

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: <u>www.cga-cert.com</u>

Report Template Version: V03

Report Template Revision Date: Mar.1st,

2017

# **Test Report**

**Report No.:** CQAS20190500394E-01

Applicant: DongGuan Mae Tay Electronic Co.,Ltd

Address of Applicant: Beihuanlu Industrial Area, Changping Town Dongguan, Guangdong, China

Manufacturer: DongGuan Mae Tay Electronic Co.,Ltd

Address of Beihuanlu Industrial Area, Changping Town Dongguan, Guangdong, China

Manufacturer:

**Equipment Under Test (EUT):** 

Product: USB Dongle Model No.: DX-PNC2019

Brand Name: N/A

FCC ID: 2AAIL-DG007

 Standards:
 47 CFR Part 15, Subpart C

 Date of Test:
 2019-05-30 to 2019-06-03

Date of Issue: 2019-06-03
Test Result: PASS\*

Tested By:

Approved By:

(Daisy Qin)

Reviewed By:

(Aaron Ma)

( Jack A



The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



Report No.: CQAS20190500394E-01

## 2 Version

## **Revision History Of Report**

| Report No.          | Version | Description    | Issue Date |
|---------------------|---------|----------------|------------|
| CQAS20190500394E-01 | Rev.01  | Initial report | 2019-06-03 |



Report No.: CQAS20190500394E-01

# 3 Test Summary

| Test Item                                     | FCC Test Requirement                                     | Test method      | Result |
|-----------------------------------------------|----------------------------------------------------------|------------------|--------|
| Antenna Requirement                           | 47 CFR Part 15, Subpart C Section 15.203                 | ANSI C63.10-2013 | PASS   |
| AC Power Line<br>Conducted Emission           | 47 CFR Part 15, Subpart C Section 15.207                 | ANSI C63.10-2013 | PASS   |
| Field Strength of the Fundamental Signal      | 47 CFR Part 15, Subpart C Section 15.249 (a)             | ANSI C63.10-2013 | PASS   |
| Spurious Emissions                            | 47 CFR Part 15, Subpart C Section                        | ANSI C63.10-2013 | PASS   |
| Restricted bands around fundamental frequency | 47 CFR Part 15, Subpart C Section 15.249 (d), (e)/15.209 | ANSI C63.10-2013 | PASS   |
| 20dB Occupied<br>Bandwidth                    | 47 CFR Part 15, Subpart C Section 15.215 (c)             | ANSI C63.10-2013 | PASS   |



## 4 Contents

|   |      |                                                            | Page    |
|---|------|------------------------------------------------------------|---------|
| 1 | C    | OVER PAGE                                                  | 1       |
| 2 | ٧    | ERSION                                                     | 2       |
| 3 |      | EST SUMMARY                                                |         |
| J |      |                                                            | ••••••• |
| 4 | С    | ONTENTS                                                    | 4       |
| 5 | G    | ENERAL INFORMATION                                         | 5       |
|   | 5.1  | CLIENT INFORMATION                                         | 5       |
|   | 5.2  | GENERAL DESCRIPTION OF EUT                                 | 5       |
|   | 5.3  | TEST ENVIRONMENT AND MODE                                  |         |
|   | 5.4  | DESCRIPTION OF SUPPORT UNITS                               | 7       |
|   | 5.5  | STATEMENT OF THE MEASUREMENT UNCERTAINTY                   |         |
|   | 5.6  | TEST LOCATION                                              |         |
|   | 5.7  | TEST FACILITY                                              |         |
|   | 5.8  | DEVIATION FROM STANDARDS                                   |         |
|   | 5.9  | ABNORMALITIES FROM STANDARD CONDITIONS                     |         |
|   | 5.10 | · ·                                                        |         |
|   | 5.11 |                                                            |         |
| 6 | TI   | EST RESULTS AND MEASUREMENT DATA                           | 11      |
|   | 6.1  | ANTENNA REQUIREMENT                                        | 11      |
|   | 6.2  | CONDUCTED EMISSIONS                                        | 12      |
|   | 6.3  | RADIATED SPURIOUS EMISSION & FIELD STRENGTH OF FUNDAMENTAL | 16      |
|   | 6.4  | RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY              | 25      |
|   | 6.5  | 20DB BANDWIDTH                                             | 31      |
| 7 | Ρ    | HOTOGRAPHS                                                 | 34      |
|   | 7.1  | RADIATED EMISSION TEST SETUP                               | 34      |
|   | 7.2  | CONDUCTED EMISSION TEST SETUP                              | 35      |
|   | 73   | FUT CONSTRUCTIONAL DETAILS                                 | 36      |





# **5** General Information

## **5.1 Client Information**

| Applicant:                  | DongGuan Mae Tay Electronic Co.,Ltd                                  |
|-----------------------------|----------------------------------------------------------------------|
| Address of Applicant:       | Beihuanlu Industrial Area, Changping Town Dongguan, Guangdong, China |
| Manufacturer:               | DongGuan Mae Tay Electronic Co.,Ltd                                  |
| Address of<br>Manufacturer: | Beihuanlu Industrial Area, Changping Town Dongguan, Guangdong, China |

## **5.2 General Description of EUT**

| Name:               | USB Dongle                  |
|---------------------|-----------------------------|
| Model No.:          | DX-PNC2019                  |
| Trade Mark:         | N/A                         |
| Hardware Version:   | V0.1                        |
| Software Version:   | V0.1                        |
| Frequency Range:    | 2408MHz ~ 2474MHz           |
| Modulation Type:    | FSK                         |
| Number of Channels: | 34 (declared by the client) |
| Sample Type:        | Portable product            |
| Antenna Type:       | PCB antenna                 |
| Antenna Gain:       | 1.5dBi                      |
| Power Supply:       | DC5.0V from PC              |



Report No.: CQAS20190500394E-01

| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2408MHz   | 10      | 2426MHz   | 19      | 2444MHz   | 28      | 2462MHz   |
| 2                                   | 2410MHz   | 11      | 2428MHz   | 20      | 2446MHz   | 29      | 2464MHz   |
| 3                                   | 2412MHz   | 12      | 2430MHz   | 21      | 2448MHz   | 30      | 2466MHz   |
| 4                                   | 2414MHz   | 13      | 2432MHz   | 22      | 2450MHz   | 31      | 2468MHz   |
| 5                                   | 2416MHz   | 14      | 2434MHz   | 23      | 2452MHz   | 32      | 2470MHz   |
| 6                                   | 2418MHz   | 15      | 2436MHz   | 24      | 2454MHz   | 33      | 2472MHz   |
| 7                                   | 2420MHz   | 16      | 2438MHz   | 25      | 2456MHz   | 34      | 2474MHz   |
| 8                                   | 2422MHz   | 17      | 2440MHz   | 26      | 2458MHz   | /       | /         |
| 9                                   | 2424MHz   | 18      | 2442MHz   | 27      | 2460MHz   | /       | /         |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel                   | Frequency |  |
|---------------------------|-----------|--|
| The Lowest channel(CH1)   | 2408MHz   |  |
| The Middle channel(CH17)  | 2440MHz   |  |
| The Highest channel(CH34) | 2474MHz   |  |



Report No.: CQAS20190500394E-01

### 5.3 Test Environment and Mode

| Operating Environmen  | Operating Environment:                                                                                                                |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature:          | 24.0 °C                                                                                                                               |  |  |
| Humidity:             | 52 % RH                                                                                                                               |  |  |
| Atmospheric Pressure: | 1008 mbar                                                                                                                             |  |  |
| Test Mode:            | Use test software (RF test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. |  |  |

## **5.4 Description of Support Units**

The EUT has been tested with associated equipment below.

| Description      | Manufacturer | Model No.         | Remark         | FCC certification |
|------------------|--------------|-------------------|----------------|-------------------|
| PC               | Lenovo       | ThinkPad<br>E450c | Provide by lab | ID                |
| AC/DC<br>Adapter | Lenovo       | ADLX65NLC3A       | Provide by lab | DOC               |



Report No.: CQAS20190500394E-01

### 5.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

| No. | Item                               | Uncertainty        | Notes |
|-----|------------------------------------|--------------------|-------|
| 1   | Radiated Emission (Below 1GHz)     | ±5.12dB            | (1)   |
| 2   | Radiated Emission (Above 1GHz)     | ±4.60dB            | (1)   |
| 3   | Conducted Disturbance (0.15~30MHz) | ±3.34dB            | (1)   |
| 4   | Radio Frequency                    | 3×10 <sup>-8</sup> | (1)   |
| 5   | Duty cycle                         | 0.6 %.             | (1)   |
| 6   | Occupied Bandwidth                 | 1.1%               | (1)   |
| 7   | RF conducted power                 | 0.86dB             | (1)   |
| 8   | RF power density                   | 0.74               | (1)   |
| 9   | Conducted Spurious emissions       | 0.86dB             | (1)   |
| 10  | Temperature test                   | 0.8℃               | (1)   |
| 11  | Humidity test                      | 2.0%               | (1)   |
| 12  | Supply voltages                    | 0.5 %.             | (1)   |
| 13  | time                               | 0.6 %.             | (1)   |
| 14  | Frequency Error                    | 5.5 Hz             | (1)   |

<sup>(1)</sup>This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



Report No.: CQAS20190500394E-01

#### 5.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

### 5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### • ISED No.: 22984

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements

#### • A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

#### • FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

### 5.8 Deviation from Standards

None.

### 5.9 Abnormalities from Standard Conditions

None.

## 5.10 Other Information Requested by the Customer

None.





## **5.11 Equipment List**

| Test Equipment                | Manufacturer | Model No.                  | Instrument<br>No. | Calibration<br>Date | Calibration<br>Due Date |
|-------------------------------|--------------|----------------------------|-------------------|---------------------|-------------------------|
| EMI Test Receiver             | R&S          | ESR7                       | CQA-005           | 2018/9/26           | 2019/9/25               |
| Spectrum analyzer             | R&S          | FSU26                      | CQA-038           | 2018/10/28          | 2019/10/27              |
| Preamplifier                  | MITEQ        | AFS4-00010300-18-<br>10P-4 | CQA-035           | 2018/9/26           | 2019/9/25               |
| Preamplifier                  | MITEQ        | AMF-6D-02001800-29-<br>20P | CQA-036           | 2018/11/2           | 2019/11/1               |
| Loop antenna                  | Schwarzbeck  | FMZB1516                   | CQA-060           | 2018/10/28          | 2020/10/27              |
| Bilog Antenna                 | R&S          | HL562                      | CQA-011           | 2018/9/26           | 2020/9/25               |
| Horn Antenna                  | R&S          | HF906                      | CQA-012           | 2018/9/26           | 2020/9/25               |
| Horn Antenna                  | Schwarzbeck  | BBHA 9170                  | CQA-088           | 2018/9/26           | 2020/9/25               |
| Coaxial Cable<br>(Above 1GHz) | CQA          | N/A                        | C019              | 2018/9/26           | 2019/9/25               |
| Coaxial Cable<br>(Below 1GHz) | CQA          | N/A                        | C020              | 2018/9/26           | 2019/9/25               |
| Antenna Connector             | CQA          | RFC-01                     | CQA-080           | 2018/9/26           | 2019/9/25               |
| RF cable(9KHz~40GHz)          | CQA          | RF-01                      | CQA-079           | 2018/9/26           | 2019/9/25               |
| Power divider                 | MIDWEST      | PWD-2533-02-SMA-<br>79     | CQA-067           | 2018/9/26           | 2019/9/25               |
| EMI Test Receiver             | R&S          | ESPI3                      | CQA-013           | 2018/9/26           | 2019/9/25               |
| LISN                          | R&S          | ENV216                     | CQA-003           | 2018/11/5           | 2019/11/4               |
| Coaxial cable                 | CQA          | N/A                        | CQA-C009          | 2018/9/26           | 2019/9/25               |

### Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

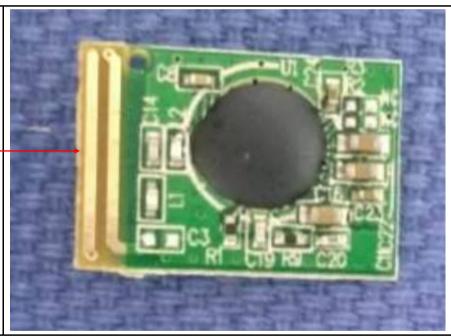




### 6 Test results and Measurement Data

## 6.1 Antenna Requirement

### **Standard requirement:** 47 CFR Part 15C Section 15.203;


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an

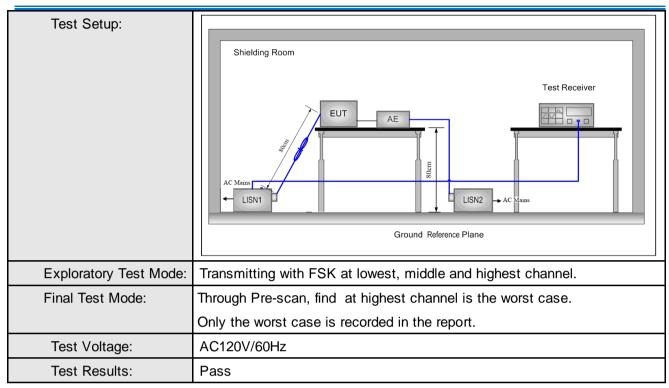
antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit

so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### **EUT Antenna:**



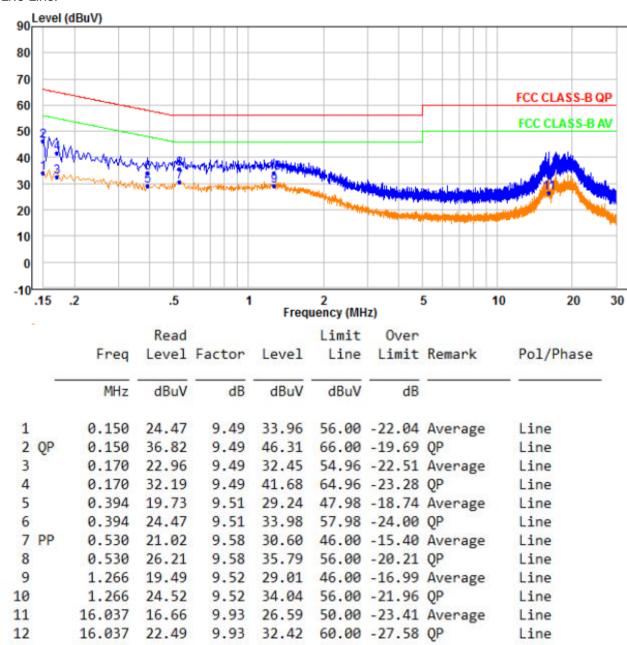
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.




Report No.: CQAS20190500394E-01

## **6.2 Conducted Emissions**

| Test Requirement:     | 47 CFR Part 15C Section 15.207;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |           |                                                               |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|---------------------------------------------------------------|
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |           |                                                               |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |           |                                                               |
| Limit:                | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limit (dBuV)                    |           |                                                               |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quasi-peak                      | Average   |                                                               |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66 to 56*                       | 56 to 46* |                                                               |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56                              | 46        |                                                               |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                              | 50        |                                                               |
|                       | * Decreases with the logarith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nm of the frequency.            |           | •                                                             |
| Test Procedure:       | <ol> <li>The mains terminal dishielded room.</li> <li>The EUT was connected Impedance Stabilization linear impedance. The power casconnected to a second reference plane in the same way as multiple socket outlet stritto a single LISN provided the ground reference plane. Was placed on the horizontal ground reference plane. Was placed on the horizontal ground reference reference plane. The LIST the unit under test and bonder mounted on top of the ground reference plane. The LIST the unit under test and bonder mounted on top of the ground reference plane. The LIST the unit under test and bonder mounted on top of the ground reference plane. The LIST the unit under test and bonder mounted on top of the ground reference plane. The LIST the unit under test and bonder mounted on top of the ground reference plane. The LIST the unit under test and bonder mounted on top of the ground reference plane.</li> <li>In order to find the maximal equipment and all of the to</li> </ol> | 66 to 56* 56 to 46* 56 46 60 50 |           | e - 5Ω  bund A bles  bove  EUT  rear The d ry of  units  LISN |
|                       | ANSI C63.10: 2013 on conducted measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |           |                                                               |

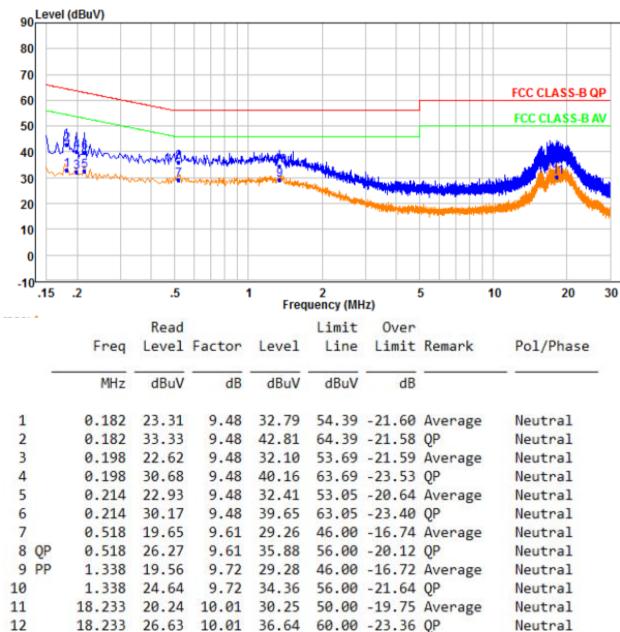







#### **Measurement Data**

#### Live Line:




#### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



#### Neutral Line:



#### Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



## 6.3 Radiated Spurious Emission & Field strength of fundamental

| Test Requirement:                         | 47 CFR Part 15C Section 15.249 (a), (d), (e) and 15.209                                                                                                                                                                                                                  |                                   |                  |               |                              |     |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|---------------|------------------------------|-----|--|
| Test Method:                              | ANSI C63.10                                                                                                                                                                                                                                                              |                                   |                  |               |                              |     |  |
| Test Site:                                | Measurement Distance                                                                                                                                                                                                                                                     | : 3m (Semi-Anec                   | hoic Chamber     | )             |                              |     |  |
| Receiver Setup:                           | Frequency                                                                                                                                                                                                                                                                | Detector                          | RBW              | VBW           | Remark                       |     |  |
|                                           | 0.009MHz-0.090MHz                                                                                                                                                                                                                                                        | Peak                              | 10kHz            | 30KHz         | Peak                         |     |  |
|                                           | 0.009MHz-0.090MHz                                                                                                                                                                                                                                                        | . Average                         | 10kHz            | 30KHz         | Average                      |     |  |
|                                           | 0.090MHz-0.110MHz                                                                                                                                                                                                                                                        | Quasi-peak                        | 10kHz            | 30KHz         | Quasi-peak                   |     |  |
|                                           | 0.110MHz-0.490MHz                                                                                                                                                                                                                                                        | Peak                              | 10kHz            | 30KHz         | Peak                         |     |  |
|                                           | 0.110MHz-0.490MHz                                                                                                                                                                                                                                                        | : Average                         | 10kHz            | 30KHz         | Average                      |     |  |
|                                           | 0.490MHz -30MHz                                                                                                                                                                                                                                                          | Quasi-peak                        | 10kHz            | 30kHz         | Quasi-peak                   |     |  |
|                                           | 30MHz-1GHz                                                                                                                                                                                                                                                               | Quasi-peak                        | 100 kHz          | 300KHz        | Quasi-peak                   |     |  |
|                                           | Above 1GHz                                                                                                                                                                                                                                                               | Peak                              | 1MHz             | 3MHz          | Peak                         |     |  |
|                                           | 7100VC TOTIZ                                                                                                                                                                                                                                                             | Peak                              | 1MHz             | 10Hz          | Average                      |     |  |
|                                           | Note: For fundamental PK value, RMS d                                                                                                                                                                                                                                    | frequency, RBW etector is for Ave |                  | =5MHz, Pea    | ak detector is               | for |  |
| Limit: (Spurious Emissions and band edge) | Frequency                                                                                                                                                                                                                                                                | Field strength (microvolt/meter   | Limit (dBuV/m )  | Remark        | Measurem<br>t<br>distance (i |     |  |
| • ,                                       | 0.009MHz-<br>0.490MHz                                                                                                                                                                                                                                                    | 2400/F(kHz)                       | -                | -             | 300                          |     |  |
|                                           | 0.490MHz-<br>1.705MHz                                                                                                                                                                                                                                                    | 24000/F(kHz)                      | -                | -             | 30                           |     |  |
|                                           | 1.705MHz-30MHz                                                                                                                                                                                                                                                           | 30                                | -                | -             | 30                           |     |  |
|                                           | 30MHz-88MHz                                                                                                                                                                                                                                                              | 100                               | 40.0             | Quasi-peak    | k 3                          |     |  |
|                                           | 88MHz-216MHz                                                                                                                                                                                                                                                             | 150                               | 43.5             | Quasi-peak    | 3                            |     |  |
|                                           | 216MHz-960MHz                                                                                                                                                                                                                                                            | 200                               | 46.0             | Quasi-peak    | 3                            |     |  |
|                                           | 960MHz-1GHz                                                                                                                                                                                                                                                              | 500                               | 54.0             | Quasi-peak    | 3                            |     |  |
|                                           | Above 1GHz                                                                                                                                                                                                                                                               | 500                               | 54.0             | Average       | 3                            |     |  |
|                                           | Note: 1) 15.35(b), Unless otherwise specified, the limit on peak radio frequer emissions is 20dB above the maximum permitted average emission line applicable to the equipment under test. This peak limit applies to the to peak emission level radiated by the device. |                                   |                  |               |                              |     |  |
|                                           | 2) Emissions ra                                                                                                                                                                                                                                                          | diated outside of                 | the specified f  | requency bar  | nds, except fo               | r   |  |
|                                           | harmonics, shall                                                                                                                                                                                                                                                         | be attenuated by                  | / at least 50 dl | B below the I | evel of the                  |     |  |
|                                           | fundamental or t                                                                                                                                                                                                                                                         | o the general radi                | ated emission    | limits in Sec | tion 15.209,                 |     |  |
|                                           | whichever is the                                                                                                                                                                                                                                                         | lesser attenuatio                 | n.               |               |                              |     |  |



| Limit:                 | Frequency             | Limit (dBuV/m @3m) | Remark        |
|------------------------|-----------------------|--------------------|---------------|
| (Field strength of the | 04000411- 0400 50411- | 94.0               | Average Value |
| fundamental signal)    | 2400MHz-2483.5MHz     | 114.0              | Peak Value    |



Report No.: CQAS20190500394E-01

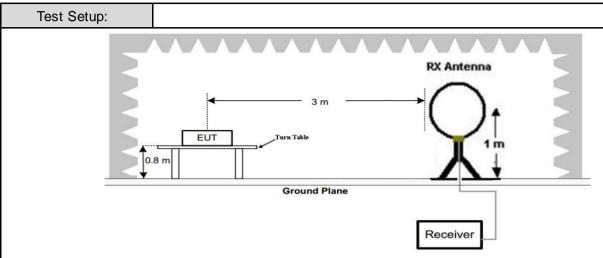
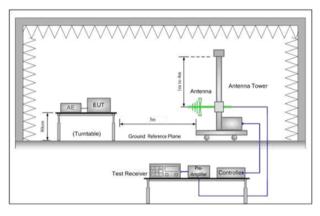




Figure 1. Below 30MHz



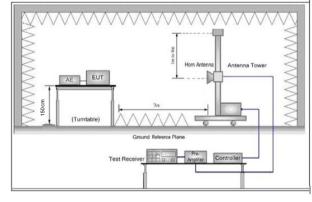



Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

#### Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
  - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical



|                           | <ul> <li>polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> </ul>                                                                                                                                                                                                              |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | <ul> <li>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> <li>g. Test the EUT in the lowest channel,the middle channel,the Highest channel</li> <li>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.</li> </ul> |
| F                         | i. Repeat above procedures until all frequencies measured was complete.  Transmitting with FSK at lowest, middle and highest channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Exploratory Test<br>Mode: | Transmitting with Foreat lowest, middle and highest charmel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Final Test Mode:          | Pretest the EUT at Transmitting mode, For below 1GHz part, through pre-scan, the worst case is the highest channel.  Only the worst case is recorded in the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Voltage:             | DC5.0V form PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Results:             | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





### **Measurement Data**

## Field Strength Of The Fundamental Signal

|           | Meter   |        | Emission |          |        |          | Ant. Pol. |
|-----------|---------|--------|----------|----------|--------|----------|-----------|
| Frequency | Reading | Factor | Level    | Limits   | Over   | Detector |           |
| (MHz)     | (dBµV)  | (dB)   | (dBµV/m) | (dBµV/m) | (dB)   | Туре     | H/V       |
| 2408      | 101     | -9.02  | 91.98    | 114      | -22.02 | Peak     | Н         |
| 2408      | 99.76   | -9.02  | 90.74    | 94       | -3.26  | AVG      | Н         |
| 2408      | 96.49   | -9.02  | 87.47    | 114      | -26.53 | Peak     | V         |
| 2408      | 94.62   | -9.02  | 85.60    | 94       | -8.40  | AVG      | V         |
| 2440      | 100.88  | -8.96  | 91.92    | 114      | -22.08 | Peak     | Н         |
| 2440      | 98.94   | -8.96  | 89.98    | 94       | -4.02  | AVG      | Н         |
| 2440      | 95.8    | -8.96  | 86.84    | 114      | -27.16 | Peak     | V         |
| 2440      | 94.17   | -8.96  | 85.21    | 94       | -8.79  | AVG      | V         |
| 2474      | 101.31  | -8.74  | 92.57    | 114      | -21.43 | Peak     | Н         |
| 2474      | 99.68   | -8.74  | 90.94    | 94       | -3.06  | AVG      | н         |
| 2474      | 94.8    | -8.74  | 86.06    | 114      | -27.94 | Peak     | V         |
| 2474      | 93.23   | -8.74  | 84.49    | 94       | -9.51  | AVG      | V         |



5

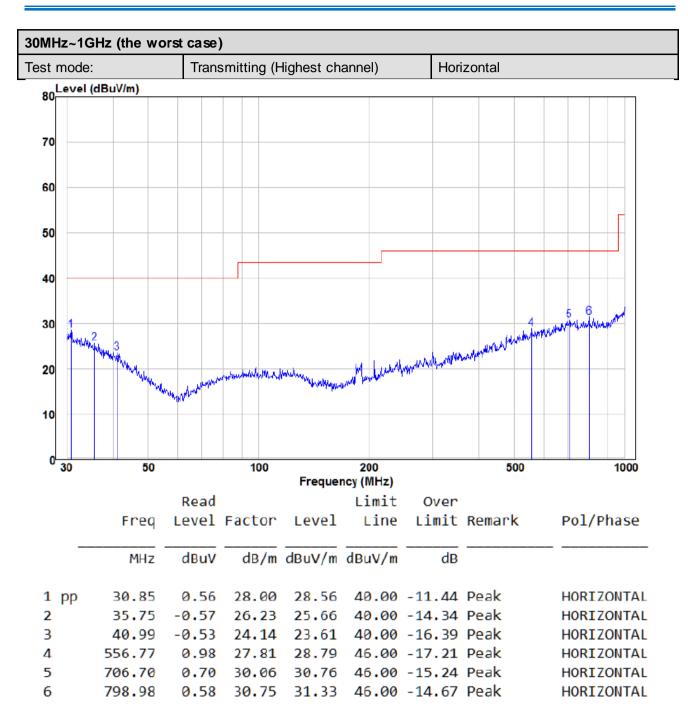
6

684.75

Report No.: CQAS20190500394E-01

VERTICAL

VERTICAL


| 1711 12         | -1GHz        | (the w            | orst cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)                                               |                                            |                                                                                 |                                                      |                                          |                     |                      |
|-----------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------------|----------------------|
| st mo           | de:          |                   | Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsmitting (                                      | (Highest d                                 | hannel)                                                                         | Ve                                                   | ertical                                  |                     |                      |
| n Lev           | el (dBu      | V/m)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
| ~               |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
| 70              |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
| 30              |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
| 50              |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
| 40              |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
| 30              | ,            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                            |                                                                                 |                                                      |                                          |                     |                      |
|                 | A WANNING OF | N. YALLA          | na ukuk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | war approve the state of                         | tripograma.                                | heyriagathyl Mangdorfullybri                                                    | ng blad more differen                                | Logar to a by Hoper Surface of the Confe | MANA AMARIA         | G<br>Varpatamph      |
| 20              | Mound        | N. Washington     | "Nothing Additional in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and a second second second                       | pulphaneuro VII Northean                   | hayahaya <sup>ta</sup> lif <sup>AA</sup> ayda <mark>rt</mark> ali <sup>bh</sup> | op blod on partiling                                 | Japan Andrews Service of the Confe       | 3 4 Amilyon Amilyon | Valled Aught         |
| 20              | A brought,   |                   | **National Association of the Contract of the |                                                  |                                            |                                                                                 | of the same of the same                              |                                          |                     |                      |
| 20              | A second     | M. Market         | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                              |                                            | 200<br>uency (MHz                                                               |                                                      |                                          | 3 4 4 M V           | 100                  |
| 10              | Mound        |                   | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                              |                                            | 200                                                                             |                                                      |                                          |                     |                      |
| 20              |              |                   | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                              | Frequ                                      | 200<br>uency (MHz<br>Limit                                                      | z)<br>Over                                           |                                          | 500                 |                      |
| 20              |              | 50                | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100<br>Factor                                    | Frequ                                      | 200<br>uency (MHz<br>Limit<br>Line                                              | z)<br>Over                                           | Remark                                   | 500                 | 100                  |
| 0 30            |              | <b>50</b><br>Freq | Read<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100 Factor dB/m                                  | Frequ                                      | 200<br>uency (MHz<br>Limit<br>Line<br>dBuV/m                                    | Over<br>Limit<br>——————————————————————————————————— | Remark                                   | 500                 | 100<br>Phase         |
| 20              | 3            | Freq<br>MHz       | Read<br>Level<br>dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Factor dB/m 28.31                            | Frequence Level dBuV/m 31.18               | 200<br>uency (MHz<br>Limit<br>Line<br>dBuV/m                                    | Over<br>Limit<br>dB                                  | Remark<br>                               | Pol/                | 100<br>Phase         |
| 20 10 0 30 1 pp | 3<br>3<br>54 | Freq<br>MHz       | Read<br>Level<br>dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100<br>Factor<br>dB/m<br>28.31<br>27.28<br>27.68 | Frequence Level  dBuV/m  31.18 27.91 27.53 | 200 uency (MHz Limit Line dBuV/m                                                | Over<br>Limit<br>——————————————————————————————————— | Remark  Peak Peak Peak                   | Pol/I               | Phase ICAL ICAL ICAL |

1.26 29.74 31.00 46.00 -15.00 Peak

790.62 -0.19 30.68 30.49 46.00 -15.51 Peak











| Above 1GHz | Above 1GHz       |             |                   |            |        |          |           |  |
|------------|------------------|-------------|-------------------|------------|--------|----------|-----------|--|
| Test mode: |                  | Transmittii | ng                | Test chann | el:    | Lowest   |           |  |
| Frequency  | Meter<br>Reading | Factor      | Emission<br>Level | Limits     | Over   | Detector | Ant. Pol. |  |
| (MHz)      | (dBµV)           | (dB)        | (dBµV/m)          | (dBµV/m)   | (dB)   | Type     | H/V       |  |
| 4816       | 48.92            | -1.24       | 47.68             | 74         | -26.32 | Peak     | Н         |  |
| 4816       | 34.56            | -1.24       | 33.32             | 54         | -20.68 | AVG      | н         |  |
| 7224       | 50.24            | 5.98        | 56.22             | 74         | -17.78 | Peak     | Н         |  |
| 7224       | 36.12            | 5.98        | 42.1              | 54         | -11.9  | AVG      | Н         |  |
| 4816       | 49.49            | -1.24       | 48.25             | 74         | -25.75 | peak     | V         |  |
| 4816       | 33.79            | -1.24       | 32.55             | 54         | -21.45 | AVG      | V         |  |
| 7224       | 47.27            | 5.98        | 53.25             | 74         | -20.75 | peak     | V         |  |
| 7224       | 34.56            | 5.98        | 40.54             | 54         | -13.46 | AVG      | V         |  |
| Test mode: |                  | Transmittii | ng                | Test chann | iel:   | Middle   |           |  |
|            | Meter            |             | Emission          |            |        |          | Ant. Pol. |  |
| Frequency  | Reading          | Factor      | Level             | Limits     | Over   | Detector |           |  |
| (MHz)      | (dBµV)           | (dB)        | (dBµV/m)          | (dBµV/m)   | (dB)   | Type     | H/V       |  |
| 4880       | 49.66            | -0.82       | 48.84             | 74         | -25.16 | peak     | Н         |  |
| 4880       | 37.12            | -0.82       | 36.3              | 54         | -17.7  | AVG      | Н         |  |
| 7320       | 51.47            | 5.91        | 57.38             | 74         | -16.62 | peak     | Н         |  |
| 7320       | 37.14            | 5.91        | 43.05             | 54         | -10.95 | AVG      | Н         |  |
| 4880       | 49.84            | -0.82       | 49.02             | 74         | -24.98 | peak     | V         |  |
| 4880       | 34.56            | -0.82       | 33.74             | 54         | -20.26 | AVG      | V         |  |
| 7320       | 49.29            | 5.91        | 55.2              | 74         | -18.8  | peak     | V         |  |
| 7320       | 36.78            | 5.91        | 42.69             | 54         | -11.31 | AVG      | V         |  |
| Test mode: |                  | Transmittii | ng                | Test chann | iel:   | Highest  |           |  |
| Frequency  | Meter<br>Reading | Factor      | Emission<br>Level | Limits     | Over   | Detector | Ant. Pol. |  |
| (MHz)      | (dBµV)           | (dB)        | (dBµV/m)          | (dBµV/m)   | (dB)   | Type     | H/V       |  |
| 4948       | 51.04            | -0.49       | 50.55             | 74         | -23.45 | peak     | Н         |  |
| 4948       | 35.32            | -0.49       | 34.83             | 54         | -19.17 | AVG      | Н         |  |
| 7422       | 52.76            | 5.74        | 58.5              | 74         | -15.5  | peak     | Н         |  |
| 7422       | 40.09            | 5.74        | 45.83             | 54         | -8.17  | AVG      | Н         |  |
| 4948       | 49.08            | -0.49       | 48.59             | 74         | -25.41 | peak     | V         |  |
| 4948       | 34.45            | -0.49       | 33.96             | 54         | -20.04 | AVG      | V         |  |
| 7422       | 49.09            | 5.74        | 54.83             | 74         | -19.17 | peak     | V         |  |
| 7422       | 36.69            | 5.74        | 42.43             | 54         | -11.57 | AVG      | V         |  |



Report No.: CQAS20190500394E-01

#### Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 25GHz, The disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

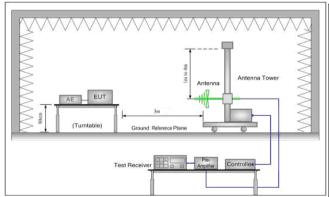




### 6.4 Restricted bands around fundamental frequency

**Test Requirement:** 47 CFR Part 15C Section 15.249 (d), 15.209 and 15.205;

Test Method: ANSI C63.10:2013


Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

**Limit(Band Edge):** Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209,

whichever is the lesser attenuation.

| Frequency     | Limit (dBµV/m @3m) | Remark              |
|---------------|--------------------|---------------------|
| 30MHz-88MHz   | 40.0               | Quasi-peak<br>Value |
| 88MHz-216MHz  | 43.5               | Quasi-peak<br>Value |
| 216MHz-960MHz | 46.0               | Quasi-peak<br>Value |
| 960MHz-1GHz   | 54.0               | Quasi-peak<br>Value |
| Above 1GHz    | 54.0               | Average Value       |
| Above IGHZ    | 74.0               | Peak Value          |

#### **Test Setup:**



AE EUT Hom Antenna Tower

Ground Reference Plane

Test Receiver Aerofice Controller

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

#### **Test Procedure:**

#### Below 1GHz test procedure as below:

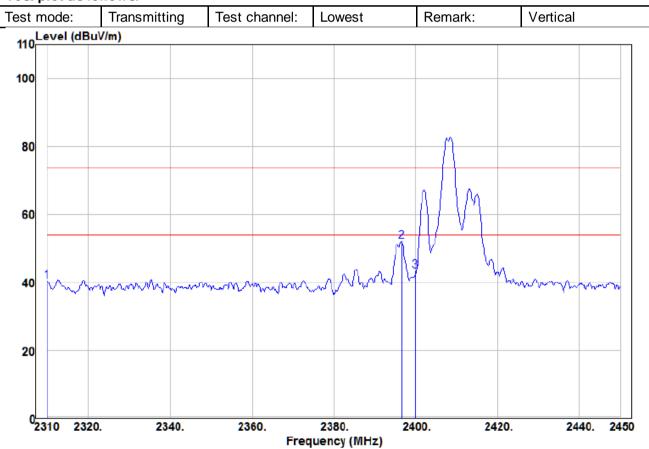
- j. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.



Report No.: CQAS20190500394E-01

- n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

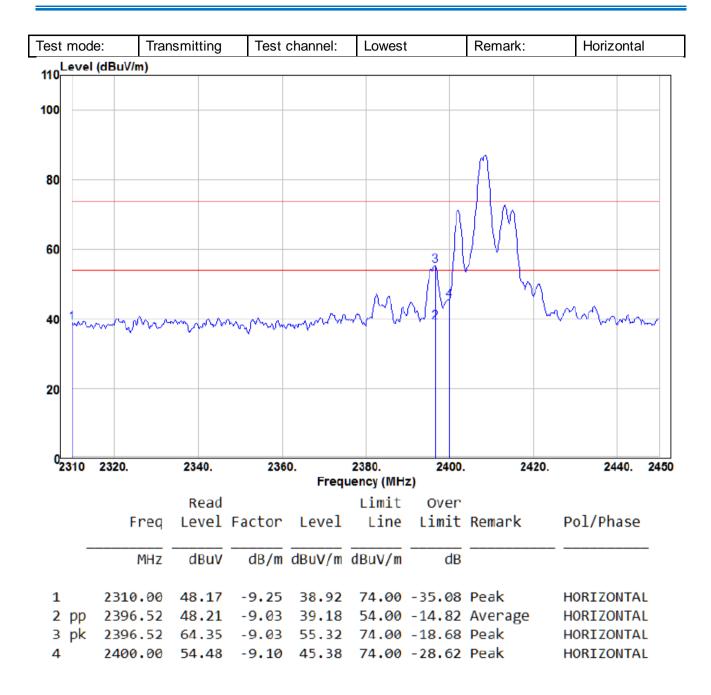
#### Above 1GHz test procedure as below:


- p. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre( Above 18GHz the distance is 1 meter and table is 1.5 metre).
- q. Test the EUT in the lowest channel, the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- s. Repeat above procedures until all frequencies measured was complete.

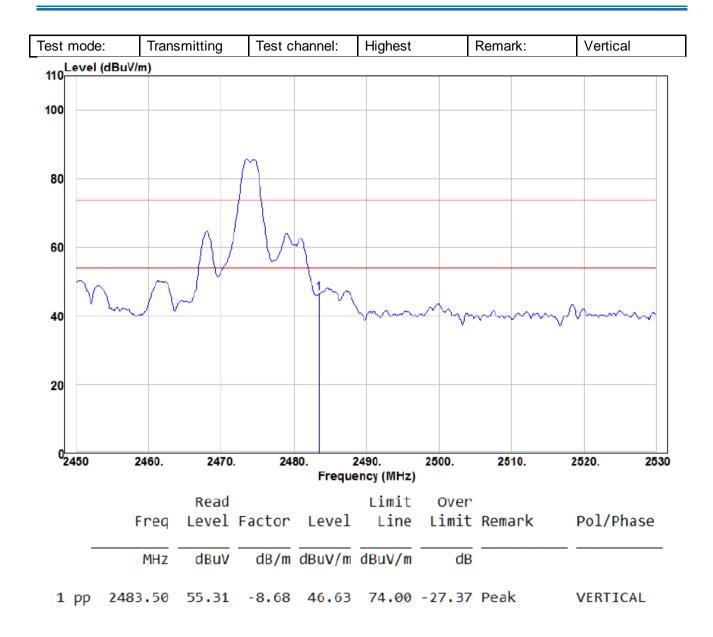
**Test Mode:** Transmitting with FSK at lowest, middle and highest channel.

Test Voltage: DC5.0V form PC

Test Results: Pass

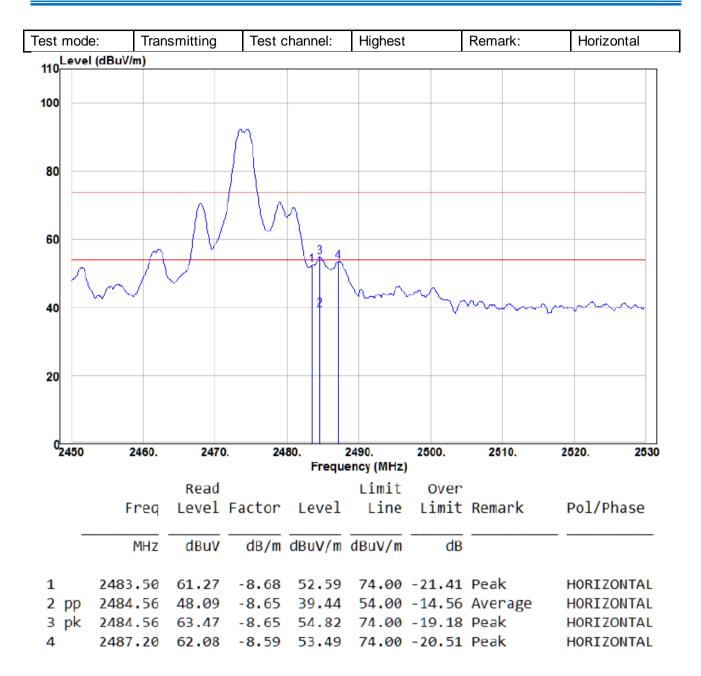

#### Test plot as follows:






|           | Freq    | Read<br>Level | Factor | Level  |        | Over<br>Limit | Remark | Pol/Phase            |
|-----------|---------|---------------|--------|--------|--------|---------------|--------|----------------------|
| _         | MHz     | dBuV          | dB/m   | dBuV/m | dBuV/m | dB            |        |                      |
| 1         | 2310.00 |               |        |        |        |               |        | VERTICAL             |
| 2 pp<br>3 | 2396.52 |               |        |        |        |               |        | VERTICAL<br>VERTICAL |







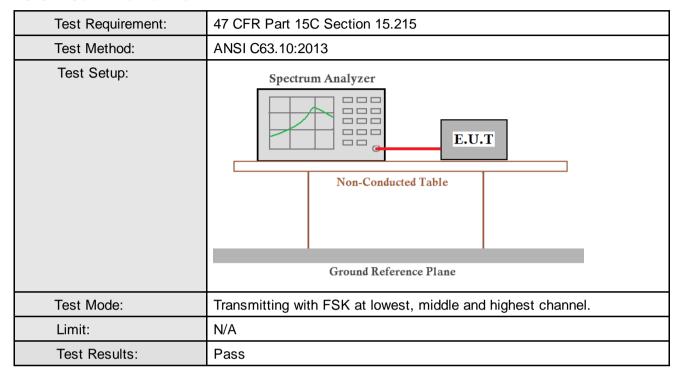





Report No.: CQAS20190500394E-01



#### Remark:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

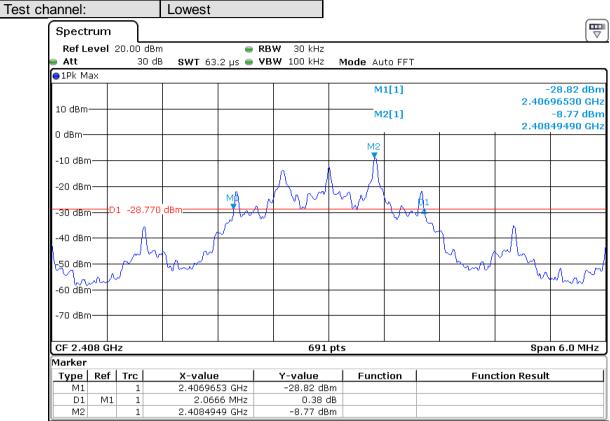
Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

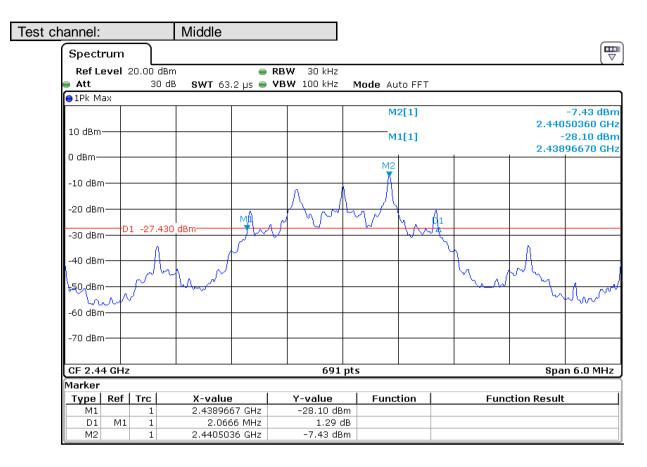


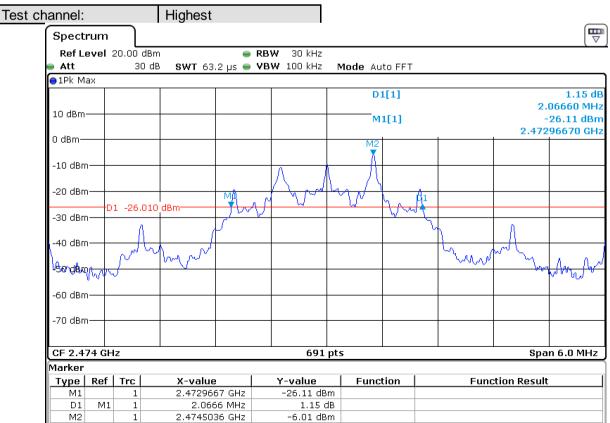
### 6.5 20dB Bandwidth




#### **Measurement Data**

| Test channel | 20dB bandwidth (MHz) | Results |
|--------------|----------------------|---------|
| Lowest       | 2.0666               | Pass    |
| Middle       | 2.0666               | Pass    |
| Highest      | 2.0666               | Pass    |





Report No.: CQAS20190500394E-01

### Test plot as follows:







