1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 General Information

Client Information

Applicant:
Address of applicant:

Manufacturer:
Address of manufacturer:

General Description of EUT:

Product Name:
Trade Name
Model No.:
Adding Model(s):
Rated Voltage:
Battery Capacity:
Software Version:
Hardware Version:
FCC ID
Equipment Type:

ACOUSTMAX INTERNATIONAL CO.,LTD
Unit D16/F Cheuk Nang Plaza 250 Hennessy Road
WanchaiHongKong, HongKong, China.

Monster, Inc.
Nevada City, California.

ROCKIN' ROLLER 270 X
MMDNSTER ${ }^{\text {® }}$
MNRR270
MNRR270-X, MNRR270C, MNRR270-EU
Power Port:AC120V/60Hz
Battery:DC12V
9.0Ah

V01
RR270
2AAIN-MNRR2702
Mobile

Technical Characteristics of EUT:	
Bluetooth (BR/EDR mode)	
Bluetooth Version:	V5.0 (BR/EDR mode)
Frequency Range:	$2402-2480 \mathrm{MHz}$
RF Output Power:	-3.25 dBm (Conducted)
Data Rate:	$1 \mathrm{Mbps}, 2 \mathrm{Mbps}$
Modulation:	GFSK, $\pi / 4$ DQPSK
Quantity of Channels:	79
Channel Separation:	1 MHz
Type of Antenna:	PCB Antenna
Antenna Gain:	-0.58 dBi
Bluetooth (BLE mode)	
Bluetooth Version:	V5.0 (BLE mode)
Frequency Range:	$2402-2480 \mathrm{MHz}$
RF Output Power:	2.83 dBm (Conducted)
Data Rate:	1 Mbps
Modulation:	GFSK

Quantity of Channels:	40
Channel Separation:	2 MHz
Type of Antenna:	PCB Antenna
Antenna Gain:	-0.58 dBi

1.2 Standard Applicable

According to § 1.1307(b)(1) and KDB 447498 D01 General RF Exposure Guidance v06, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.
(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or $\mathrm{S}($ minutes $)$
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$	$/$	$/$	$\mathrm{F} / 300$	6
$1500-100000$	$/$	l	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or $\mathrm{S}($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$	$/$	$/$	$\mathrm{F} / 1500$	30
$1500-100000$	$/$	$/$	1	30

Note: $\mathrm{f}=$ frequency in MHz: * = Plane-wave equivalents power density

1.3 MPE Calculation Method

$\mathrm{S}=(30 * \mathrm{P} * \mathrm{G}) /\left(377 * \mathrm{R}^{2}\right)$
$\mathrm{S}=$ power density (in appropriate units, e.g., $\mathrm{mw} / \mathrm{cm}^{2}$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mw)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator,
the power gain factor is normally numeric gain.
$\mathrm{R}=$ distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.4 MPE Calculation Result

Bluetooth (BR/EDR mode):
Maximum Tune-Up output power: $\underline{-3(\mathrm{dBm})}$
Maximum peak output power at antenna input terminal: $\underline{0.50(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: $2402(\mathrm{MHz})$
Antenna gain: $\underline{-0.58(\mathrm{dBi})}$
Directional gain (numeric gain): $\underline{0.87}$
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0001\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Bluetooth (BLE mode):
Maximum Tune-Up output power: $20(\mathrm{dBm})$
Maximum peak output power at antenna input terminal: $\underline{2.00(\mathrm{~mW})}$
Prediction distance: $>20(\mathrm{~cm})$
Prediction frequency: 2402 (MHz)
Antenna gain: - $0.58(\mathrm{dBi})$
Directional gain (numeric gain): $\underline{0.87}$
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: \underline{0.0003\left(\mathrm{mw} / \mathrm{cm}^{2}\right)}$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Mode for Simultaneous Multi-band Transmission
Bluetooth (BR/EDR mode) + Bluetooth (BLE mode)
The worst case is power density at prediction frequency at $20 \mathrm{~cm}: 0.0001+0.0003=0.0004\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$
MPE limit for general population exposure at prediction frequency: $1\left(\mathrm{mw} / \mathrm{cm}^{2}\right)$

Result: Pass

