHz Jan 16th, 2015; 1900MHz Jan 16th, 2015;

Verification results	Frequency (MHz)	Target value (W/kg)		Measured value (W/kg)		Deviation	
		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average
		835	6.25	9.60	6.56	10.10	4.96% 5.21%

	1900	20.60	38.90	20.20	38.70	-1.94%	-0.51%
--	------	-------	-------	-------	-------	--------	--------

System Validation of Body

Measurement is made at temperature 22.0 °C and relative humidity 55%.

Liquid temperature during the test: 22.0°C

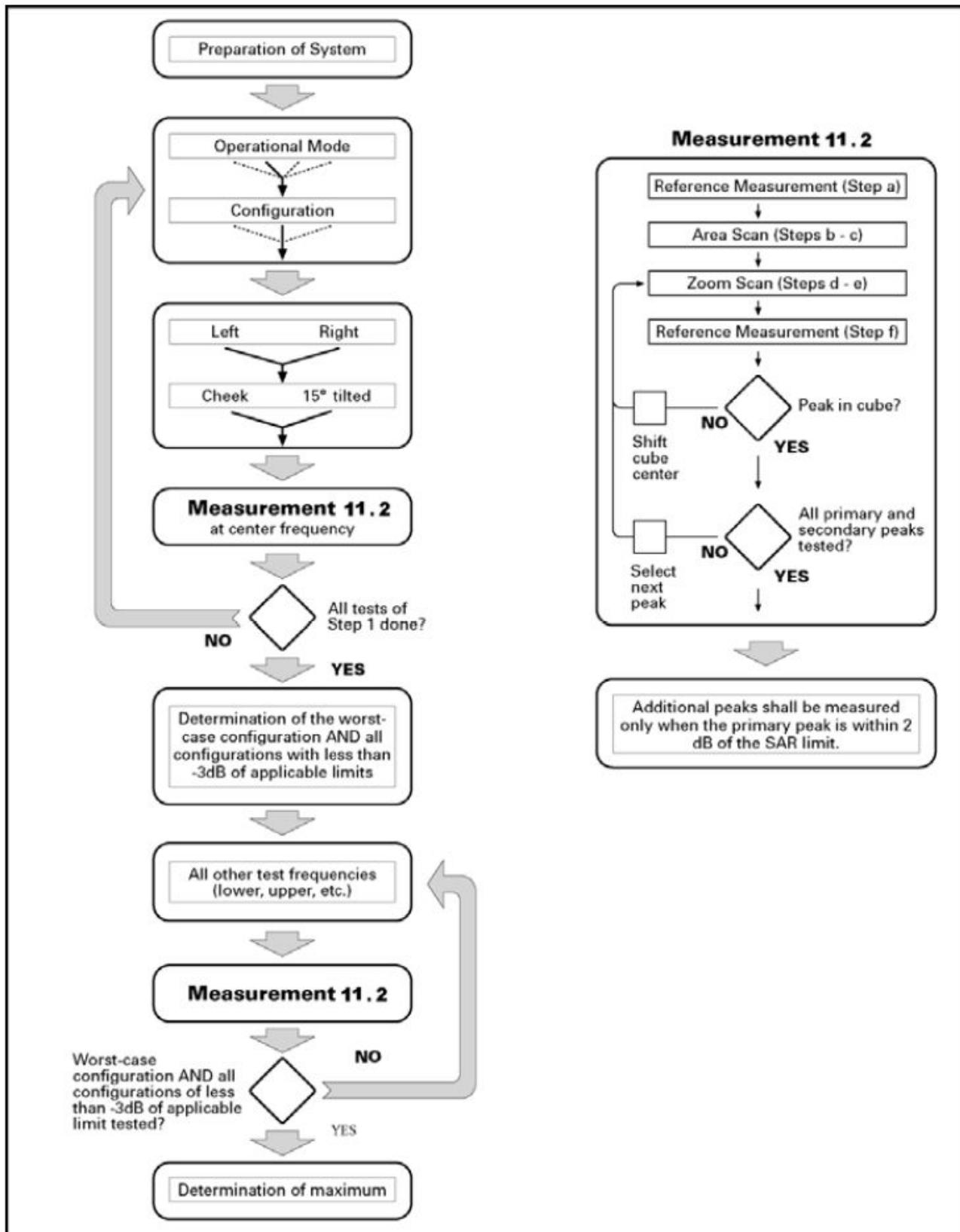
Measurement Date: 835MHz Jan 16th, 2015; 1900MHz Jan 16th, 2015;

Verification results	Frequency (MHz)	Target value (W/kg)		Measured value (W/kg)		Deviation	
		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average
	835	6.44	9.63	6.47	10.00	0.47%	3.84%
	1900	20.80	39.10	21.10	40.30	1.44%	3.07%

4.10. SAR measurement procedure

4.10.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.


Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- all device positions (cheek and tilt, for both left and right sides of the SAM phantom);
- all configurations for each device position in a), e.g., antenna extended and retracted, and
- all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 10.1 Block diagram of the tests to be performed

4.10.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing

algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot 5 \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$		$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
		$\Delta z_{\text{Zoom}}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.			
* When zoom scan is required and the <i>reported</i> SAR from the area scan based <i>1-g SAR estimation</i> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

4.10.3 Conducted power measurement

- For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- Read the WWAN RF power level from the base station simulator.
- For BT power measurement, use engineering software to configure EUT BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
- Connect EUT RF port through RF cable to the power meter, and measure BT output power.

4.10.4 SAR measurement

4.10.4.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 5.

SAR test reduction for GPRS modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output

power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst.

4.10.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

4.10.4 Area Scan Based 1-g SAR

4.10.4.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is ≤ 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

4.10.4.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

4.11. Power Reduction

The product without any power reduction.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Conducted Power Measurement Results(GSM 850/1900)								
GSM 850		Burst Conducted power (dBm)			/	Average power (dBm)		
		Channel/Frequency(MHz)				Channel/Frequency(MHz)		
		128/824.2	190/836.6	251/848.8		128/824.2	190/836.6	251/848.8
GSM		32.74	32.61	32.25	-9.03dB	23.71	23.58	23.22
GPRS (GMSK)	1TX slot	32.69	32.52	32.22	-9.03dB	23.66	23.49	23.19
	2TX slot	30.26	30.14	29.91	-6.02dB	24.24	24.12	23.89
	3TX slot	28.87	28.67	28.53	-4.26dB	24.61	24.41	24.27
	4TX slot	27.92	27.89	27.67	-3.01dB	24.91	24.88	24.66
GSM 1900		Burst Conducted power (dBm)			/	Average power (dBm)		
		Channel/Frequency(MHz)				Channel/Frequency(MHz)		
		512/ 1850.2	661/ 1880	810/ 1909.8		512/ 1850.2	661/ 1880	810/ 1909.8
GSM		29.59	29.84	29.63	-9.03dB	20.56	20.81	20.60
GPRS (GMSK)	1TX slot	29.52	29.77	29.60	-9.03dB	20.49	20.74	20.57
	2TX slot	28.13	28.43	28.19	-6.02dB	22.11	22.41	22.17
	3TX slot	26.86	27.22	26.96	-4.26dB	22.60	22.96	22.70
	4TX slot	26.14	26.46	26.29	-3.01dB	23.13	23.45	23.28

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for GPRS850 and GPRS1900.

Bluetooth							
Mode		Channel		Frequency (MHz)		Conducted Output Power (dBm)	
						Average	
GFSK	00			2402		2.53	
	40			2442			
	78			2480			
π/4DQPSK	00			2402		2.36	
	40			2442			
	78			2480			
8DPSK	00			2402		2.67	
	40			2442			
	78			2480			

Manufacturing tolerance

GSM Speech			
GSM 850 (Peak)			
Channel	Channel 251	Channel 190	Channel 128
Target (dBm)	32.00	32.00	32.00
Tolerance ±(dB)	1	1	1
GSM 1900 (Peak)			
Channel	Channel 810	Channel 661	Channel 512
Target (dBm)	29.00	29.00	29.00
Tolerance ±(dB)	1	1	1

GPRS (GMSK Modulation)
GSM 850 GPRS (Peak)

Channel		251	190	128
1 Txslot	Target (dBm)	32.0	32.0	32.0
	Tolerance \pm (dB)	1	1	1
2 Txslot	Target (dBm)	30.0	30.0	30.0
	Tolerance \pm (dB)	1	1	1
3 Txslot	Target (dBm)	28.0	28.0	28.0
	Tolerance \pm (dB)	1	1	1
4 Txslot	Target (dBm)	27.0	27.0	27.0
	Tolerance \pm (dB)	1	1	1

GSM 1900 GPRS (Peak)

Channel		810	661	512
1 Txslot	Target (dBm)	29.0	29.0	29.0
	Tolerance \pm (dB)	1	1	1
2 Txslot	Target (dBm)	28.0	28.0	28.0
	Tolerance \pm (dB)	1	1	1
3 Txslot	Target (dBm)	27.0	27.0	27.0
	Tolerance \pm (dB)	1	1	1
4 Txslot	Target (dBm)	26.0	26.0	26.0
	Tolerance \pm (dB)	1	1	1

Bluetooth
GFSK (Average)

Channel	Channel 00	Channel 40	Channel 78
Target (dBm)	2.5	3.5	4.5
Tolerance \pm (dB)	1	1	1

8DPSK (Average)

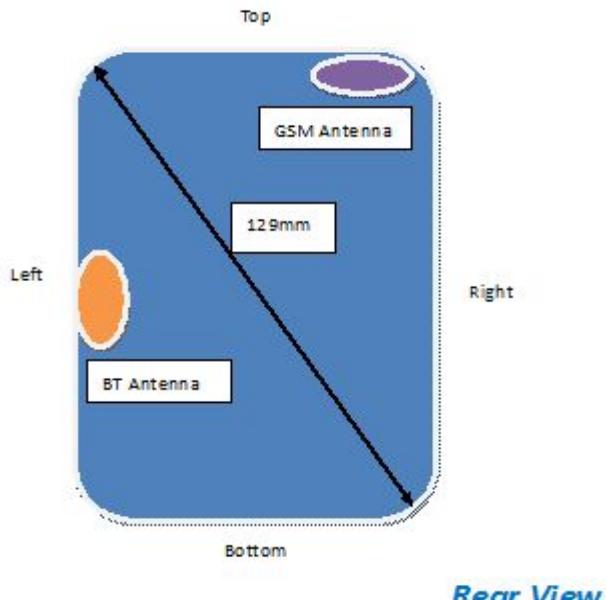
Channel	Channel 00	Channel 40	Channel 78
Target (dBm)	2.5	3.5	4.5
Tolerance \pm (dB)	1	1	1

 $\pi/4$ DQPSK (Average)

Channel	Channel 00	Channel 40	Channel 78
Target (dBm)	2.5	3.5	4.5
Tolerance \pm (dB)	1	1	1

5.2. Simultaneous TX SAR Considerations

5.2.1 Introduction


The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT and GSM sharing difference antenna, So we can get following combination that can transmit signal simultaneously.

Air-Interface	Band (MHz)	Type	Simultaneous Transmissions	Voice over Digital Transport(Data)
GSM	850	VO	Yes, BT	N/A
	1900	VO		
GPRS		DT	Yes, BT	N/A
BT	2450	DT	Yes, GSM, GPRS	N/A

Note: VO-Voice Service only; DT-Digital Transport

5.2.2 Transmit Antenna Separation Distances

Note:

- 1). Per KDB648474 D04, because the overall diagonal distance of this devices is 129mm<160mm, it is not considered a "Phablet" device.
- 2). The distance between antenna and edge as follows:

The distance between Antenna and Edge

Communication Type	Top	Left	Bottom	Right
GSM	0 mm	35 mm	112 mm	6 mm
BT	80 mm	0 mm	23 mm	46 mm

Body-worn SAR measurement positions

Body-worn mode SAR measurement positions		
mode	front	rear
GSM 850	yes	yes
GSM 1900	yes	yes

5.2.2 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by::

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR, where}$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Standalone SAR test exclusion considerations

Communication system	Frequency (MHz)	Configuration	Maximum Average Power (dBm)	Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR Exclusion
GSM 850	835	Head	24.00	5	45.4	3.0	no
		Body	24.00	5	45.4	3.0	no
GSM 1900	1900	Head	21.00	5	34.3	3.0	no

		Body	21.00	5	34.3	3.0	no
Bluetooth	2450	Head	5.50	5	1.8	3.0	yes
		Body	5.50	5	1.8	3.0	yes

Note:

1. Maximum average power including tune-up tolerance;
2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

5.2.4 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(\text{GHz})/x}$ W/kg for test separation distances ≤ 50 mm;
where $x = 7.5$ for 1-g SAR, and $x = 18.75$ for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific physical test configuration is ≤ 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$\text{Ratio} = \frac{(\text{SAR}_1 + \text{SAR}_2)^{1.5}}{(\text{peak location separation, mm})} < 0.04$$

Estimated stand alone SAR					
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)
Bluetooth	2450	Head	5.50	5.00	0.148
Bluetooth	2450	Body Worn	5.50	5.00	0.148

5.2.5 Evaluation of Simultaneous SAR

Simultaneous transmission SAR for Bluetooth and GSM/

Test Position	SAR Type	GSM850 Reported SAR _{1-g} (W/Kg)	GSM1900 Reported SAR _{1-g} (W/Kg)	Bluetooth Estimated SAR _{1-g} (W/Kg)	MAX. Σ SAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Peak location separation ratio	Simut. Meas. Required
Left/Cheek	1-g	0.706	0.386	0.148	0.854	1.6	no	no
Left/Tilt	1-g	0.476	0.300	0.148	0.624	1.6	no	no
Right/Cheek	1-g	0.635	0.343	0.148	0.783	1.6	no	no
Right/Tilt	1-g	0.456	0.275	0.148	0.604	1.6	no	no
Rear Side	1-g	0.943	0.894	0.148	1.091	1.6	no	no
Front Side	1-g	0.728	0.663	0.148	0.876	1.6	no	no

Note:

1. The value with dark color is the maximum values of standalone
2. The value with green color is the maximum values of Σ SAR_{1-g}

5.3. SAR Measurement Results

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 5mm and just applied to the condition of body worn accessory.

The calculated SAR is obtained by the following formula:

$$\text{Reported SAR} = \text{Measured SAR} * 10^{(\text{P}_{\text{target}} - \text{P}_{\text{measured}})/10}$$

$$\text{Scaling factor} = 10^{(\text{P}_{\text{target}} - \text{P}_{\text{measured}})/10}$$

$$\text{Reported SAR} = \text{Measured SAR} * \text{Scaling factor}$$

Where P_{target} is the power of manufacturing upper limit;

$\text{P}_{\text{measured}}$ is the measured power;

Measured SAR is measured SAR at measured power which including power drift

Reported SAR which including Power Drift and Scaling factor

The product with 2 SIMs and 2 SIMs(SIM1 and SIM2) can not used Simultaneous, we tested 2 SIMs(SIM1 and SIM2) and recorded worst case at SIM 1

Duty Cycle

Test Mode		Duty Cycle	
Speech for GSM850/1900		1:8.3	
GPRS850/1900		1:2	

Table 2: SAR Values [GSM 850 (GSM/GPRS)]

Ch.	Freq. (MHz)	Time slots	Test Position	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Power drift	Scaling Factor	SAR _{1-g} results(W/kg)		Graph Results
								Measured	Reported	
measured / reported SAR numbers - Head										
190	836.60	GSM	Left/Cheek	33.00	32.61	0.01	1.09	0.648	0.706	Plot 1
190	836.60	GSM	Left/Tilt	33.00	32.61	-0.04	1.09	0.437	0.476	N/A
190	836.60	GSM	Right/Cheek	33.00	32.61	-0.08	1.09	0.583	0.635	N/A
190	836.60	GSM	Right/Tilt	33.00	32.61	-0.05	1.09	0.418	0.456	N/A
measured / reported SAR numbers - Body (Body-worn, distance 5mm)										
190	836.60	GPRS	Rear Side	28.00	27.89	0.11	1.03	0.916	0.943	Plot 2
251	848.80	GPRS	Rear Side	28.00	27.67	-0.10	1.08	0.760	0.783	N/A
128	824.20	GPRS	Rear Side	28.00	27.92	0.11	1.02	0.684	0.705	N/A
190	836.60	GPRS	Front Side	28.00	27.89	-0.12	1.03	0.707	0.728	N/A

Repeated SAR

Ch.	Freq. (MHz)	Time slots	Test Position	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Power drift	Scaling Factor	SAR _{1-g} results(W/kg)		Graph Results
								Measured	Reported	
measured / reported SAR numbers - Body (Body-worn, distance 5mm)										
190	836.60	GPRS	Rear Side	28.00	27.89	-0.07	1.03	0.903	0.930	N/A

Note:

- 1.The value with blue color is the maximum SAR Value of each test band.
2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

Table 3: SAR Measurement Variability Results [GSM 850 (GSM/GPRS)]

Test Position	Channel/ Frequency (MHz)	Measured SAR _{1-g}	1 st Repeated SAR _{1-g}	Ratio	2 nd Repeated SAR _{1-g}	3 rd Repeated SAR _{1-g}
Rear Side	190/836.6	0.916	0.903	0.99	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 4: SAR Values [GSM 1900 (GSM/GPRS)]

Ch.	Freq. (MHz)	time slots	Test Position	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Power drift	Scaling Factor	SAR _{1-g} results(W/kg)		Graph Results
								Measured	Reported	
measured / reported SAR numbers - Head										
661	1880.0	GSM	Left/Cheek	30.00	29.84	0.01	1.04	0.371	0.386	Plot 3
661	1880.0	GSM	Left/Tilt	30.00	29.84	-0.05	1.04	0.288	0.300	N/A
661	1880.0	GSM	Right/Cheek	30.00	29.84	-0.00	1.04	0.330	0.343	N/A
661	1880.0	GSM	Right/Tilt	30.00	29.84	-0.02	1.04	0.264	0.275	N/A
measured / reported SAR numbers - Body (Body-worn, distance 5mm)										
661	1880.0	GPRS	Rear Side	27.00	26.46	0.05	1.13	0.791	0.894	Plot 4
661	1880.0	GPRS	Front Side	27.00	26.46	-0.01	1.13	0.587	0.663	N/A

Note:

1. The value with blue color is the maximum SAR Value of each test band.
2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).
3. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.
4. Per FCC KDB Publication 648474 D04, SAR was evaluated without a headset connected to the device. Since the reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

5.4. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

5.5. General description of test procedures

1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
2. Test positions as described in the tables above are in accordance with the specified test standard.
3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
5. The test distance is 15mm per to manufacturer declare.
6. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
7. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.

8. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
9. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.
10. Per KDB648474 D04 require for phablet SAR test considerations. For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
11. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

5.6. Measurement Uncertainty (300MHz-3GHz)

Relative DSAY5 Uncertainty Budget for SAR Tests According to IEC62209-1/2006										
No.	Error Description	Type	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement System										
1	Probe calibration	B	5.50%	N	1	1	1	5.50%	5.50%	∞
2	Axial isotropy	B	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	B	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	B	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF ambient	B	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	B	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞
13	Probe positioning with respect to phantom shell	B	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
14	Max.SAR evalation	B	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
Test Sample Related										
15	Test sample positioning	A	1.86%	N	1	1	1	1.86%	1.86%	∞
16	Device holder uncertainty	A	1.70%	N	1	1	1	1.70%	1.70%	∞
17	Drift of output power	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞

Phantom and Set-up										
18	Phantom uncertainty	B	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
21	Liquid permittivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
22	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$		/	/	/	/	/	10.20%	10.00%	∞
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	20.40%	20.00%	∞

Relative DSAY5 Uncertainty Budget for SAR Tests										
According to IEC62209-2/2010										
No.	Error Description	Type	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement System										
1	Probe calibration	B	6.20%	N	1	1	1	6.20%	6.20%	∞
2	Axial isotropy	B	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	B	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	B	2.00%	R	$\sqrt{3}$	1	1	1.20%	1.20%	∞
5	Probe Linearity	B	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF Ambient	B	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
13	Probe positioning with respect	B	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	∞

	to phantom shell									
14	Max.SAR Evalation	B	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
15	Modulation Response	B	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	∞
Test Sample Related										
16	Test sample positioning	A	1.86%	N	1	1	1	1.86%	1.86%	∞
17	Device holder uncertainty	A	1.70%	N	1	1	1	1.70%	1.70%	∞
18	Drift of output power	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
Phantom and Set-up										
19	Phantom uncertainty	B	6.10%	R	$\sqrt{3}$	1	1	3.50%	3.50%	∞
20	SAR correction	B	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	∞
21	Liquid conductivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
22	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
23	Liquid permittivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
24	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
25	Temp.Unc.-Conductivity	B	3.40%	R	$\sqrt{3}$	0.78	0.71	1.50%	1.40%	∞
26	Temp.Unc.-Permittivity	B	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	∞
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$	/	/	/	/	/	/	12.90%	12.70%	∞
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$	/	R	K=2	/	/	/	25.80%	25.40%	∞

Uncertainty of a System Performance Check with DASY5 System										
According to IEC62209-2/2010										
No.	Error Description	Type	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measurement System										
1	Probe calibration	B	6.00%	N	1	1	1	6.00%	6.00%	∞
2	Axial isotropy	B	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	B	0.00%	R	$\sqrt{3}$	0.7	0.7	0.00%	0.00%	∞
4	Boundary Effects	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	B	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	B	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞

7	RF ambient conditions-noise	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	B	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	B	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF Ambient	B	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	B	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
13	Probe positioning with respect to phantom shell	B	6.70%	R	$\sqrt{3}$	1	1	3.90%	3.90%	∞
14	Max.SAR Evalation	B	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
15	Modulation Response	B	2.40%	R	$\sqrt{3}$	1	1	1.40%	1.40%	∞
Test Sample Related										
16	Test sample positioning	A	0.00%	N	1	1	1	0.00%	0.00%	∞
17	Device holder uncertainty	A	2.00%	N	1	1	1	2.00%	2.00%	∞
18	Drift of output power	B	3.40%	R	$\sqrt{3}$	1	1	2.00%	2.00%	∞
Phantom and Set-up										
19	Phantom uncertainty	B	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
20	SAR correction	B	1.90%	R	$\sqrt{3}$	1	0.84	1.11%	0.90%	∞
21	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
22	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
23	Temp.Unc.-Conductivity	B	1.70%	R	$\sqrt{3}$	0.78	0.71	0.80%	0.80%	∞
24	Temp.Unc.-Permittivity	B	0.40%	R	$\sqrt{3}$	0.23	0.26	0.10%	0.10%	∞
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$		/	/	/	/	/	12.90%	12.70%	∞
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	18.80%	18.40%	∞

5.7. System Check Results

System Performance Check at 835 MHz Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Date/Time: 01/16/2015 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 835$ MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.80$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3292; ConvF(6.23,6.23, 6.23); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

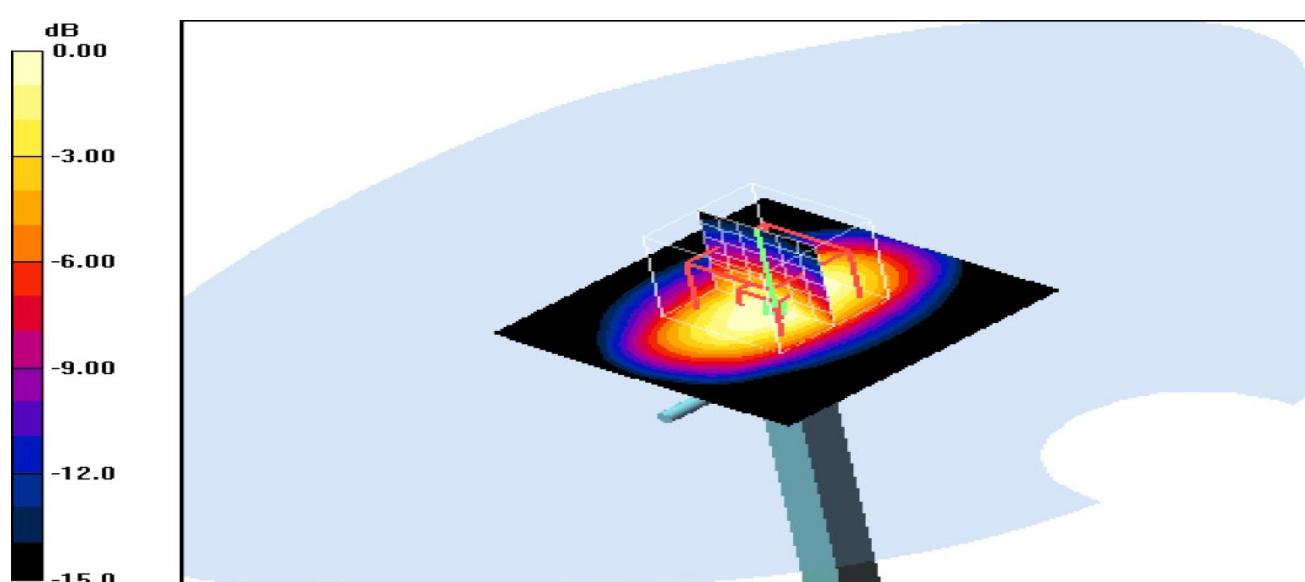
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469)

Area Scan (91x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 11.8 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.60 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.2 W/Kg

SAR(1 g) = 10.10 W/Kg; SAR(10 g) = 6.56 W/Kg

Maximum value of SAR (measured) = 12.00 W/Kg

System Performance Check 835MHz Head 1W

System Performance Check at 835 MHz Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Date/Time: 01/16/2015 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 835$ MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 53.50$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3292; ConvF(6.11,6.11, 6.11); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

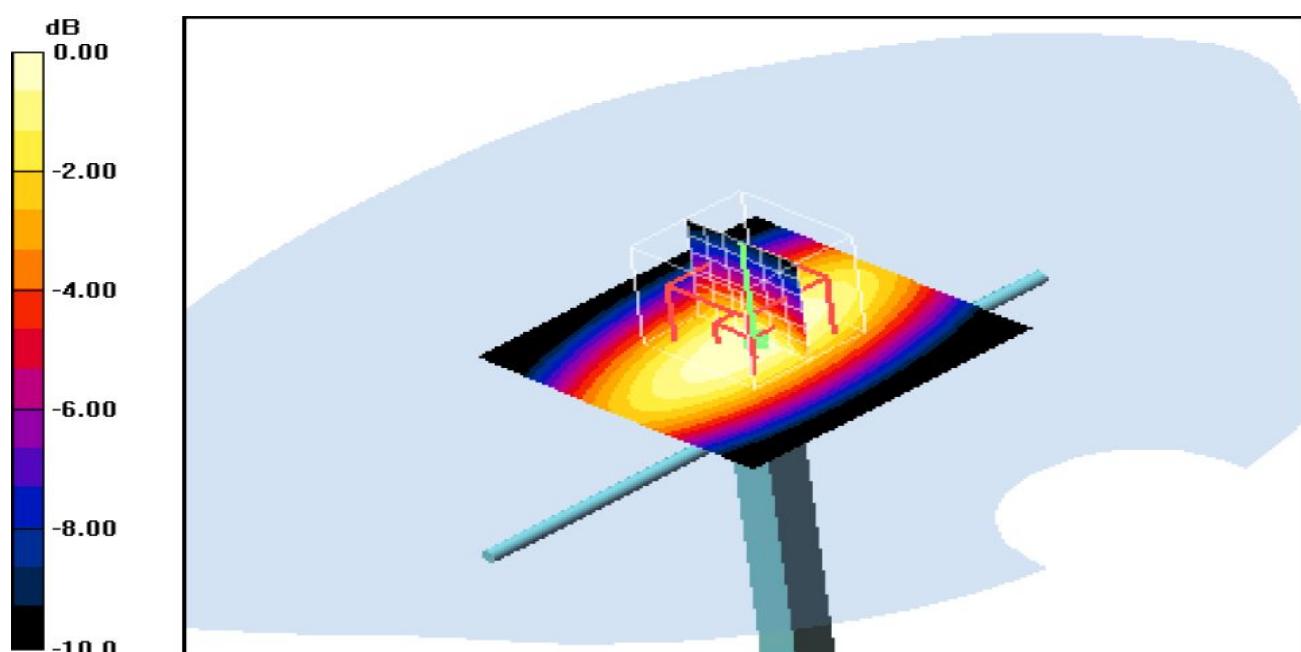
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469)

Area Scan (91x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 11.7 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.3 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 15.8 W/Kg

SAR(1 g) = 10.00 W/Kg; SAR(10 g) = 6.47 W/Kg

Maximum value of SAR (measured) = 11.9 W/Kg

0 dB = 11.9 W/Kg = 10.76 dB W/Kg

System Performance Check 835MHz Body 1W

System Performance Check at 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Date/Time: 01/16/2015 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 40.10$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3292; ConvF(5.03,5.03, 5.03); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

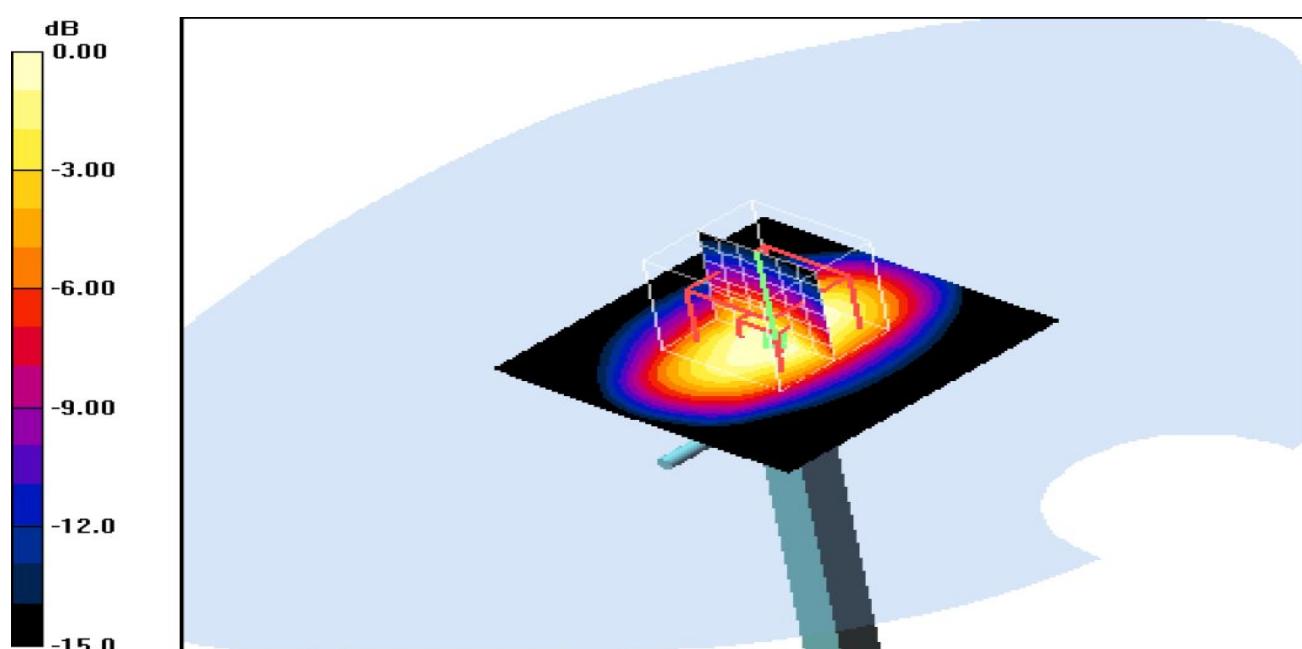
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (91x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 51.0 W/Kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 184.5 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 70.1 W/Kg

SAR(1 g) = 38.70 W/Kg; SAR(10 g) = 20.20 W/Kg

Maximum value of SAR (measured) = 44.1 W/Kg

0 dB = 44.1 W/Kg = 16.44 dB W/Kg

System Performance Check 1900MHz Head 1W

System Performance Check at 1900 MHz Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Date/Time: 01/16/2015 PM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.55$ S/m; $\epsilon_r = 53.20$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3292; ConvF(4.66,4.66, 4.66); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

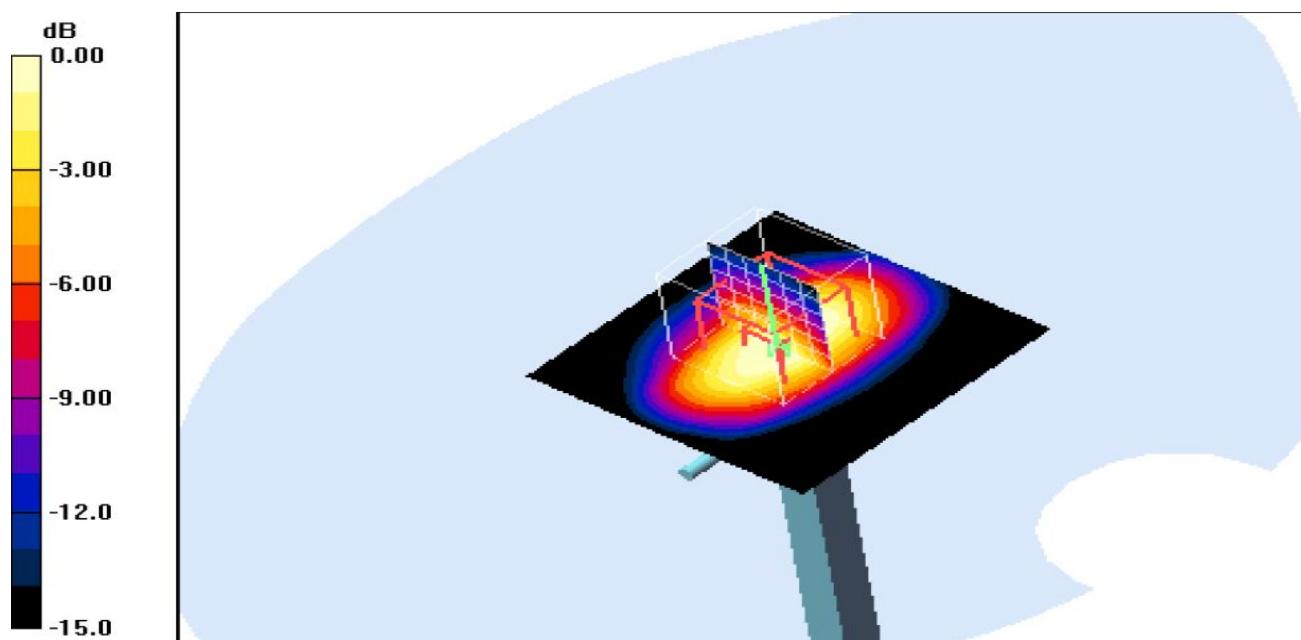
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (91x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 57.6 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 182.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 70.7 W/kg

SAR(1 g) = 40.30 W/Kg; SAR(10 g) = 21.10 W/kg

Maximum value of SAR (measured) = 46.6 W/Kg

0 dB = 11.3 W/Kg = 10.53 dB W/Kg

5.8. SAR Test Graph Results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

GSM850 Left Head Cheek Middle Channel

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): $f = 836.2$ MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 41.80$; $\rho = 1000$ kg/m³

Phantom section : Flat Section

Probe: ES3DV3 – SN3292; ConvF(6.23,6.23, 6.23); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

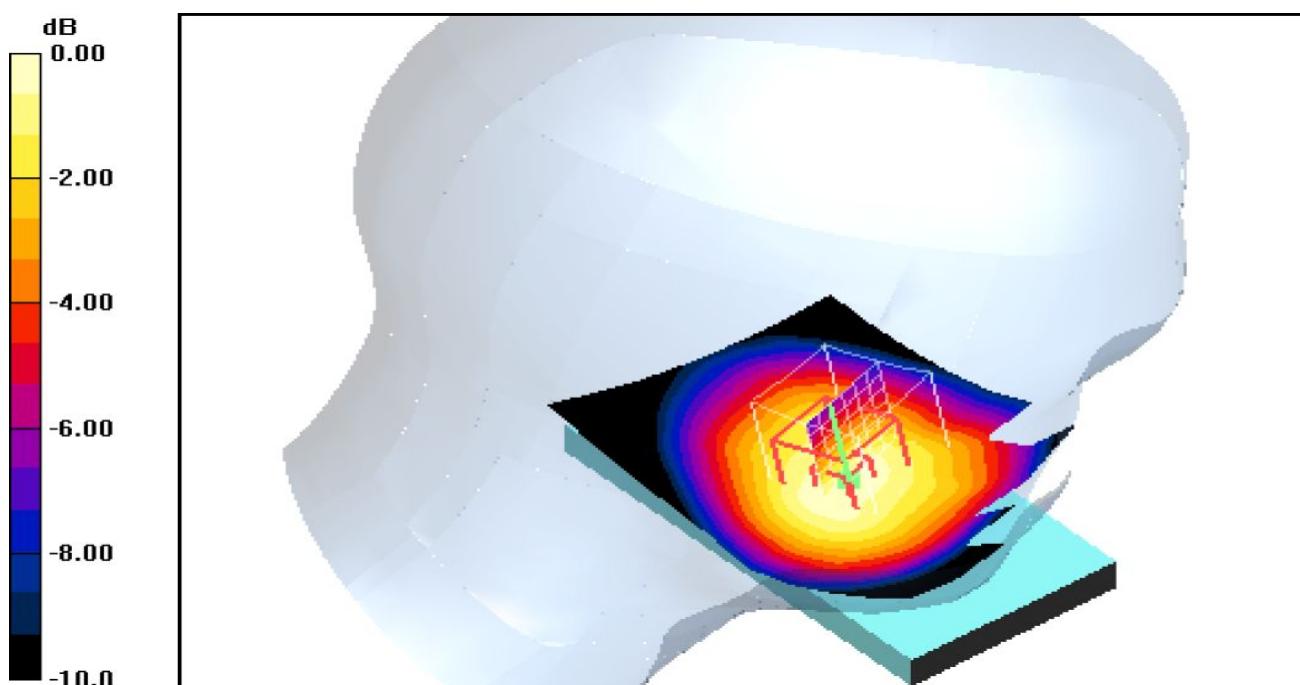
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.677 W/Kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.7 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.809 W/Kg

SAR(1 g) = 0.648 W/Kg; SAR(10 g) = 0.484 W/Kg

Maximum value of SAR (measured) = 0.692 W/Kg

0 dB = 0.692 W/Kg = -2.00 dB W/Kg

Plot 1:Left Head Cheek (GSM850 Middle Channel)

GPRS850 Body Rear Side Middle Channel

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used (interpolated): $f = 836.2$ MHz; $\sigma = 1.00$ S/m; $\epsilon_r = 53.50$; $\rho = 1000$ kg/m³

Phantom section : Body- worn

Probe: ES3DV3 – SN3292; ConvF(6.11,6.11, 6.11); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

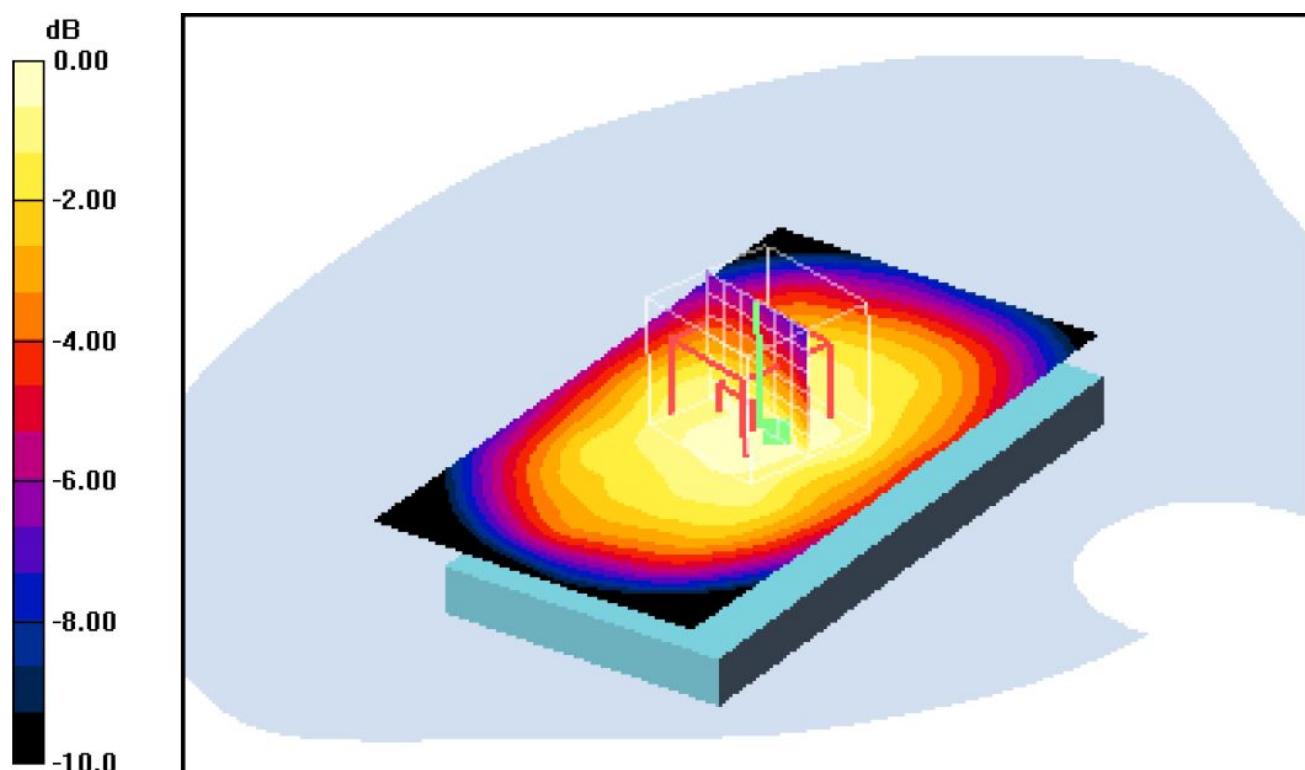
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.934 W/Kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.0 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.11 W/Kg

SAR(1 g) = 0.916 W/Kg; SAR(10 g) = 0.696 W/Kg

Maximum value of SAR (measured) = 0.977 W/Kg

0dB = 0.977 W/Kg = -0.10 dBW/Kg

Plot 2: Body Rear Side (GPRS850 Middle Channel)

GSM1900 Left Head Cheek Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): $f = 1880.0$ MHz; $\sigma = 1.42$ S/m; $\epsilon_r = 40.10$; $\rho = 1000$ kg/m³

Phantom section : Flat Section

Probe: ES3DV3 – SN3292; ConvF(5.03,5.03, 5.03); Calibrated: 08/15/2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

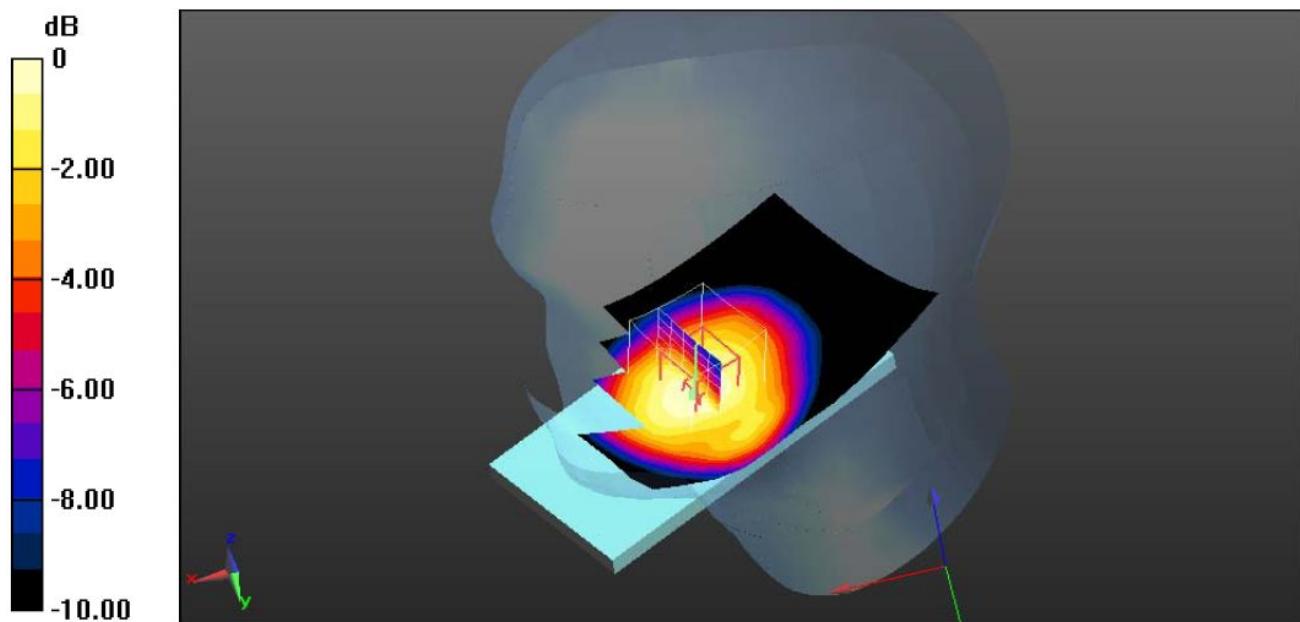
Electronics: DAE4 Sn1315; Calibrated: 07/22/2014;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.410 W/Kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.6 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.561 W/Kg

SAR(1 g) = 0.371 W/Kg; SAR(10 g) = 0.2380 W/Kg

Maximum value of SAR (measured) = 0.398 W/Kg

0dB = 0.398 W/Kg = -4.00 dB W/Kg

Plot 3: Left Head Cheek (GSM1900 Middle Channel)

GPRS1900 Body Rear Side Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:2

Medium parameters used (interpolated): $f = 1880.0$ MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 52.90$; $\rho = 1000$ kg/m³

Phantom section : Body- worn

Probe: ES3DV3 - SN3109; ConvF(4.66, 4.66, 4.66); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

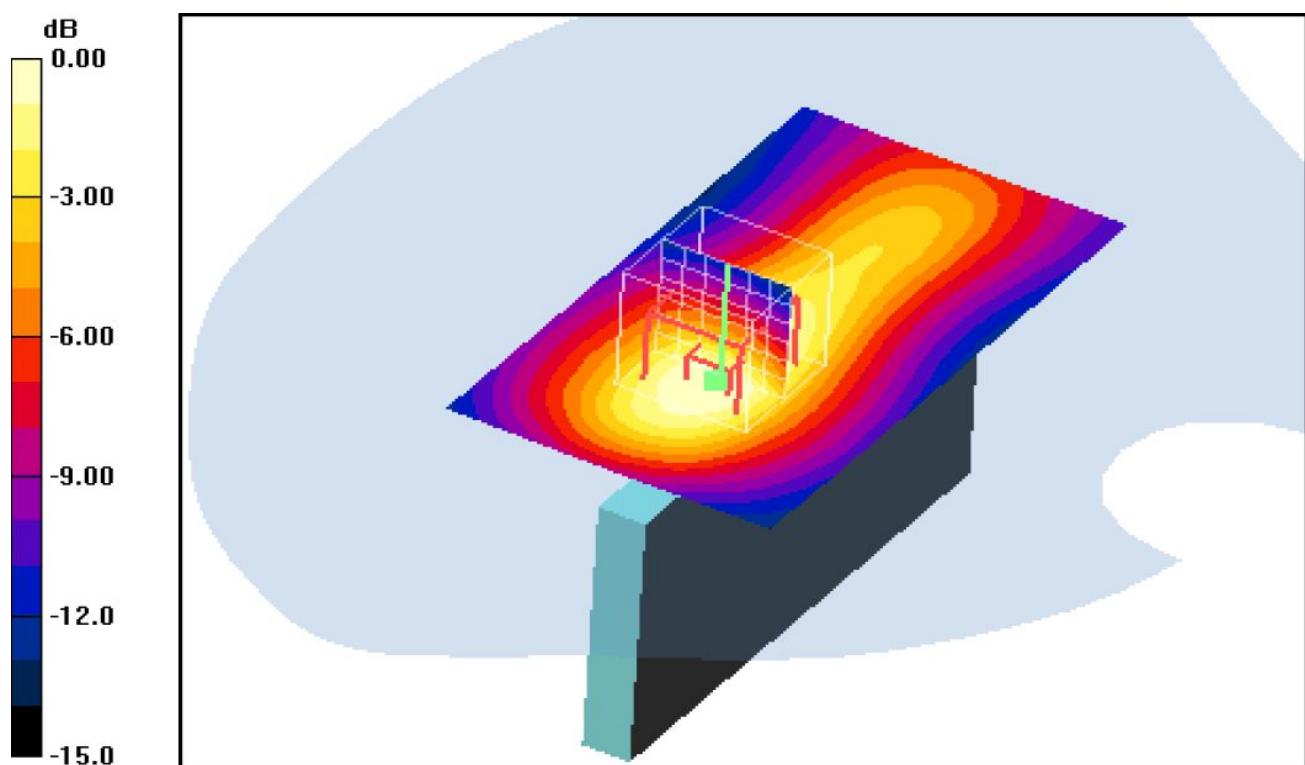
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.916 W/Kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.9 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.36 W/Kg

SAR(1 g) = 0.791 W/Kg; SAR(10 g) = 0.510 W/Kg

Maximum value of SAR (measured) = 0.943 W/kg

0dB = 0.943 W/Kg = -0.25 dBW/Kg

Plot 4: Body Rear Side (GPRS1900 Middle Channel)

6. Calibration Certificate

6.1. Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **CIQ (Auden)**

Certificate No: **ES3-3292_Aug14**

CALIBRATION CERTIFICATE

Object **ES3DV3 - SN:3292**

Calibration procedure(s) **QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6**
Calibration procedure for dosimetric E-field probes

Calibration date: **August 15, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Name Katja Pokovic	Function Technical Manager	Signature

Issued: August 15, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not affect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORMx$ (no uncertainty required).

ES3DV3 – SN:3292

August 15, 2014

Probe ES3DV3

SN:3292

Manufactured: July 6, 2010
Repaired: July 28, 2014
Calibrated: August 15, 2014

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

ES3DV3- SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.89	0.95	1.46	$\pm 10.1\%$
DCP (mV) ^B	107.1	106.1	103.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	209.7	$\pm 3.8\%$
		Y	0.0	0.0	1.0		218.8	
		Z	0.0	0.0	1.0		198.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ES3DV3- SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	6.71	6.71	6.71	0.18	1.80	± 13.3 %
835	41.5	0.90	6.23	6.23	6.23	0.80	1.11	± 12.0 %
900	41.5	0.97	6.71	6.71	6.71	0.71	1.17	± 12.0 %
1810	40.0	1.40	5.07	5.07	5.07	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.03	5.03	5.03	0.45	1.55	± 12.0 %
2100	39.8	1.49	5.04	5.04	5.04	0.77	1.17	± 12.0 %
2450	39.2	1.80	4.43	4.43	4.43	0.73	1.23	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ES3DV3- SN:3292

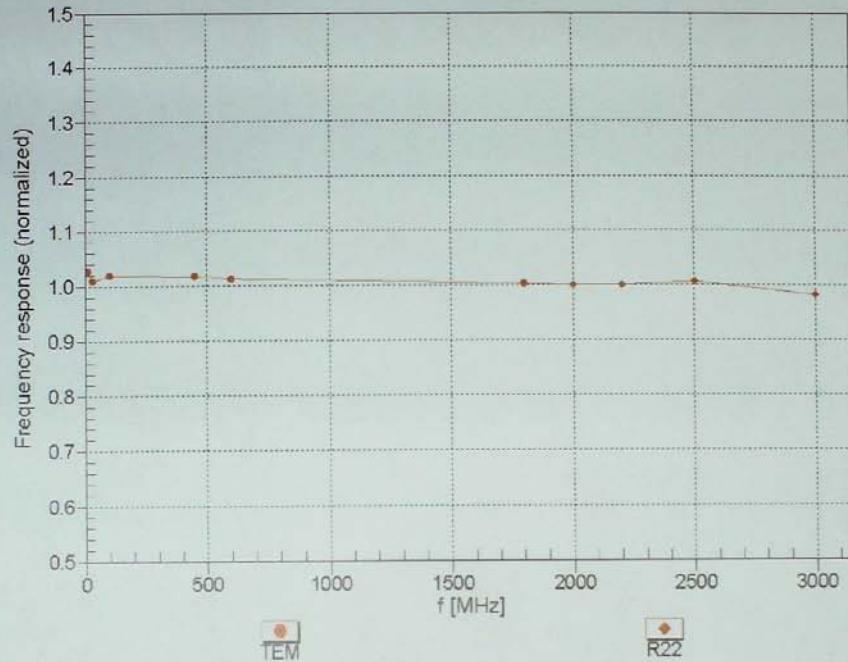
August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292**Calibration Parameter Determined in Body Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^E	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	7.10	7.10	7.10	0.13	1.00	± 13.3 %
835	55.2	0.97	6.11	6.11	6.11	0.36	1.78	± 12.0 %
900	55.0	1.05	5.97	5.97	5.97	0.73	1.22	± 12.0 %
1810	53.3	1.52	4.79	4.79	4.79	0.59	1.45	± 12.0 %
1900	53.3	1.52	4.66	4.66	4.66	0.41	1.79	± 12.0 %
2100	53.2	1.62	4.77	4.77	4.77	0.63	1.42	± 12.0 %
2450	52.7	1.95	4.23	4.23	4.23	0.66	0.98	± 12.0 %

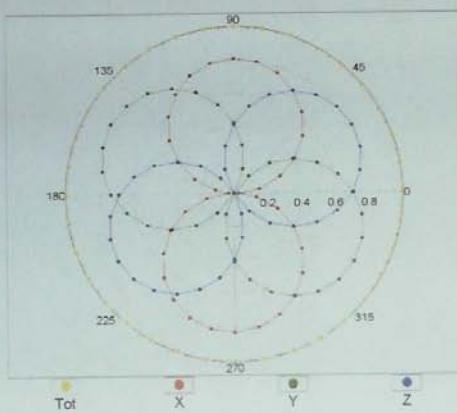
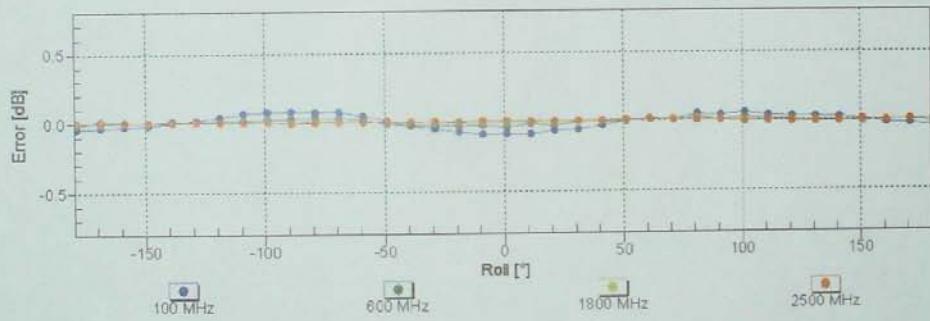
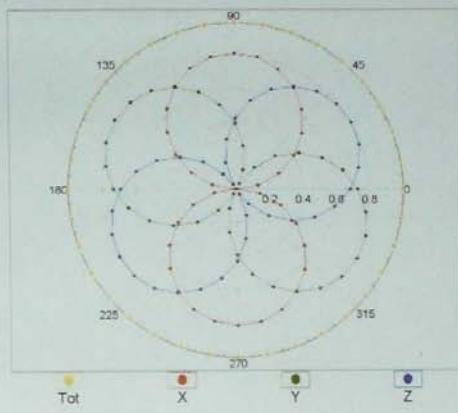
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^E At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

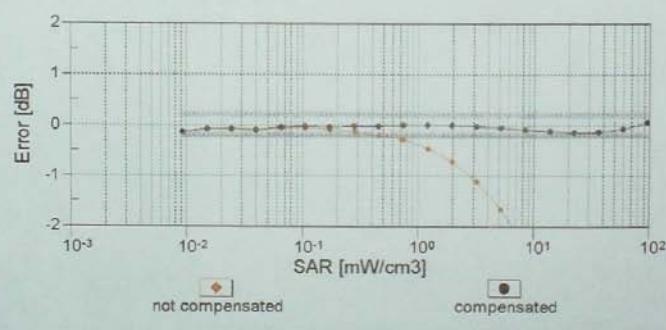
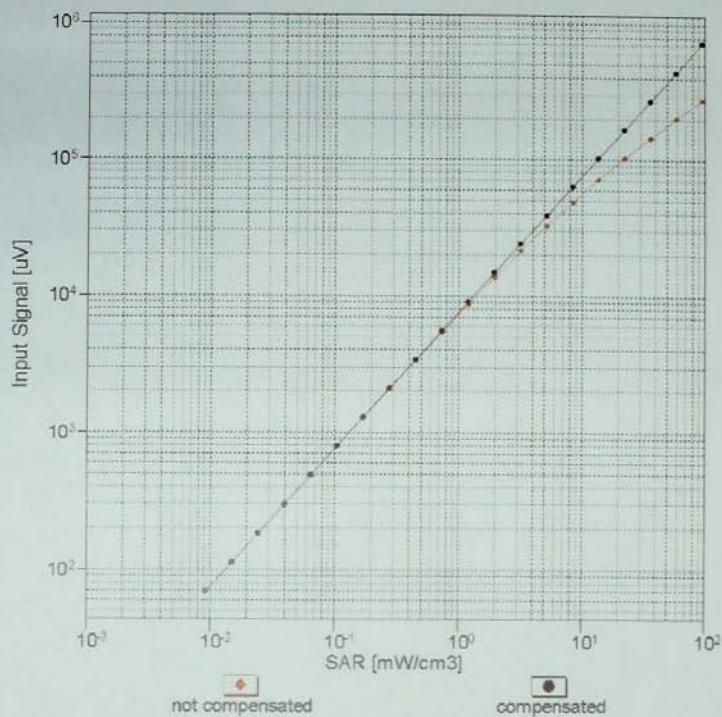
ES3DV3- SN:3292

August 15, 2014




Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

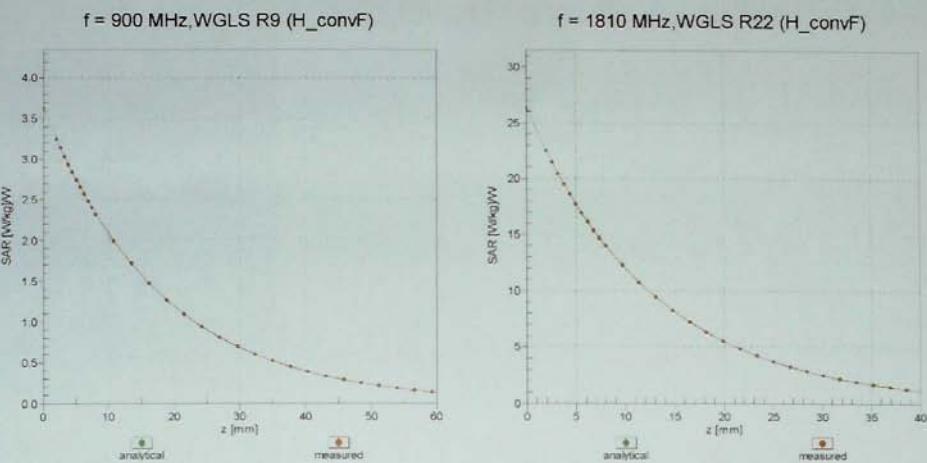
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)



ES3DV3- SN:3292

August 15, 2014

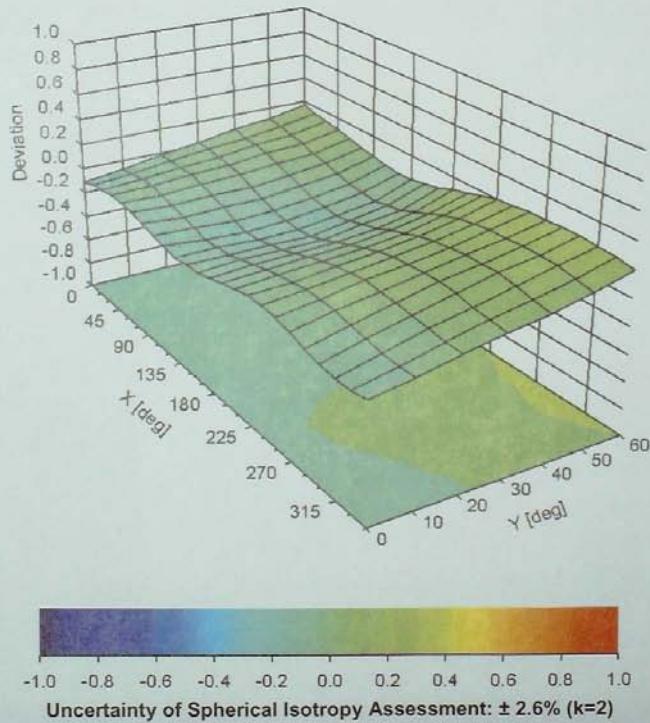
Receiving Pattern (ϕ), $\theta = 0^\circ$ $f=600 \text{ MHz, TEM}$ $f=1800 \text{ MHz, R22}$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

ES3DV3- SN:3292


August 15, 2014

Dynamic Range $f(\text{SAR}_{\text{head}})$
(TEM cell, $f_{\text{eval}} = 1900 \text{ MHz}$)Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

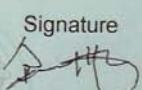
ES3DV3- SN:3292

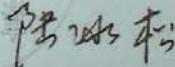

August 15, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$




ES3DV3- SN:3292

August 15, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-8.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

6.2. D835V2 Dipole Calibration Certificate

In Collaboration with s p e a g CALIBRATION LABORATORY		 CALIBRATION No. L0570	
Client	Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Http://www.chinattl.cn		
Client	CIQ-SZ(Auden)	Certificate No: Z14-97067	
CALIBRATION CERTIFICATE			
Object	D835V2 - SN: 4d134		
Calibration Procedure(s)	TMC-OS-E-02-194 Calibration procedure for dipole validation kits		
Calibration date:	July 24, 2014		
This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRV	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep-14
Reference Probe EX3DV4	SN 3846	3- Sep-13 (SPEAG, No.EX3-3846_Sep13)	Sep-14
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan -15
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14
Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	
Issued: July 28, 2014			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctll@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	----

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.62 mW / g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW / g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	---	----

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.77 mW / g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.50 mW / g ± 20.4 % (k=2)

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$48.8\Omega + 3.34j\Omega$
Return Loss	- 28.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.9\Omega + 7.08j\Omega$
Return Loss	- 23.0dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.261 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

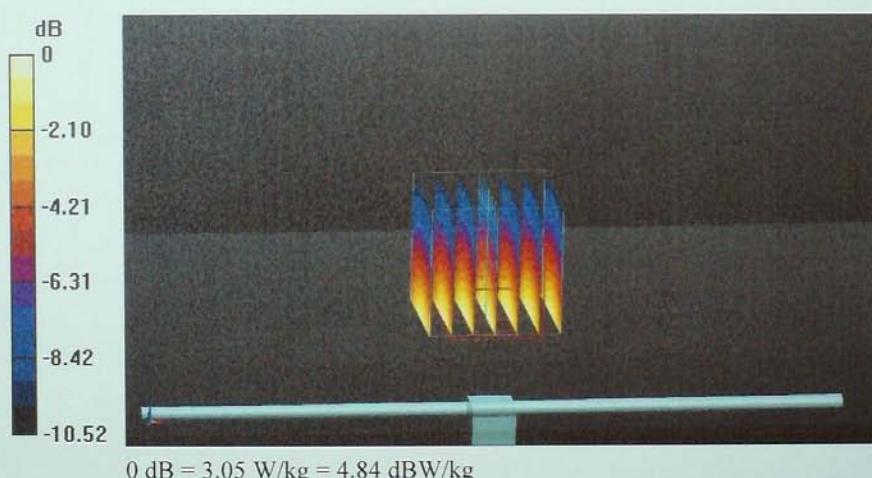
Medium parameters used: $f = 835$ MHz; $\sigma = 0.904$ S/m; $\epsilon_r = 41.7$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3846; ConvF(9.32, 9.32, 9.32); Calibrated: 2013-09-03;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

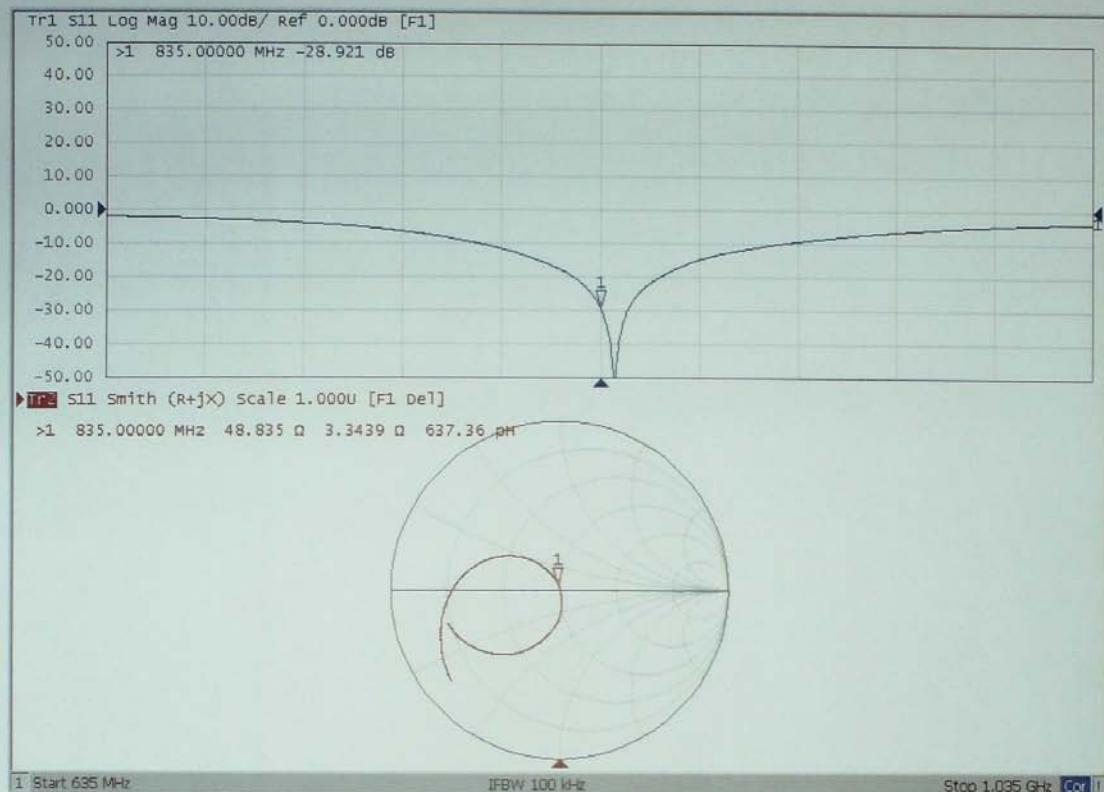

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.91 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 3.05 W/kg



In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctll@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Date: 24.07.2014

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.986$ S/m; $\epsilon_r = 55.6$; $\rho = 1000$ kg/m³

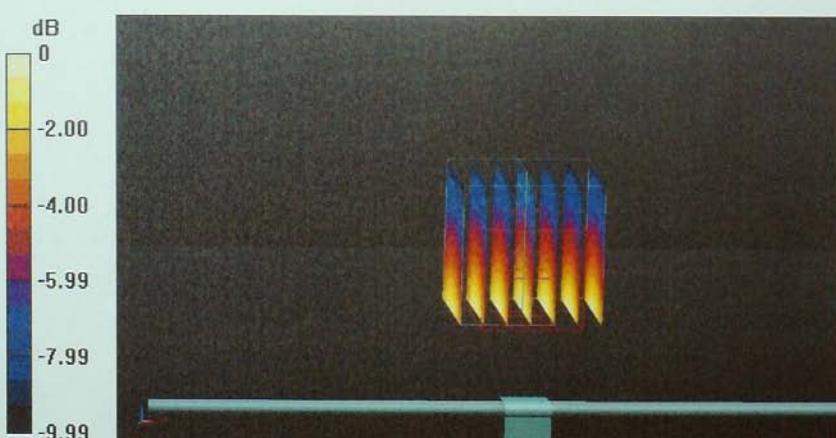
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3846; ConvF(8.96, 8.96, 8.96); Calibrated: 2013-09-03;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250


mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

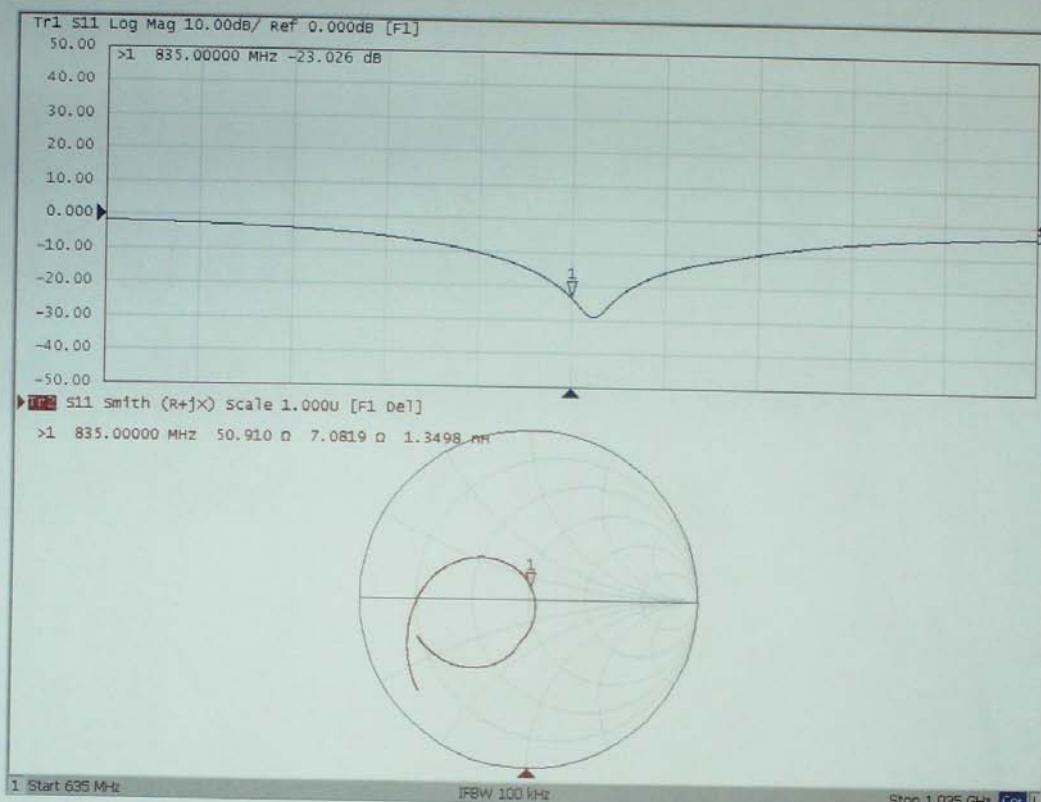
Reference Value = 57.01 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg


In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

CALIBRATION
No. L0570

Impedance Measurement Plot for Body TSL

6.3. D1900V2 Dipole Calibration Certificate

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

Client

CIQ SZ (Auden)

Certificate No: J13-2-3052

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d150

Calibration Procedure(s) TMC-OS-E-02-194
Calibration procedure for dipole validation kits

Calibration date: December 12, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep-14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb-14
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: December 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.71 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.26 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω+ 3.17jΩ
Return Loss	- 30.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8Ω+ 3.92jΩ
Return Loss	- 27.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.048 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with

s p e a g

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

DASY5 Validation Report for Head TSL

Date: 12.12.2013

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: CW; Frequency: 1900 MHz

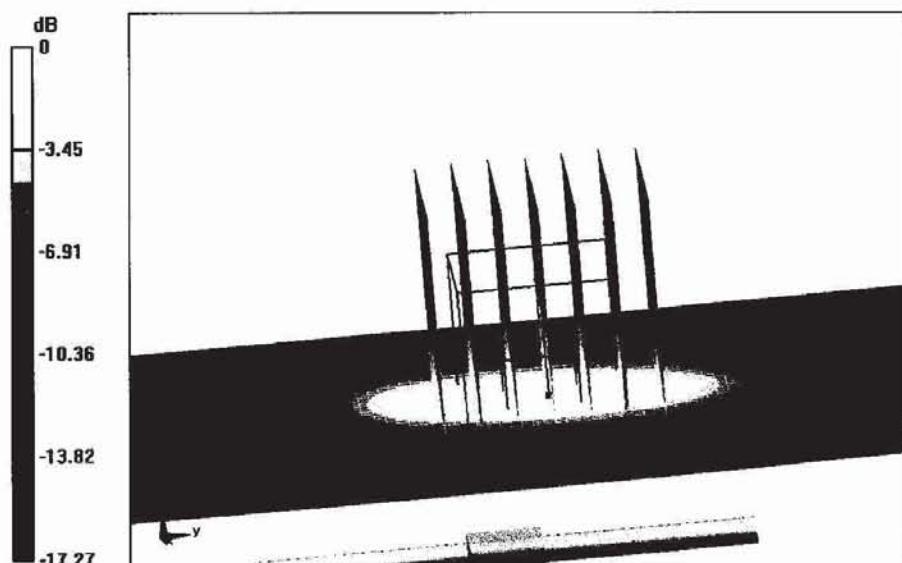
Medium parameters used: $f = 1900$ MHz; $\sigma = 1.416$ mho/m; $\epsilon_r = 38.91$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(5.06,5.06,5.06); Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186; Type: QD000P40CC;
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

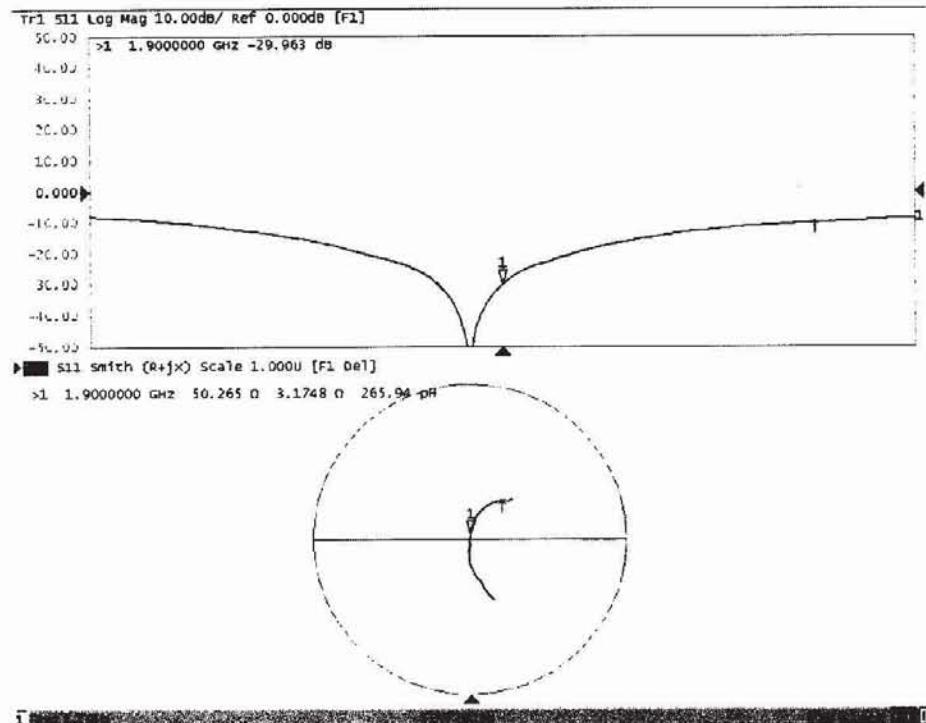

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan**(7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.054 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.08 W/kg

Maximum value of SAR (measured) = 11.8 W/kg



0 dB = 11.8 W/kg = 10.72 dBW/kg

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

Impedance Measurement Plot for Head TSL

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

DASY5 Validation Report for Body TSL

Date: 12.10.2013

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: CW; Frequency: 1900 MHz;

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.528$ mho/m; $\epsilon_r = 53.74$; $\rho = 1000$ kg/m³

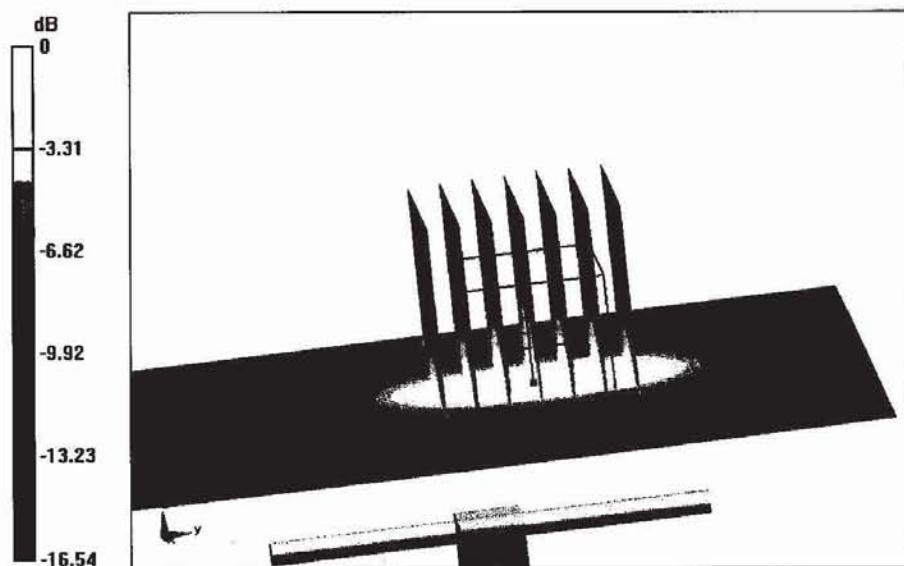
Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3149; ConvF(4.72,4.72,4.72) ; Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM1186; Type: QD000P40CC;
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan

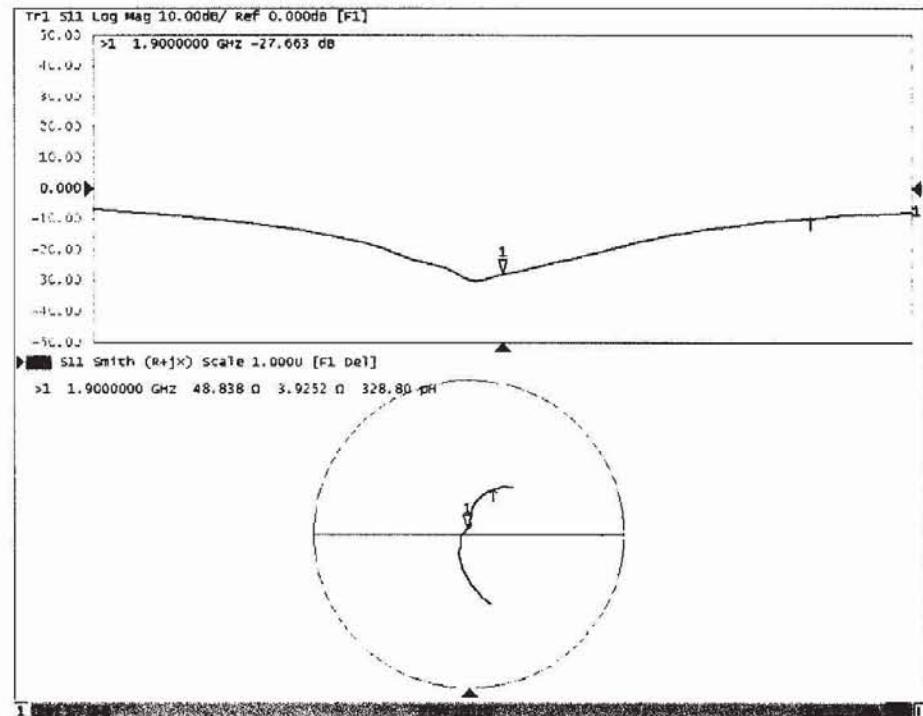

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.606 V/m; Power Drift = -0.06 dB

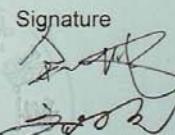
Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.26 W/kg

Maximum value of SAR (measured) = 12.1 W/kg



0 dB = 12.1 W/kg = 10.83 dBW/kg



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: Info@emcite.com [Http://www.emcite.com](http://www.emcite.com)

Impedance Measurement Plot for Body TSL

6.4. DAE4 Calibration Certificate

In Collaboration with s p e a g CALIBRATION LABORATORY		 CALIBRATION No. L0570
Client : CIQ-SZ(Auden)		Certificate No: Z14-97066
CALIBRATION CERTIFICATE		
Object	DAE4 - SN: 1315	
Calibration Procedure(s)	TMC-OS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx)	
Calibration date:	July 22, 2014	
This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.		
All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.		
Calibration Equipment used (M&TE critical for calibration)		
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)
Documenting Process Calibrator 753	1971018	01-July-14 (CTTL, No:J14X02147)
Scheduled Calibration	July-15	
Calibrated by:	Name Yu Zongying	Function SAR Test Engineer
Reviewed by:	Qi Dianyuan	SAR Project Leader
Approved by:	Lu Bingsong	Deputy Director of the laboratory
Signature		
Issued: July 23, 2014		
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.		

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com Http://www.chinattl.cn

CALIBRATION
No. L0570

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$405.162 \pm 0.15\% \text{ (k=2)}$	$405.006 \pm 0.15\% \text{ (k=2)}$	$404.963 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.99072 \pm 0.7\% \text{ (k=2)}$	$3.98481 \pm 0.7\% \text{ (k=2)}$	$3.98836 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$22^\circ \pm 1^\circ$
---	------------------------

D1900V2, serial no. 5d150 Extended Dipole Calibrations

Referring to KDB 865664D01V01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification of the extended calibration>

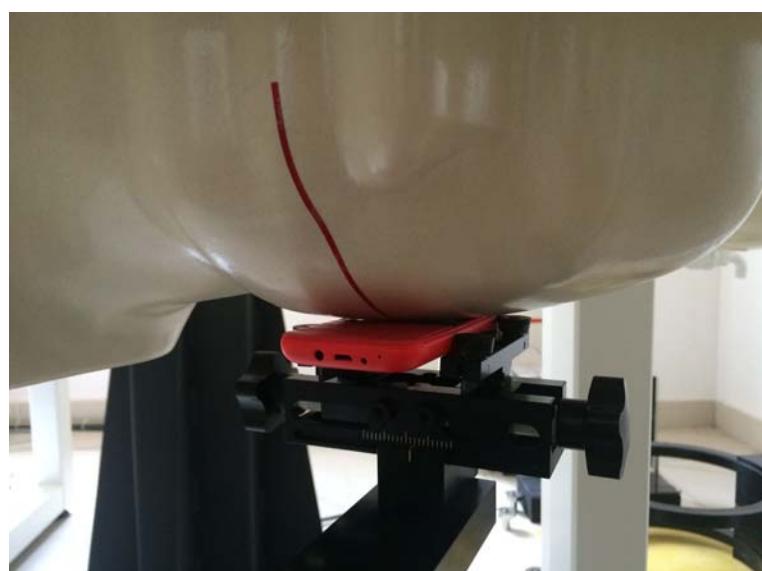
D1900V2 – serial no. 5d150												
Date of Measurement	1900 Head						1900 Body					
	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2013-12-12	-30.0		50.3		3.17		-27.7		48.8		3.92	
2014-12-08	-30.551	1.84	51.192	0.892	3.9641	0.7941	-27.412	-1.04	47.419	-1.381	4.1127	0.1927

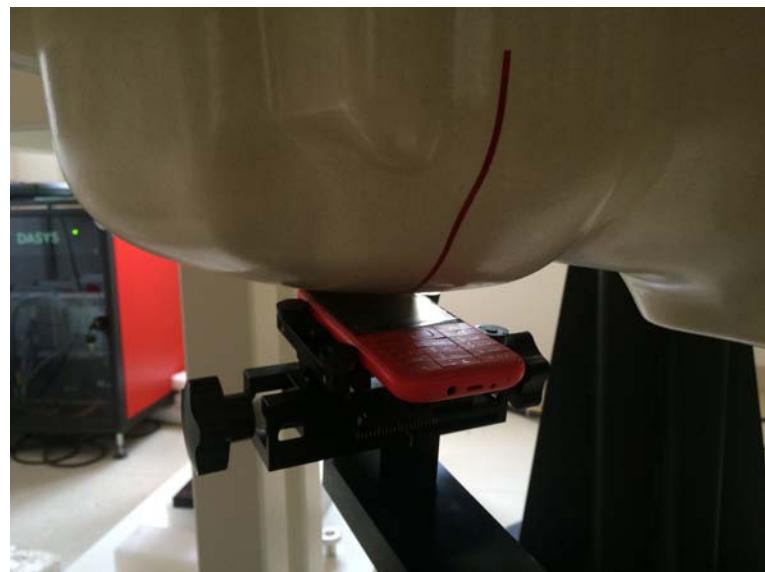
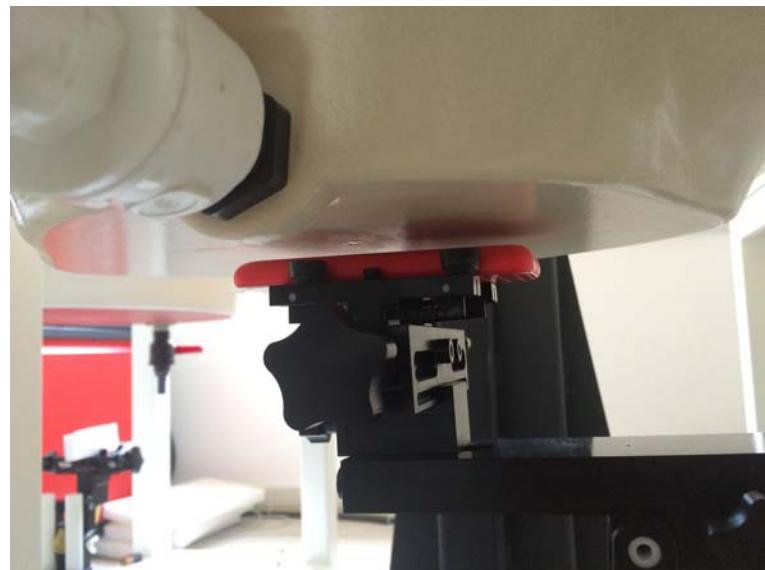
The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

7. Test Setup Photos

Photograph of the depth in the Head Phantom (850MHz)

Photograph of the depth in the Body Phantom (850MHz)


Photograph of the depth in the Head Phantom (1900MHz)



Photograph of the depth in the Body Phantom (1900MHz)

Right Head Tilt Setup Photo

Right Head Touch Setup Photo

Left Head Tilt Setup Photo**Left Head Touch Setup Photo****5mm Body-worn Rear Side Setup Photo**

5mm Body-worn Front Side Setup Photo

.....**End of Report**.....