

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-3826/22-01-03-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

ROBERT BOSCH GmbH

Daimlerstr. 6

71229 Leonberg / GERMANY Phone: +49 711 811-0 Contact: Zsolt Szentannai

e-mail: <u>zsolt.szentannai@hu.bosch.com</u>

Manufacturer

ROBERT BOSCH GmbH

Daimlerstr. 6

71229 Leonberg / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 210 Issue 10 Spectrum Management and Telecommunications Radio Standards

Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: BCM Body Computer Module

Model name: BR22

FCC ID: 2AAJCBR22. IC: 24305-BR22.

Frequency: 433.46 MHz to 434.42 MHz

Technology tested: proprietary

Antenna: Integrated antenna

Power supply: 9 V to 16 V DC by car battery

Temperature range: -40°C to +80°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
p.o.		
Christoph Schneider	Hans-Joachim Wolsdorfer	

Christoph Schneider Hans-Joachim Wolsdor
Lab Manager Lab Manager
Radio Communications Radio Communications

1 Table of contents

1	Table	of contents	2
2		al information	
	2.1	Notes and disclaimer	
	2.2	Application details	
	2.3	Test laboratories sub-contracted	
3	Test s	tandard/s, references and accreditations	
4	Repor	ting statements of conformity – decision rule	
5	Test e	nvironment	6
6	Test it	em	6
	6.1	General description	6
	6.2	Additional information	е
7	Descr	ption of the test setup	7
	7.1	Shielded semi anechoic chamber	8
	7.2	Shielded fully anechoic chamber	
	7.3	Conducted measurements	11
8	Seque	nce of testing	12
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	14
9	Meas	urement uncertainty	15
10	S	ummary of measurement results	16
	10.1	Additional comments	16
11	M	leasurement results	17
	11.1	Timing of the transmitter	17
	11.2	Emission bandwidth	
	11.3	Field strength of the fundamental	22
	11.4	Field strength of the harmonics and spurious	24
12	0	bservations	32
13	G	lossary	33
14	D	ocument history	34
15	Α	ccreditation Certificate – D-PL-12076-01-04	34
16	Δ	ccreditation Certificate - D-PL-12076-01-05	35

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-3826/22-01-03 and dated 2022-11-07.

2.2 Application details

Date of receipt of order: 2022-06-19
Date of receipt of test item: 2022-06-19
Start of test:* 2022-07-01
End of test:* 2022-12-20

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

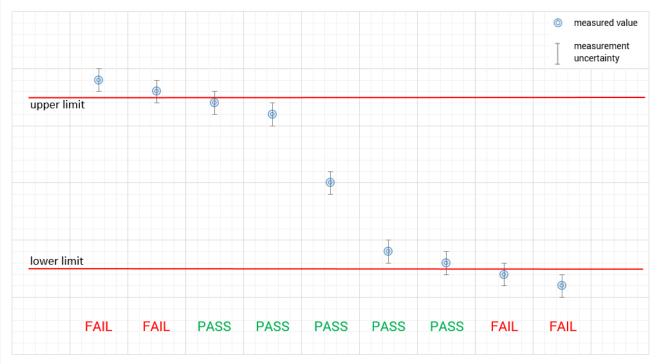
© CTC advanced GmbH Page 3 of 35

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description			
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices			
RSS - 210 Issue 10	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment			
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus			
Guidance	Version	Description			
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices			
Accreditation	Description	1			
D-PL-12076-01-04	. 0.000	unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf Deutsche Akkreditierungsstelle D-PL-12076-01-04			
D-PL-12076-01-05		mmunication FCC requirements www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkreditierungss D-PL-12076-01-05			

© CTC advanced GmbH Page 4 of 35



4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 35

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +80 °C all tests performed with room temperature -40 °C all tests performed with room temperature
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	12 V DC by car battery
Power supply	:	V_{max}	16 V
		V_{min}	9 V

6 Test item

6.1 General description

Kind of test item :	BCM Body Computer Module
Model name :	BR22
HMN :	-/-
PMN :	MQB37W
HVIN :	BR22
FVIN :	-/-
S/N serial number :	BXJ-53F21.04.2295141384
Hardware status :	035
Software status :	AJ50
Firmware status :	-/-
Frequency band :	433.46 MHz to 434.42 MHz
Type of radio transmission: Use of frequency spectrum:	modulated carrier
Type of modulation :	FSK
Number of channels :	RX 3 channels; TX 2 channels
Antenna :	Integrated antenna
Power supply :	9 V to 16 V DC by car battery
Temperature range :	-40°C to +80°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-3826/22-01-01_AnnexA

1-3826/22-01-01_AnnexB 1-3826/22-01-01_AnnexD

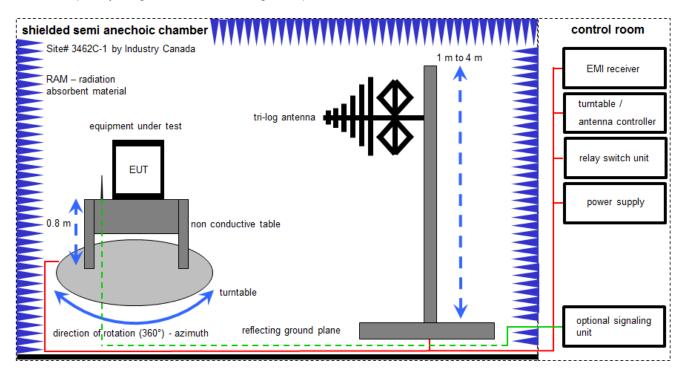
© CTC advanced GmbH Page 6 of 35

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 35

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

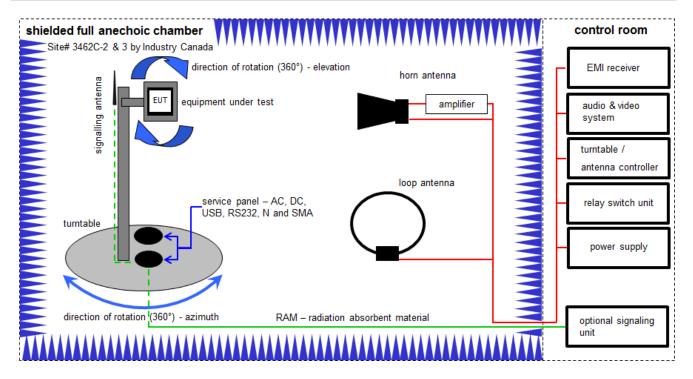
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu V/m$)

© CTC advanced GmbH Page 8 of 35


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
2	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
5	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
6	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
7	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
8	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	19.05.2023

© CTC advanced GmbH Page 9 of 35

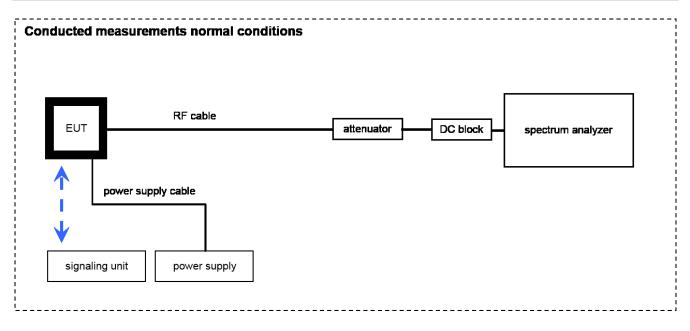
7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	01.07.2021	31.07.2023
3	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A,B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	11.02.2022	29.02.2024
6	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
7	A,B	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A,B	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
10	A,B	PC	ExOne	F+W		300004703	ne	-/-	-/-

© CTC advanced GmbH Page 10 of 35

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV30	Rohde&Schwarz	104365	300005923	k	14.12.2021	31.12.2022
2	Α	Power Supply	HMP2020	Rohde & Schwarz	102219	300006192	k	08.04.2021	07.04.2023

© CTC advanced GmbH Page 11 of 35

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 12 of 35

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 35

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 35

9 Measurement uncertainty

Measurement uncertainty							
Test case Uncertainty							
Occupied bandwidth	± used RBW						
Field strength of the fundamental	± 3 dB						
Field strength of the harmonics and spurious	± 3 dB						
Receiver spurious emissions and cabinet radiations	± 3 dB						
Conducted limits	± 2.6 dB						

© CTC advanced GmbH Page 15 of 35

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report.
Ш	The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210, Issue 10	See table!	2022-12-20	-/-
	RSS-Gen, Issue 5			

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) RSS-Gen, Issue 5	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal	\boxtimes				
§ 15.231 (a) (1) RSS-210 Issue 10	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c) RSS-210 Issue 10	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) RSS-210 Issue 10	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 10	Fieldstrength of harmonics and spurious	Nominal	Nominal	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10.1 Additional comments

Reference documents: none

Special test descriptions: Homologation_SW_User_Guide.docx

Configuration descriptions: Homologation_SW_Config.xlsx

© CTC advanced GmbH Page 16 of 35

11 Measurement results

11.1 Timing of the transmitter

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	300ms	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	Zero	
Trace-Mode:	Single sweep	
Test setup	7.3 A	

Limits:

FCC IC

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

Result:

The maximum transmission time is 30ms in a 100ms timewindow

max. Transmit time (Tx on) = 30ms Tx on + Tx off = 100mS

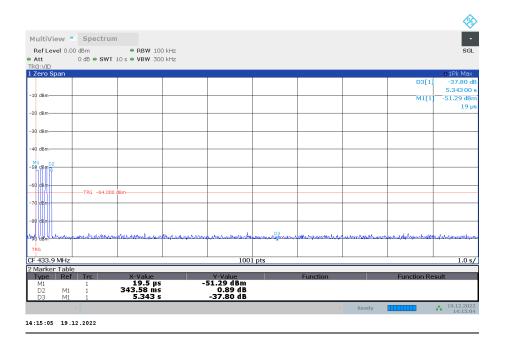
The peak-to-average correction factor is calculated with 20Log [Tx on/(Tx on + Tx off)]. Hereby the peak-to-average correction factor is -10.45dB

© CTC advanced GmbH Page 17 of 35

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	10s	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz	
Span:	Zero	
Trace-Mode:	Single sweep	
Test setup	7.3 A	

Limits:


FCC	IC
-----	----

- § 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.
- (2) a transmitter activated automatically shall cease transmission within 5 seconds after activation.

Result:

cease time after activation: 343.58 ms

Plot 1

© CTC advanced GmbH Page 18 of 35

11.2 Emission bandwidth

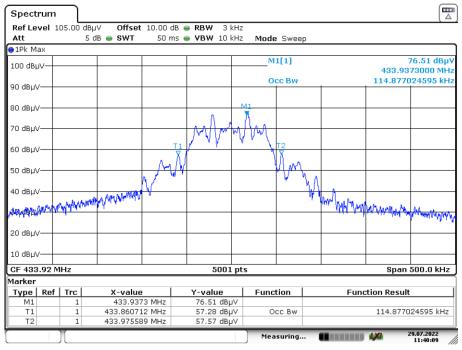
Measurement:

Measurement of the 99 % bandwidth of the modulated signal

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1% to 5% of the OBW		
Video bandwidth:	3 x RBW		
Span:	500kHz		
Trace-Mode:	Max. hold		

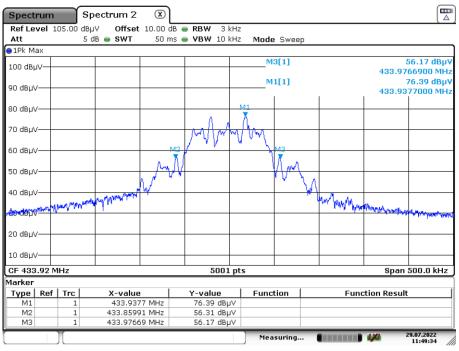
Limits:

FCC	IC	
The OBW shall not be wider than 0.25% of the centre frequency, here maximum 1008.5 kHz.		


Result:

Center Frequency	Test conditions		Signal bandwidth / kHz		
Center Frequency	Mode		OBW 99%	20 dB-bandwidth	
433.92 MHz	T_{nom}	V_{nom}	114.88	116.78	
434.36 MHz	T_{nom}	V_{nom}	115.38	107.98	

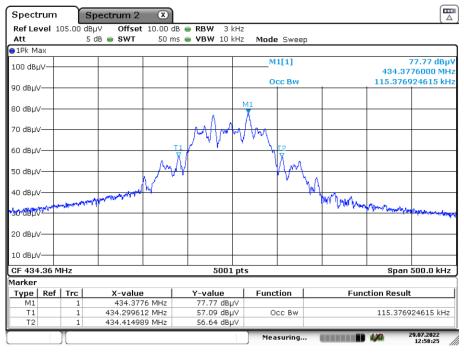
© CTC advanced GmbH Page 19 of 35



Plot 1: Emissions bandwidth - low channel

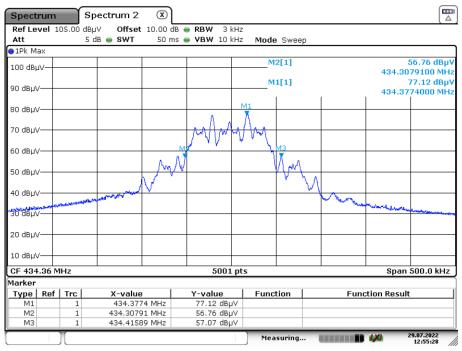
Date: 29.JUL.2022 11:40:09

Plot 2: 99 % emission bandwidth - low channel



Date: 29.JUL.2022 11:49:34

© CTC advanced GmbH Page 20 of 35



Plot 3: Emissions bandwidth - high channel

Date: 29.JUL.2022 12:58:25

Plot 4: 99 % emission bandwidth - high channel

Date: 29.JUL.2022 12:55:28

© CTC advanced GmbH Page 21 of 35

11.3 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector:	Peak / pulse averaging / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	120 kHz		
Video bandwidth:	3 x RBW		
Span:	Depends on the signal		
Trace-Mode:	Max. hold		
Test setup	7.1 A		
Measurement uncertainty	chapter 9		

Limits:

FCC	IC

Field strength of the fundamental.

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field strength of Fundamental (µV/m)	Measurement distance (m)
40.66 - 40.70	2,250	3
70-130	1,250	3
130-174	1,250 to 3,750	3
174-260	3,750	3
260-470	3,750 to 12,500	3
Above 470	12,500	3

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.

© CTC advanced GmbH Page 22 of 35

Result:

	MAXIMUM POWER (dBμV/m at 3 m distance)		Limit (dBµV/m at 3 m distance)
Center frequency	Peak *	Average **	Average
433.92 MHz	85.23	74.78	80.8
434.36 MHz	85.19	74.74	80.8

^{*} Calculated from 10 meter to 3 meter with 10.46 dB

© CTC advanced GmbH Page 23 of 35

^{**} Value recalculated from Peak-to-Average correction factor (-10.45 dB) described in 11.1

11.4 Field strength of the harmonics and spurious

Measurement:

Measurement parameter					
Detector:	Peak / average / quasi peak				
Sweep time:	Auto				
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz				
Video bandwidth:	3 x RBW				
Span:	See plots				
Trace-Mode:	Max. hold				
Test setup	7.1A, 7.2A, 7.2B				
Measurement uncertainty	chapter 9				

Limits: Part 15.231

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

FCC		IC		
	FCC Par	t 15.231		
Fundamental Frequency (MHz)	Field strength of s	spurious (µV/m)	Measurement distar	nce (m)
40.66 - 40.70	225		3	
70-130	12	5	3	
130-174	125 to	375	3	
174-260	37	5	3	
260-470	375 to	1,250	3	
Above 470	1,25	50	3	

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC			IC					
	FCC Part 15.209							
Frequency (MHz)	Field streng	th (µV/m)	Measurement distance (m)					
0.009 - 0.490	2400/F	(kHz)	300					
0.490 - 1.705	24000/F(kHz)		30					
1.705 – 30	30		30					
30 – 88	100		3					
88 – 216	150		3					
216 - 960	200		3					
above 960	50	0	3					

© CTC advanced GmbH Page 24 of 35

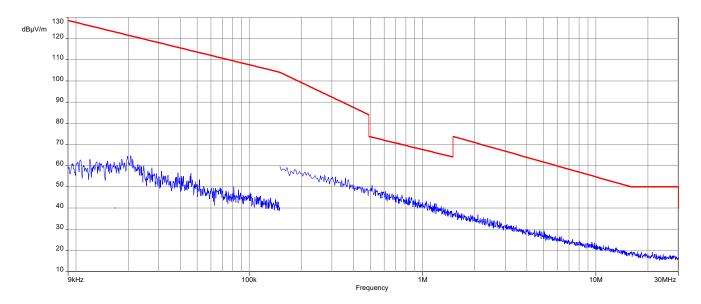
Results: Spurious emissions within the restricted bands (Part15.205 & 15.209)

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]
433.92 MHz	1	Peak	74	-/-
	-/-	AVG	54	-/-
42.4.27 MH=	1303.15	Peak	74	49.4
434.37 MHz		AVG	54	48.2

For emissions below 1 GHz, see table below the plots.

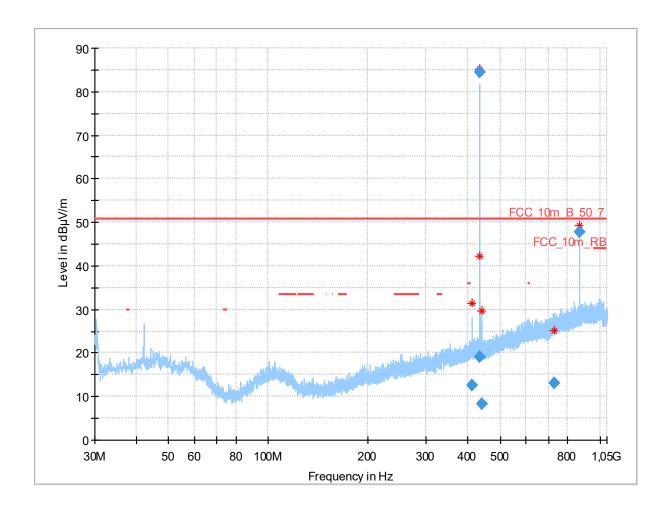
Results: Spurious emissions outside the restricted bands (Part15.231)

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]
	1725 42	Peak	-/-	-/-
433.92 MHz	1735.43	AVG	62	54.02
	2458.22	Peak	-/-	-/-
		AVG	62	29.84
434.37 MHz	1737.54	Peak	-/-	-/-
		AVG	62	47.33


For emissions below 1 GHz, see table below the plots.

© CTC advanced GmbH Page 25 of 35

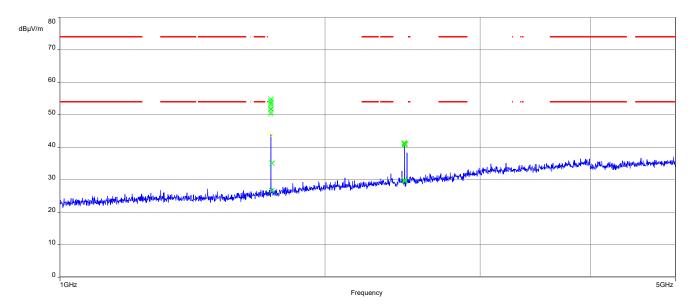
Plots:


Plot 1: 9 kHz to 30 MHz low channel

© CTC advanced GmbH Page 26 of 35

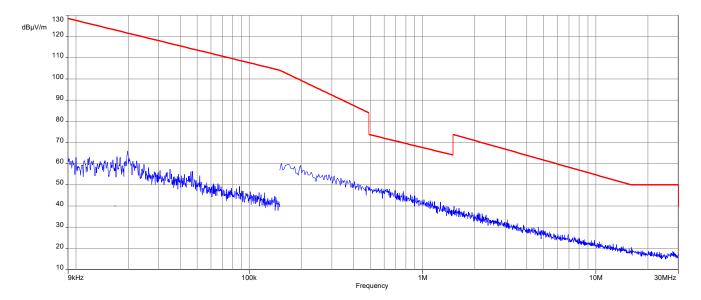
Plot 2: 30 MHz to 1000 MHz, vertical & horizontal polarisation low channel

Final_Result:

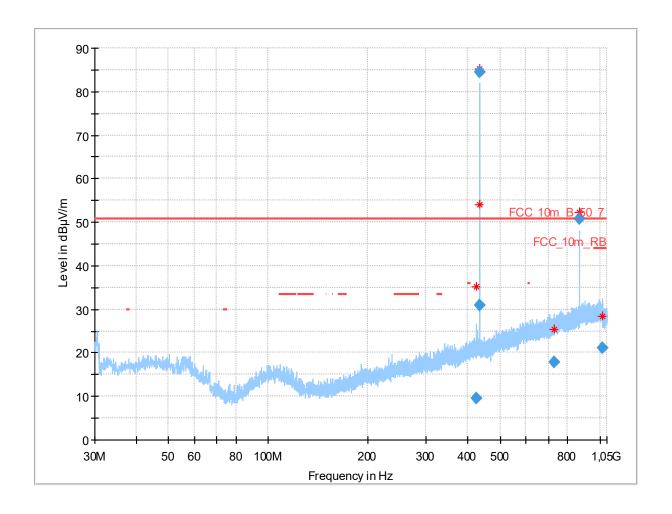

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
412.584	12.47	50.7	38.2	1000	120.0	101.0	V	241	18
433.892		wanted signal							
435.227	19.02	50.7	31.7	1000	120.0	102.0	V	225	19
439.223	8.29	50.7	42.4	1000	120.0	107.0	V	65	19
730.443	13.13	50.7	37.6	1000	120.0	128.0	Н	46	23
867.792	47.76	50.7	2.9	1000	120.0	107.0	Н	168	25

In addition to the limit according to Part 15.209 shown in the plot, the limit according to Part 15.231 also applies!

© CTC advanced GmbH Page 27 of 35


Plot 3: 1000 MHz to 5000 MHz, vertical & horizontal polarisation low channel

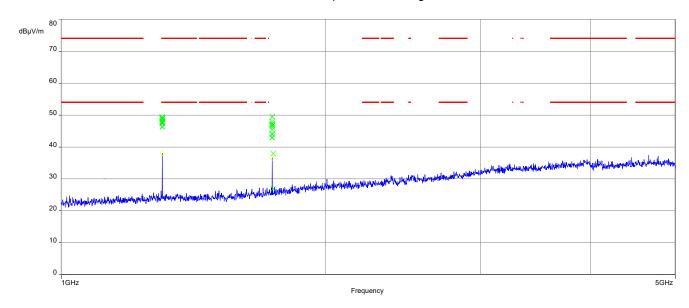
© CTC advanced GmbH Page 28 of 35


Plot 4: 9 kHz to 30 MHz high channel

© CTC advanced GmbH Page 29 of 35

Plot 5: 30 MHz to 1000 MHz, vertical & horizontal polarisation high channel

Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
425.294	9.63	50.7	41.1	1000	120.0	200.0	Н	0	19
433.887	31.02	50.7	19.7	1000	120.0	103.0	V	218	19
434.343		wanted signal							
727.137	17.93	50.7	32.8	1000	120.0	229.0	Н	180	23
868.676	50.67	50.7	0.0	1000	120.0	203.0	V	82	25
1014.682	21.22	50.7	29.5	1000	120.0	161.0	Н	225	26

In addition to the limit according to Part 15.209 shown in the plot, the limit according to Part 15.231 also applies!

© CTC advanced GmbH Page 30 of 35

Plot 6: 1000 MHz to 5000 MHz, vertical & horizontal polarisation high channel

© CTC advanced GmbH Page 31 of 35

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 32 of 35

13 Glossary

EUT	Equipment under test				
DUT	Device under test				
UUT	Unit under test				
GUE	GNSS User Equipment				
ETSI	European Telecommunications Standards Institute				
EN	European Standard				
FCC	Federal Communications Commission				
FCC ID	Company Identifier at FCC				
IC	Industry Canada				
PMN	Product marketing name				
HMN	Host marketing name				
HVIN	Hardware version identification number				
FVIN	Firmware version identification number				
EMC	Electromagnetic Compatibility				
HW	Hardware				
SW	Software				
Inv. No.	Inventory number				
S/N or SN	Serial number				
С	Compliant				
NC	Not compliant				
NA	Not applicable				
NP	Not performed				
PP	Positive peak				
QP	Quasi peak				
AVG	Average				
OC	Operating channel				
OCW	Operating channel bandwidth				
OBW	Occupied bandwidth				
ООВ	Out of band				
DFS	Dynamic frequency selection				
CAC	Channel availability check				
OP	Occupancy period				
NOP	Non occupancy period				
DC	Duty cycle				
PER	Packet error rate				
CW	Clean wave				
MC	Modulated carrier				
WLAN	Wireless local area network				
RLAN	Radio local area network				
DSSS	Dynamic sequence spread spectrum				
OFDM	Orthogonal frequency division multiplexing				
FHSS	Frequency hopping spread spectrum				
GNSS	Global Navigation Satellite System				
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz				

© CTC advanced GmbH Page 33 of 35

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-11-07
А	update chapter 11.1	2022-12-20

15 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Spittelmant 1.0 Europa-Allee 52 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by order (typal-long, tirgues) figure Head of Division The certificate together with its sonce reflects the status at the time of the date of issue. The current status of the scape of excreditation can be found in the database of excreditation database. The current status of the scape of excreditation can be found in the database of excreditation database. The current status of the scape of excreditation can be found in the database of excreditation database of possible Advantagementations of the scape of excreditation can be found in the database of excreditation database.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMS-telles) of 31 July 2009 (Federal Law Gazette) p. 2053 and the Regulation (FS) No 765/D08 of the European Perlaiment and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Divol. 218 of 9 July 2008, p. 30) DAMS is a signatory to the Nutlitiateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.utpean-accreditation.org ILAC: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 34 of 35

16 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin Office Braunschweig Bundesalte 100 38116 Braunschweig 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by ordef/Oigl-ng, (nrygalf Egner least of Division) The certificate together with its enext reflects the status at the time of the date of save. The current status of the scope of accreditation can be found in the database of accredited bodies of Division by order the Abtreditionungstelle Gmb4. Insulation would shall day for (content/paccredited bodies-dabls)	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAMS). Deempted is the unchanged form of separate disseminations of the cover sheet by the conformally assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMS-felled) of 31 July 2009 (Federal Law Gazette 1, p. 2629) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of 91 July 2008 string out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Parliament and of the Council of the Michitateral Agreements for Mutual Recognition of the European operation for Accreditation (EA), International Accreditation Forum (IAF) and International Jaboratory Accreditation Cooperation (LIAC.) The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org IIAC: www.iaf.nu

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 35 of 35