FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Bluetooth WIRELESS HEADSET

Model: BTH20,BM-884

Brand: AT&T

Test Report Number: C140428Z02-RP1

Prepared for

iLike Electronics Co.,Ltd.

Industrial Areas of iLike, Ju Ling old village, Da Shui Keng, Guanlan, Longhua New District, Shenzhen. China

Prepared by

COMPLIANCE CERTIFICATION SERVICES (SHENZHEN) INC.

No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen China

> TEL: 86-755-28055000 FAX: 86-755-28055221

Issued Date: May 21, 2014

Report No.: C140428Z02-RP1

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report.

FCC ID:2AAHXBTH20 Page 1 / 60

Revision History

Report No.: C140428Z02-RP1

Rev.	Issue No.	Revisions	Effect Page	Revised By
00	C140428Z02-RP1	Initial Issue	ALL	Sinphy Xie

FCC ID:2AAHXBTH20 Page 2 of 60

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. TEST METHODOLOGY	6
3.1 DESCRIPTION OF TEST MODES	6
4. FACILITIES AND ACCREDITATIONS	7
4.1 FACILITIES	<u>7</u>
	7 7
5. SETUP OF EQUIPMENT UNDER TES	ST8
5.1 SETUP CONFIGURATION OF EUT	8
5.2 SUPPORT EQUIPMENT	8
6. FCC PART 15.247 REQUIREMENTS .	9
6.1 20dB BANDWIDTH	9
6.2 PEAK POWER	13
6.3 PEAK POWER SPECTRAL DENSIT	Y14
	16
6.5 FREQUENCY SEPARATION	26
	CY29
6.7 TIME OF OCCUPANCY (DWELL TII	ME)31
	39
6.9 POWERLINE CONDUCTED EMISS	IONS58

Report No.: C140428Z02-RP1

1. TEST RESULT CERTIFICATION

Product:	Bluetooth WIRELESS HEADSET
Model:	BTH20,BM-884
Brand:	AT&T
Tested:	April 28~May 16, 2014
Applicant:	iLike Electronics Co.,Ltd. Industrial Areas of iLike,Ju Ling old village,Da Shui Keng, Guanlan,Longhua New District,Shenzhen.China
Manufacturer:	iLike Electronics Co.,Ltd. Industrial Areas of iLike,Ju Ling old village,Da Shui Keng, Guanlan,Longhua New District,Shenzhen.China

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 15 Subpart C	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4:2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.207, 15.209 and 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Sunday Hu

Supervisor of EMC Dept.

Compliance Certification Service Inc.

Reviewed by:

Ruby Zhang

Supervisor of Report Dept.

Compliance Certification Service Inc.

Report No.: C140428Z02-RP1

FCC ID:2AAHXBTH20 Page 4 of 60

2. EUT DESCRIPTION

Product	Bluetooth WIRELESS HEADSET
Model Number	BTH20,BM-884
Brand	AT&T
Model Discrepancy	They are the same product just different from product name.
Identify Number	C140428Z02-RP1
Power Supply	DC5V supplied by the notebook or DC3.7V supplied by the battery
USB Cable	Unshielded, 1.00m
Audio Cable	Unshielded, 0.90m
Received Date	April 28, 2014
Frequency Range	2402 ~ 2480 MHz
Transmit Power	GFSK: 4.16dBm 8DPSK: 3.75dBm
Modulation Technique	FHSS (GFSK for 1Mbps, π /4-DQPSK for 2Mbps, 8DPSK for 3Mbps)
Number of Channels	79 Channels
Antenna Specification	PCB Antenna with 0dBi gain(Max)
Temperature Range	-20°C ~ +55°C
Hardware Version	V4.0
Software Version	V4.0

Report No.: C140428Z02-RP1

Note: This submittal(s) (test report) is intended for FCC ID: <u>2AAHXBTH20</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

FCC ID:2AAHXBTH20 Page 5 of 60

3. TEST METHODOLOGY

3.1 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Report No.: C140428Z02-RP1

The following test mode(s) were scanned during the preliminary test below 1G:

Test Item	Test mode	Worse mode
Conducted Emission	Mode 1: Charge + Line in	
Conducted Emission	Mode 2: Charge + play music with BT	
Radiated Emission	Mode 1: TX	

Above 1G, Channel Low (2402MHz) · Mid (2441MHz) and High (2480MHz) were chosen for full testing for GFSK and 8DPSK.

FCC ID:2AAHXBTH20 Page 6 of 60

4. FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China

The sites are constructed in conformance with the requirements of ANSI C63.4:2009, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Report No.: C140428Z02-RP1

4.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

USA A2LA China CNAS

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

USA FCC

Japan VCCI(C-3478, R-3135, T-652, G-624)

Canada INDUSTRY CANADA

Taiwan BSMI

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

4.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Uncertainty
Radiated Emission, 30 to 200 MHz Test Site : 966(2)	+/-3.6880dB
Radiated Emission, 200 to 1000 MHz Test Site : 966(2)	+/-3.6695dB
Radiated Emission, 1 to 8 GHz	+/-5.1782dB
Radiated Emission, 8 to 18 GHz	+/-5.2173dB
Conducted Emissions	+/-3.6836dB
Band Width	178kHz
Peak Output Power MU	+/-1.906dB
Band Edge MU	+/-0.182dB
Channel Separation MU	416.178Hz
Duty Cycle MU	0.054ms
Frequency Stability MU	226Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit.

FCC ID:2AAHXBTH20 Page 7 of 60

5. SETUP OF EQUIPMENT UNDER TEST

5.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

Report No.: C140428Z02-RP1

5.2 SUPPORT EQUIPMENT

No.	Equipment	Model No.	Serial No.	FCC ID	Brand	Data Cable	Power Cord
1	Notebook	992F2VG	62P7043	N/A	IBM	N/A	Unshielded 2.50m
2	PC	DCSM1F	B8AC6F2474CE	N/A	DELL	N/A	Unshielded 1.50m
3	LCD	U3011T	CNOPH5NY744450 97425L	N/A	DELL	Shielded 1.50m	Unshielded 1.50m
4	Mouse	KB212-B	CN09RRC44751168 0996	N/A	DELL	Unshielded 1.45m	N/A
5	Keyboard	KB212-B	CNOK6KPN71616	N/A	DELL	Unshielded 1.45m	N/A
6	Printer	D1668	CN9CKCB2RG	N/A	HP	Unshielded 1.20m	Unshielded 2.00m
7	Modem	DU-562M	DU562MSG.B1	N/A	D-Link	Shielded 1.50m	N/A

Notes:

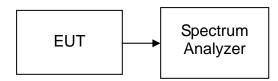
Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

FCC ID: 2AAHXBTH20 Page 8 of 60

6. FCC PART 15.247 REQUIREMENTS

6.1 20DB BANDWIDTH

None; for reporting purpose only.


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

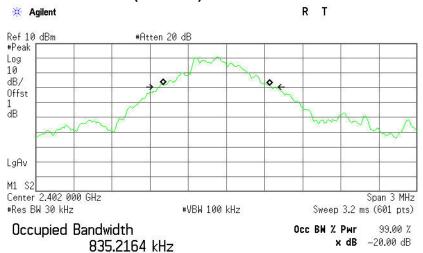
Report No.: C140428Z02-RP1

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

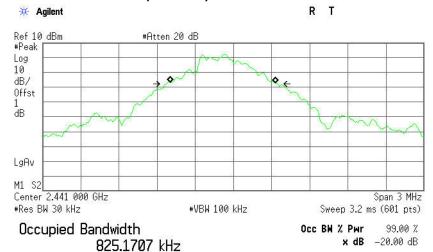
TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT, then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=30kHz, VBW=100kHz, Span=3MHz, Sweep = auto.
- 4. Mark the peak frequency and 20dB (upper and lower) frequency.
- 5. Repeat until all the test channels are investigated.


TEST RESULTS

No non-compliance noted

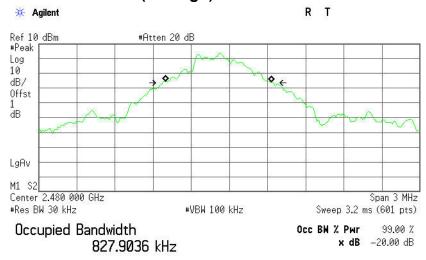
FCC ID:2AAHXBTH20 Page 9 of 60


Test plot GFSK

20dB Bandwidth(CH Low)

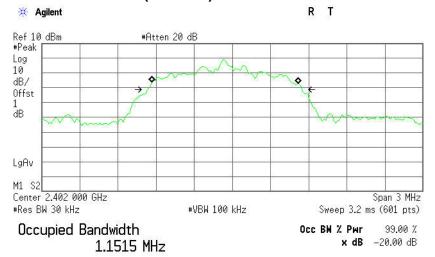
Transmit Freq Error -75.417 kHz x dB Bandwidth 876.560 kHz

20dB Bandwidth (CH Mid)



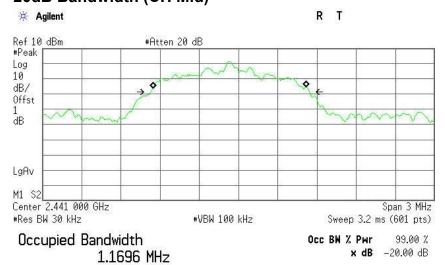
Transmit Freq Error -82.162 kHz x dB Bandwidth 870.372 kHz

FCC ID: 2AAHXBTH20 Page 10 of 60

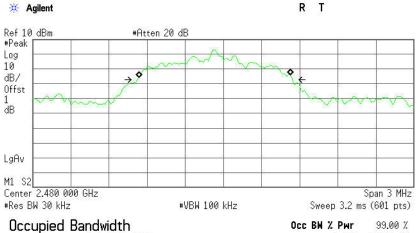

20dB Bandwidth (CH High)

Transmit Freq Error -83.615 kHz x dB Bandwidth 868.926 kHz

8DPSK


20dB Bandwidth (CH Low)

Transmit Freq Error -60.149 kHz x dB Bandwidth 1.213 MHz


FCC ID: 2AAHXBTH20 Page 11 of 60

20dB Bandwidth (CH Mid)

Transmit Freq Error -69.682 kHz x dB Bandwidth 1.216 MHz

20dB Bandwidth (CH High)

Occupied Bandwidth 1.1923 MHz Occ BW % Pwr 99.00 % x dB -20.00 dB

Report No.: C140428Z02-RP1

Transmit Freq Error -71.036 kHz x dB Bandwidth 1.216 MHz

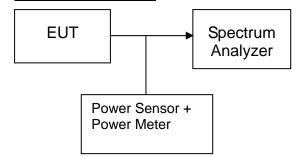
FCC ID: 2AAHXBTH20 Page 12 of 60

6.2 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

Report No.: C140428Z02-RP1


- 1. For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.
- 3. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Power Meter	Anritsu	ML2495A	1204003	03/01/2014	03/01/2015
Power Sensor	Anritsu	MA2411B	1126150	03/01/2014	03/01/2015
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

FCC ID:2AAHXBTH20 Page 13 of 60

TEST RESULTS

No non-compliance noted

Test Data

GFSK

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	-1.77	3.50	1.73	0.00149		PASS
Mid	2441	-0.30	3.50	3.20	0.00209	1	PASS
High	2480	0.66	3.50	4.16	0.00261		PASS

Report No.: C140428Z02-RP1

8DPSK

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	-2.76	3.50	0.74	0.00119		PASS
Mid	2441	-0.83	3.50	2.67	0.00185	1	PASS
High	2480	0.25	3.50	3.75	0.00237		PASS

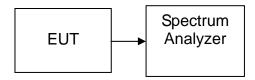
FCC ID: 2AAHXBTH20 Page 14 of 60

6.3 PEAK POWER SPECTRAL DENSITY

LIMIT

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Report No.: C140428Z02-RP1


2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4.Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RRW
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

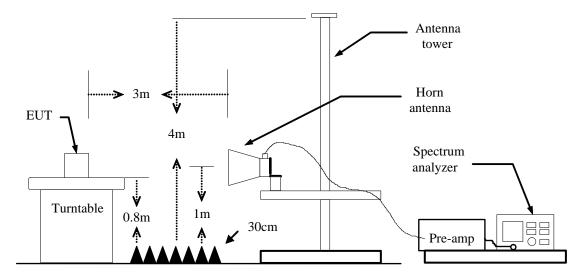
TEST RESULTS

Not applicable. Since EUT is the Bluetooth device.

FCC ID:2AAHXBTH20 Page 15 of 60

6.4 BAND EDGES MEASUREMENT

LIMIT


According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

Report No.: C140428Z02-RP1

MEASUREMENT EQUIPMENT USED

THE ACCIVATION OF THE PROPERTY								
	Radiated En	nission Test Si	te 966 (2)					
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015			
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	03/09/2014	03/08/2015			
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2014	03/18/2015			
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2014	03/18/2015			
Bilog Antenna	SCHAFFNER	CBL6143	5082	03/01/2014	03/01/2015			
Horn Antenna	SCHWARZBECK	BBHA9120	D286	03/01/2014	03/01/2015			
Board-Band Horn Antenna	SCHWARZBECK	BBHA9170	9170-497	07/10/2013	07/09/2014			
Loop Antenna	A、R、A	PLA-1030/B	1029	03/19/2014	03/18/2015			
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R			
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R			
Controller	СТ	N/A	N/A	N.C.R	N.C.R			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/28/2014	02/28/2015			
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R			
Test S/W	FARAD		LZ-RF / CCS	S-SZ-3A2				

Test Configuration

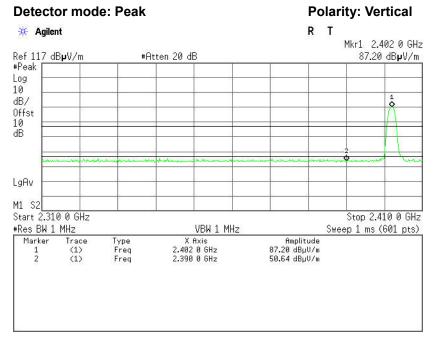
FCC ID: 2AAHXBTH20 Page 16 of 60

TEST PROCEDURE

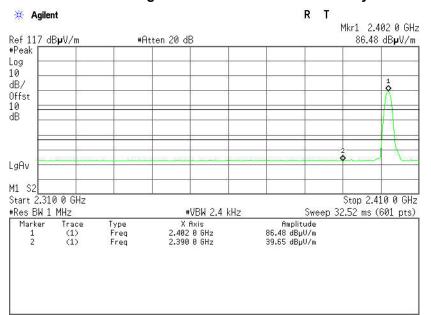
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Report No.: C140428Z02-RP1

- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=2.4kHz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

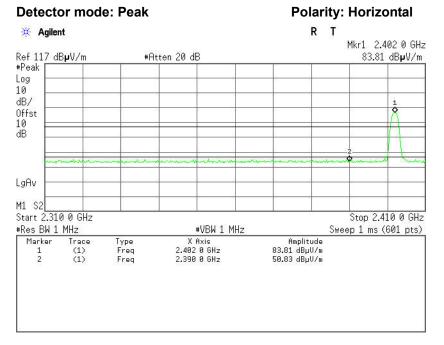

TEST RESULTS

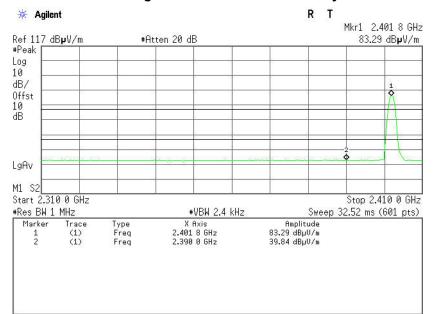
Refer to attach spectrum analyzer data chart.


FCC ID: 2AAHXBTH20 Page 17 of 60

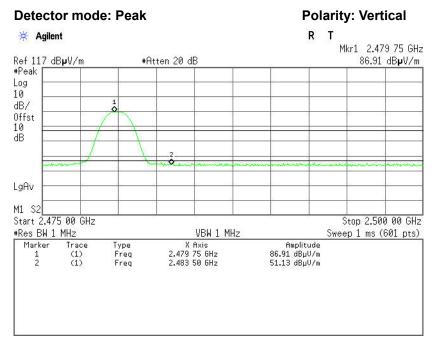
Test Data (GFSK)

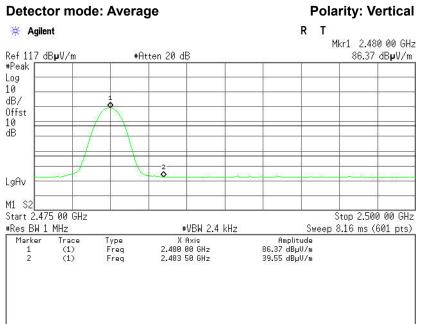
Band Edges (CH-Low)


Detector mode: Average Polarity: Vertical


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	44.04	-6.60	50.64	74.00	-23.36	Peak	Vertical
2	2390.0000	33.05	-6.60	39.65	54.00	-14.35	Average	Vertical

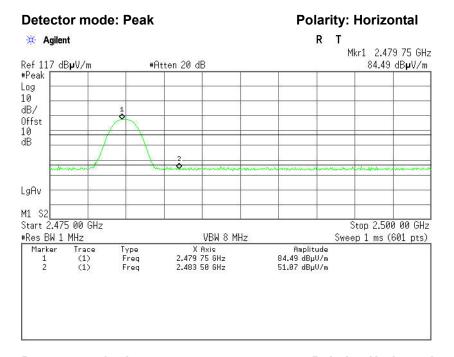
FCC ID: 2AAHXBTH20 Page 18 of 60


Detector mode: Average Polarity: Horizontal



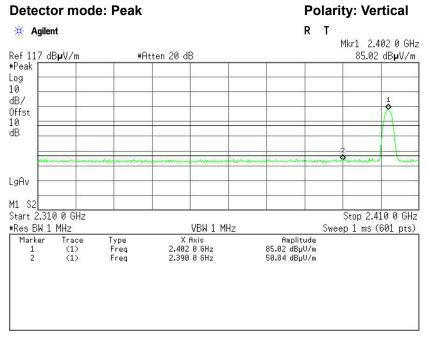
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	44.23	-6.60	50.83	74.00	-23.17	Peak	Horizontal
2	2390.0000	33.24	-6.60	39.84	54.00	-14.16	Average	Horizontal

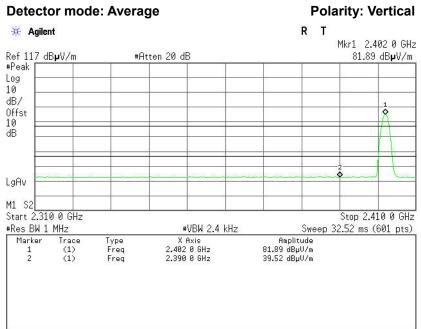
FCC ID: 2AAHXBTH20 Page 19 of 60


Band Edges (CH-High)

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	44.89	-6.24	51.13	74.00	-22.87	Peak	Vertical
2	2483.5000	33.31	-6.24	39.55	54.00	-14.45	Average	Vertical

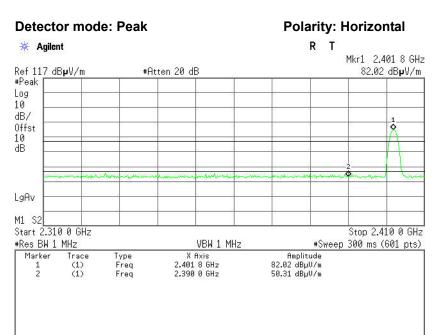
FCC ID: 2AAHXBTH20 Page 20 of 60

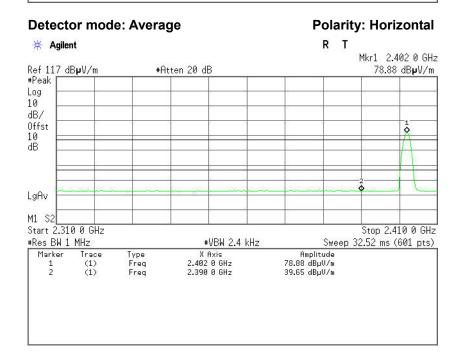

Detector mode: Average Polarity: Horizontal # Agilent Mkr1 2.479 96 GHz Ref 117 dB**µ**V/m #Peak 83.92 dB**µ**V/m #Atten 20 dB Log 10 dB/ Offst 10 dB LgAv M1 S2 Start 2.475 00 GHz Stop 2.500 00 GHz #Res BW 1 MHz #VBW 2.4 kHz Sweep 8.16 ms (601 pts) Trace (1) (1) Type Freq Freq X Axis 2.479 96 GHz 2.483 50 GHz Amplitude 83.92 dBµV/m 39.66 dBµV/m Marker 2


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	44.83	-6.24	51.07	74.00	-22.93	Peak	Horizontal
2	2483.5000	33.42	-6.24	39.66	54.00	-14.34	Average	Horizontal

FCC ID: 2AAHXBTH20 Page 21 / 60

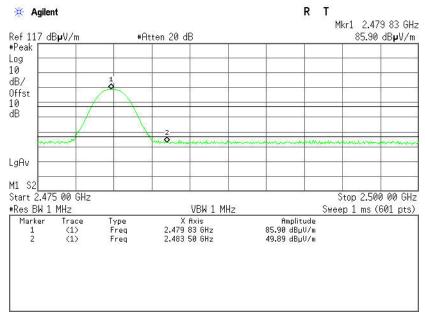
8DPSK


Band Edges (CH-Low)

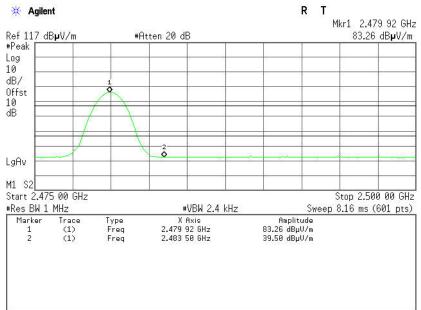


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	44.24	-6.60	50.84	74.00	-23.16	Peak	Vertical
2	2390.0000	32.92	-6.60	39.52	54.00	-14.48	Average	Vertical

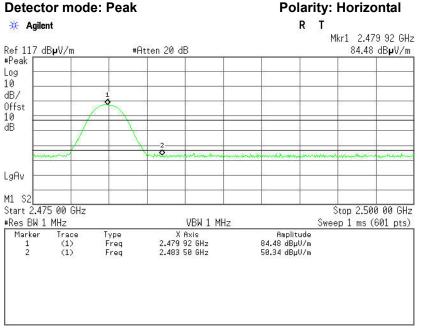
FCC ID: 2AAHXBTH20 Page 22 / 60


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	43.71	-6.60	50.31	74.00	-23.69	Peak	Horizontal
2	2390.0000	33.05	-6.60	39.65	54.00	-14.35	Average	Horizontal

FCC ID: 2AAHXBTH20 Page 23 / 60


Band Edges (CH-High)

Report No.: C140428Z02-RP1



Detector mode: Average Polarity: Vertical

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	43.65	-6.24	49.89	74.00	-24.11	Peak	Vertical
2	2483.5000	33.26	-6.24	39.50	54.00	-14.50	Average	Vertical

FCC ID: 2AAHXBTH20 Page 24 / 60

Polarity: Horizontal Detector mode: Average * Agilent Mkr1 2.479 83 GHz Ref 117 dBpV/m #Atten 20 dB 81.92 dB**µ**V/m #Peak Log 10 dB/ Offst dB 0 LgAv M1 S2 Start 2.475 00 GHz Stop 2.500 00 GHz #Res BW 1 MHz #VBW 2.4 kHz Sweep 8.16 ms (601 pts) X Axis 2.479 83 GHz 2.483 50 GHz Amplitude 81.92 dBµV/m 39.50 dBµV/m Type Freq Freq Marker Trace

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	44.10	-6.24	50.34	74.00	-23.66	Peak	Horizontal
2	2483.5000	33.26	-6.24	39.50	54.00	-14.50	Average	Horizontal

6.5 FREQUENCY SEPARATION

LIMIT

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: C140428Z02-RP1

MEASUREMENT EQUIPMENT USED

Name of Equipment	ment Manufacturer		Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW=30kHz, VBW=30kHz, Adjust Span to 4 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS

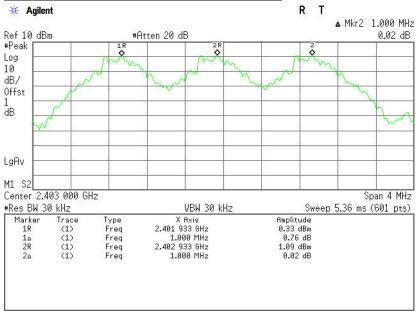
No non-compliance noted

Test Data

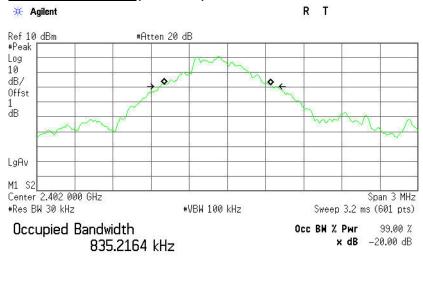
GFSK

Channel Separation (MHz) Two-thirds of the 20 dB Bandwidth (kHz)		Channel Separation Limit	Result
1.000	584.373	> Two-thirds of the 20 dB Bandwidth	Pass

8DPSK


Channel Separation Two-thirds of the 20 dB (MHz) Bandwidth (kHz)		Channel Separation Limit	Result
1.000	810.667	> Two-thirds of the 20 dB Bandwidth	Pass

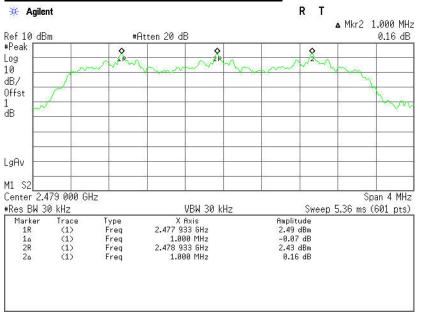
FCC ID: 2AAHXBTH20 Page 26 / 60


GFSK

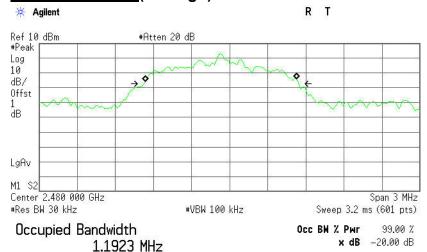
Test Plot

Measurement of Channel Separation

20 dB bandwidth(CH Low)


Transmit Freq Error -75.417 kHz x dB Bandwidth 876.560 kHz

FCC ID: 2AAHXBTH20 Page 27 / 60


8DPSK

Test Plot

Measurement of Channel Separation

20 dB bandwidth(CH High)

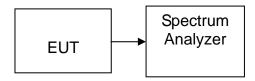
Transmit Freq Error -71.036 kHz x dB Bandwidth 1.216 MHz

FCC ID: 2AAHXBTH20 Page 28 / 60

6.6 NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

Report No.: C140428Z02-RP1

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

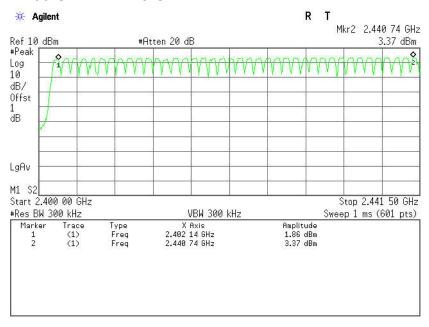
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop =2441.5MHz, Sweep = 1ms and Start=2441.5MHz, Stop = 2483.5MHz, Sweep = 1ms.
- 4. Set the spectrum analyzer as RBW, VBW=300kHz,
- 5. Max hold, view and count how many channel in the band.

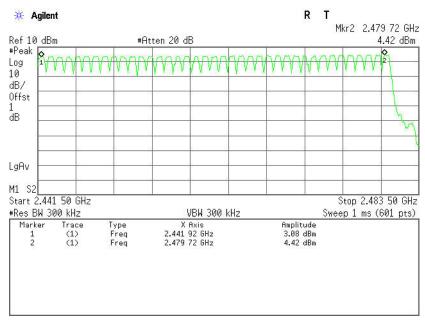
TEST RESULTS

No non-compliance noted

Test Data


Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS

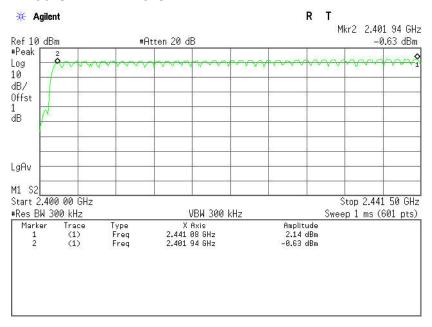
FCC ID: 2AAHXBTH20 Page 29 / 60


Test Plot (GFSK)

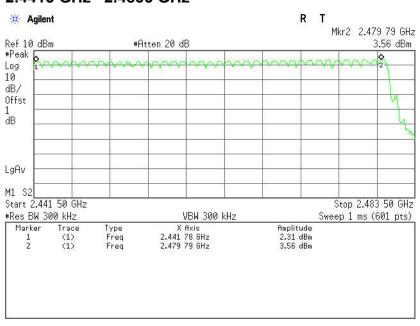
Channel Number

2.400 GHz -2.4415 GHz

2.4415 GHz -2.4835 GHz



FCC ID: 2AAHXBTH20 Page 30 / 60


Test Plot (8DPSK)

Channel Number

2.400 GHz -2.4415 GHz

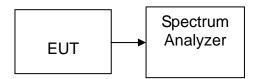
2.4415 GHz -2.4835 GHz

FCC ID: 2AAHXBTH20 Page 31 / 60

6.7 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.


Report No.: C140428Z02-RP1

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

FCC ID: 2AAHXBTH20 Page 32 / 60

TEST RESULTS

No non-compliance noted

Test Data

GFSK

DH 1

CH Mid: 0.442* (1600/2)/79*31.6 = 141.440 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.442	141.440	31.60	400.00	PASS

Report No.: C140428Z02-RP1

DH 3

CH Mid: $1.700^* (1600/4)/79 * 31.6 = 272.000 (ms)$

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	1.700	272.000	31.60	400.00	PASS

<u>DH 5</u>

CH Mid: 2.983* (1600/6)/79*31.6 = 318.187 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	2.983	318.187	31.60	400.00	PASS

FCC ID: 2AAHXBTH20 Page 33 / 60

Test Data

8DPSK

DH 1

CH Mid: $0.457^* (1600/2)/79 * 31.6 = 146.240 (ms)$

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	0.457	146.240	31.60	400.00	PASS

Report No.: C140428Z02-RP1

DH 3

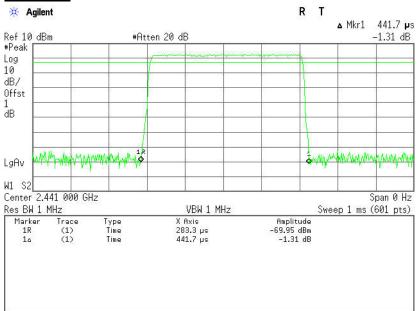
CH Mid: $1.715^* (1600/4)/79 * 31.6 = 274.400 (ms)$

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	1.715	274.400	31.60	400.00	PASS

DH 5

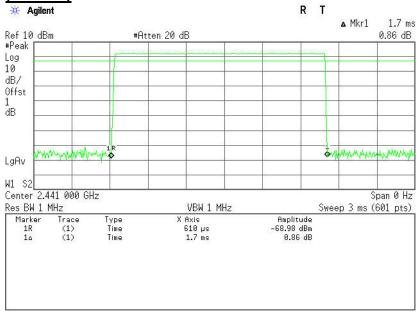
CH Mid: 2.992* (1600/6)/79 * 31.6 = 319.147 (ms)

СН	Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
Mid	2.992	319.147	31.60	400.00	PASS

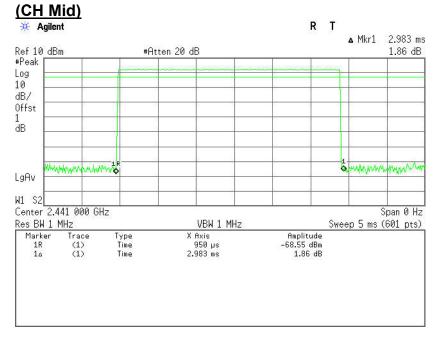

FCC ID: 2AAHXBTH20 Page 34 / 60

Test Plot

GFSK

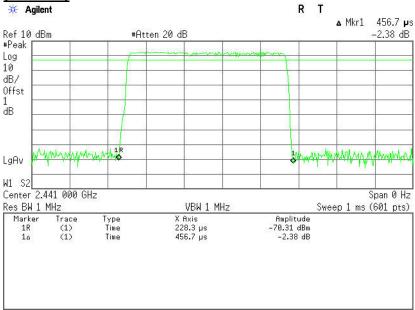

DH 1

(CH Mid)



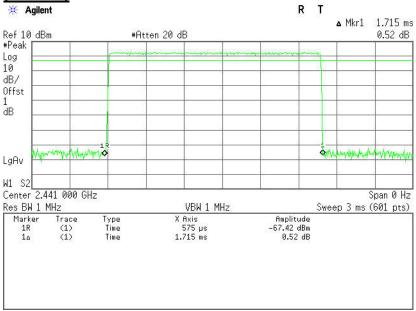
DH 3

(CH Mid)

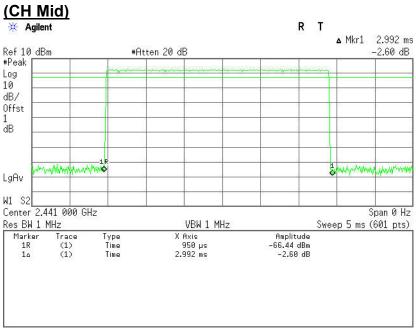


FCC ID: 2AAHXBTH20 Page 36 / 60

Test Plot 8DPSK


<u>DH 1</u>

(CH Mid)


DH 3

(CH Mid)

FCC ID: 2AAHXBTH20 Page 37 / 60

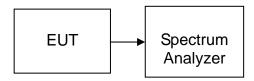
FCC ID: 2AAHXBTH20 Page 38 / 60

6.8 SPURIOUS EMISSIONS

6.8.1. CONDUCTED MEASUREMENT

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


Report No.: C140428Z01-RP1

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Due Calibration
Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015

Remark: Each piece of equipment is scheduled for calibration once a year.

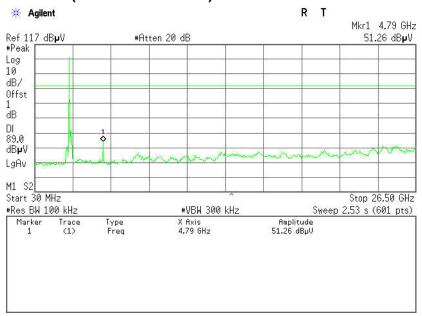
Test Configuration

TEST PROCEDURE

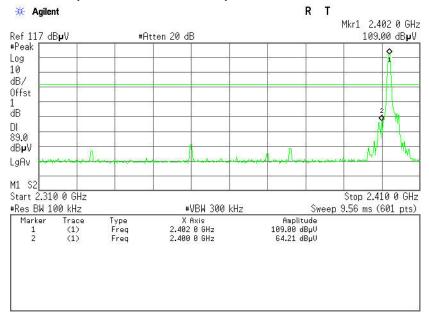
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

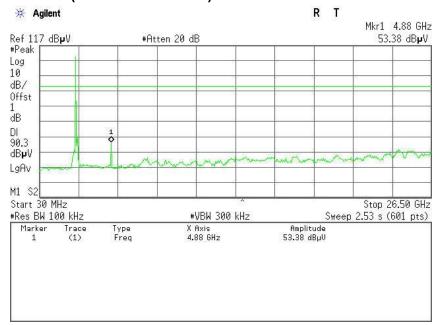
Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

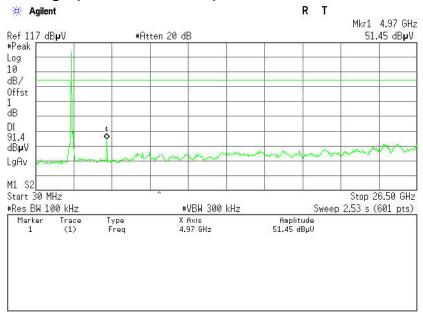

TEST RESULTS

No non-compliance noted

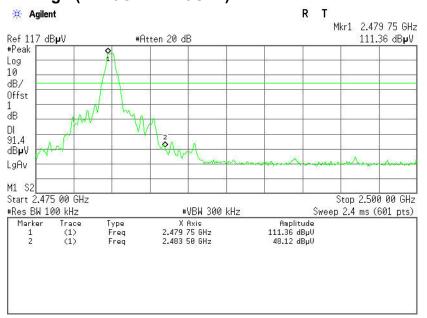

FCC ID: 2AAHXBTH20 Page 39/60

Test Plot (GFSK)


CH Low (30MHz ~26.5GHz)

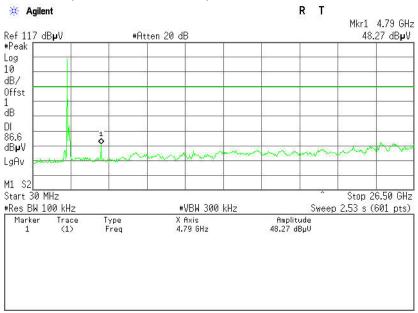

CH Low (2.31GHz ~2.41GHz)

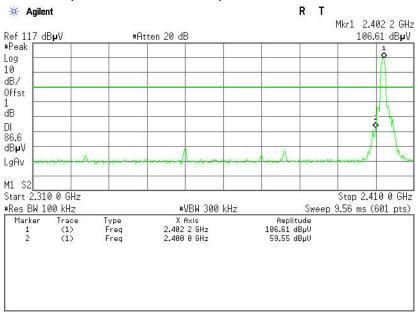
CH Mid (30MHz ~ 26.5GHz)



CH High (30MHz ~ 26.5GHz)

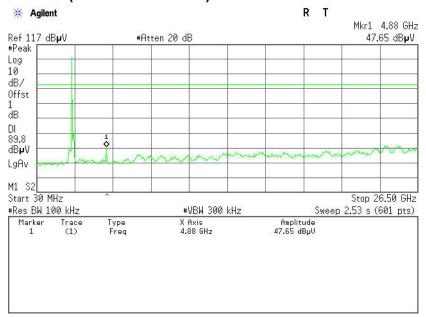
FCC ID: 2AAHXBTH20 Page 41 / 60


CH High (2.475GHz ~ 2.5GHz)

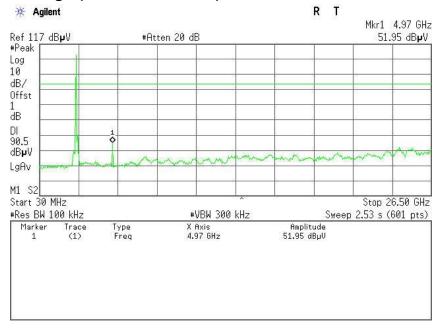

FCC ID: 2AAHXBTH20 Page 42 / 60

Test Plot (8DPSK)

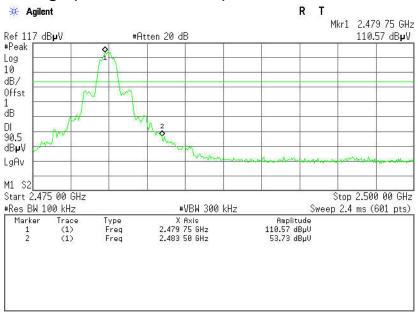
CH Low (30MHz ~26.5GHz)



CH Low (2.31GHz ~2.41GHz)



FCC ID: 2AAHXBTH20 Page 43 / 60


CH Mid (30MHz ~ 26.5GHz)

CH High (30MHz ~ 26.5GHz)

CH High (2.475GHz ~ 2.5GHz)

FCC ID: 2AAHXBTH20 Page 45 / 60

6.8.2. RADIATED EMISSIONS

LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Report No.: C140428Z01-RP1

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

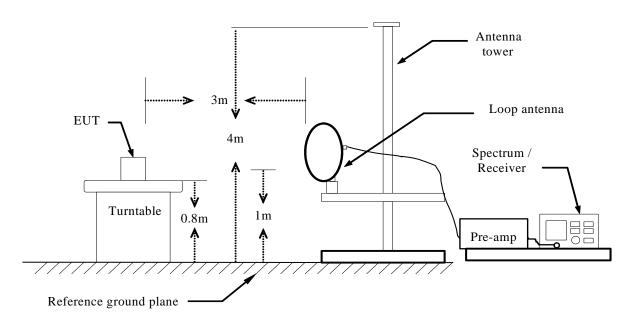
2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

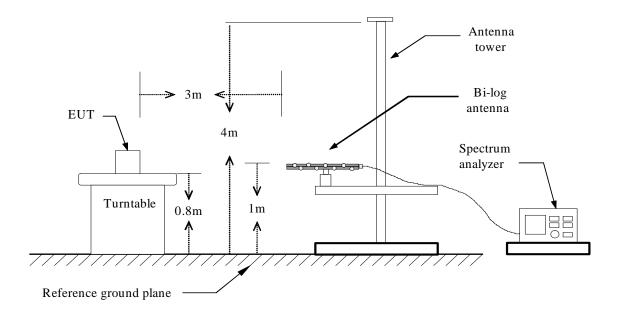
FCC ID: 2AAHXBTH20 Page 46/60

MEASUREMENT EQUIPMENT USED

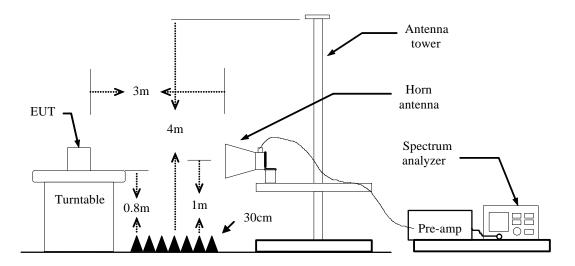
	Radiated Emission Test Site 966 (2)							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	03/01/2014	03/01/2015			
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	03/09/2014	03/08/2015			
Amplifier	MITEQ	AM-1604-3000	1123808	03/18/2014	03/18/2015			
High Noise Amplifier	Agilent	8449B	3008A01838	03/18/2014	03/18/2015			
Bilog Antenna	SCHAFFNER	CBL6143	5082	03/01/2014	03/01/2015			
Horn Antenna	SCHWARZBECK	BBHA9120	D286	03/01/2014	03/01/2015			
Board-Band Horn Antenna	SCHWARZBECK	BBHA9170	9170-497	07/10/2013	07/09/2014			
Loop Antenna	A、R、A	PLA-1030/B	1029	03/19/2014	03/18/2015			
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R			
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R			
Controller	СТ	N/A	N/A	N.C.R	N.C.R			
Temp. / Humidity Meter	Anymetre	JR913	N/A	02/28/2014	02/28/2015			
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R			
Test S/W	FARAD LZ-RF / CCS-SZ-3A2							


Report No.: C140428Z01-RP1

Remark: Each piece of equipment is scheduled for calibration once a year.


FCC ID: 2AAHXBTH20 Page 47/60
This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

TEST CONFIGURATION


Below 30MHz

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Report No.: C140428Z01-RP1

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode: TXTest Date:May 5, 2014Temperature:24°CTested by:Eve Wang

Report No.: C140428Z01-RP1

Humidity: 52% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
144.4600	53.20	-21.48	31.72	43.50	-11.78	V	QP
199.7500	54.06	-22.73	31.33	43.50	-12.17	V	QP
321.9700	51.49	-18.83	32.66	46.00	-13.34	V	QP
399.5700	50.32	-16.10	34.22	46.00	-11.78	V	QP
700.2700	44.40	-11.94	32.46	46.00	-13.54	V	QP
963.1400	41.86	-8.76	33.10	54.00	-20.90	V	QP
						•	
152.2200	49.16	-21.93	27.23	43.50	-16.27	Н	QP
276.3800	51.07	-20.43	30.64	46.00	-15.36	Н	QP
317.1200	52.03	-19.00	33.03	46.00	-12.97	Н	QP
404.4200	50.10	-15.88	34.22	46.00	-11.78	Н	QP
600.3600	40.85	-12.86	27.99	46.00	-18.01	Н	QP
958.2900	40.31	-8.78	31.53	46.00	-14.47	Н	QP

^{**}Remark: No emission found between lowest internal used/generated frequency to 30MHz. **Notes:**

- 1. Measuring frequencies from 9kHz to the 1GHz.
 - 2. Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 120kHz.

5. Frequency (MHz). = Emission frequency in MHz

Reading (dBuV) = Receiver reading

Correction Factor(dB/m) = Antenna factor + Cable loss – Amplifier gain Actual FS (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m)

Limit (dBuV/m) = Limit stated in standard

Margin(dB) = Measured (dBuV/m) - Limits (dBuV/m)

Antenna Pole(V/H) = Current carrying line of reading

FCC ID: 2AAHXBTH20 Page 51/60
This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Above 1 GHz GFSK

Operation Mode:TX(CH Low)Test Date:May 3, 2014Temperature:24°CTested by:Eve WangHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1630.0000	51.84	-8.37	43.47	74.00	-30.53	V	peak
4807.0000	43.39	2.75	46.14	74.00	-27.86	V	peak
6031.0000	39.58	7.58	47.16	74.00	-26.84	V	peak
7201.0000	40.27	7.26	47.53	74.00	-26.47	V	peak
7651.0000	39.99	7.55	47.54	74.00	-26.46	V	peak
9046.0000	40.14	8.47	48.61	74.00	-25.39	V	peak
3799.0000	41.60	-0.73	40.87	74.00	-33.13	Н	peak
4807.0000	46.34	2.75	49.09	74.00	-24.91	Η	peak
6247.0000	40.49	7.48	47.97	74.00	-26.03	Н	peak
7210.0000	41.23	7.26	48.49	74.00	-25.51	Н	peak
8335.0000	39.86	8.04	47.90	74.00	-26.10	Н	peak
8830.0000	40.23	8.44	48.67	74.00	-25.33	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

Operation Mode: TX(CH Mid) Test Date: May 3, 2014 24°C Tested by: **Eve Wang** Temperature: **Humidity:** 52% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1153.0000	49.13	-10.54	38.59	74.00	-35.41	V	peak
3655.0000	41.90	-0.88	41.02	74.00	-32.98	V	peak
4879.0000	45.27	3.18	48.45	74.00	-25.55	V	peak
6553.0000	40.47	7.34	47.81	74.00	-26.19	V	peak
7327.0000	41.12	7.34	48.46	74.00	-25.54	V	peak
8344.0000	40.23	8.05	48.28	74.00	-25.72	V	peak
1153.0000	49.76	-10.54	39.22	74.00	-34.78	Н	peak
3439.0000	42.82	-1.62	41.20	74.00	-32.80	Н	peak
4879.0000	47.80	3.18	50.98	74.00	-23.02	Н	peak
6022.0000	39.99	7.58	47.57	74.00	-26.43	Н	peak
7327.0000	42.75	7.34	50.09	74.00	-23.91	Н	peak
8515.0000	40.60	8.19	48.79	74.00	-25.21	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading (dBµV/m) =Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss - Amplifier gain

Limit (dBµV/m) = Limit stated in standard

Margin (dB) = Result ($dB\mu V/m$)- Limit ($dB\mu V/m$)

Pk = Peak Reading AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

Operation Mode: TX(CH High) Test Date: May 3, 2014

Report No.: C140428Z01-RP1

24°C Tested by: **Eve Wang** Temperature:

Ver. / Hor. **Humidity:** 52% RH Polarity:

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
3628.0000	41.47	-0.90	40.57	74.00	-33.43	V	peak
4780.0000	41.53	2.58	44.11	74.00	-29.89	V	peak
5851.0000	41.44	6.63	48.07	74.00	-25.93	V	peak
6823.0000	41.37	7.21	48.58	74.00	-25.42	V	peak
7561.0000	40.03	7.49	47.52	74.00	-26.48	V	peak
8659.0000	40.05	8.30	48.35	74.00	-25.65	V	peak
1153.0000	50.06	-10.54	39.52	74.00	-34.48	Н	peak
2143.0000	44.86	-6.81	38.05	74.00	-35.95	Н	peak
3835.0000	42.57	-0.70	41.87	74.00	-32.13	Н	peak
4960.0000	40.60	3.68	44.28	74.00	-29.72	Н	peak
6544.0000	40.00	7.34	47.34	74.00	-26.66	Н	peak
7444.0000	41.39	7.41	48.80	74.00	-25.20	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

r⊣equency (MHz) Reading (dBµV/m) =Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

= Limit stated in standard Limit (dBµV/m)

= Result (dBµV/m)- Limit (dBµV/m) Margin (dB)

Pk = Peak Reading AV. = Average Reading

= Mark Peak Reading or Average Reading Remark

8DPSK

Operation Mode:TX(CH Low)Test Date:May 3, 2014Temperature:24°CTested by:Eve WangHumidity:52% RHPolarity:Ver. / Hor.

Report No.: C140428Z02-RP1

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1060.0000	52.12	-11.26	40.86	74.00	-33.14	V	peak
3445.0000	44.01	-1.56	42.45	74.00	-31.55	V	peak
4810.0000	42.51	2.76	45.27	74.00	-28.73	V	peak
5320.0000	41.12	4.21	45.33	74.00	-28.67	V	peak
6010.0000	40.97	7.59	48.56	74.00	-25.44	V	peak
7765.0000	40.82	7.62	48.44	74.00	-25.56	V	peak
1960.0000	45.88	-6.95	38.93	74.00	-35.07	Н	peak
3925.0000	43.23	-0.60	42.63	74.00	-31.37	Н	peak
4810.0000	42.17	2.76	44.93	74.00	-29.07	Н	peak
6175.0000	41.05	7.51	48.56	74.00	-25.44	Н	peak
7195.0000	40.24	7.25	47.49	74.00	-26.51	Н	peak
7675.0000	40.81	7.56	48.37	74.00	-25.63	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

Limit ($dB\mu V/m$) = Limit stated in standard

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

FCC ID: 2AAHXBTH20 Page 55 / 60

Operation Mode:TX(CH Mid)Test Date:May 3, 2014Temperature:24°CTested by:Eve WangHumidity:52% RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
4885.0000	44.92	3.22	48.14	74.00	-25.86	V	peak
6220.0000	40.96	7.49	48.45	74.00	-25.55	V	peak
6880.0000	40.34	7.19	47.53	74.00	-26.47	V	peak
7660.0000	40.40	7.55	47.95	74.00	-26.05	V	peak
8785.0000	40.50	8.41	48.91	74.00	-25.09	V	peak
3625.0000	43.30	-0.91	42.39	74.00	-31.61	V	peak
		<u> </u>	T			T	T
1150.0000	50.56	-10.57	39.99	74.00	-34.01	Н	peak
3895.0000	42.87	-0.64	42.23	74.00	-31.77	Н	peak
4885.0000	43.40	3.22	46.62	74.00	-27.38	Н	peak
5980.0000	40.70	7.46	48.16	74.00	-25.84	Н	peak
6835.0000	41.24	7.21	48.45	74.00	-25.55	Н	peak
7690.0000	40.72	7.57	48.29	74.00	-25.71	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

Operation Mode:TX(CH High)Test Date:May 3, 2014Temperature:24 °CTested by:Eve WangHumidity:52% RHPolarity:Ver. / Hor.

Report No.: C140428Z02-RP1

Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna Pole (V/H)	Remark
1195.0000	50.38	-10.22	40.16	74.00	-33.84	V	peak
3820.0000	42.66	-0.71	41.95	74.00	-32.05	V	peak
4855.0000	41.31	3.04	44.35	74.00	-29.65	V	peak
5740.0000	40.73	5.92	46.65	74.00	-27.35	V	peak
6145.0000	40.63	7.52	48.15	74.00	-25.85	V	peak
7750.0000	40.15	7.61	47.76	74.00	-26.24	V	peak
		1	T	1		T	
1060.0000	51.12	-11.26	39.86	74.00	-34.14	Н	peak
2095.0000	45.13	-6.74	38.39	74.00	-35.61	Н	peak
3760.0000	42.73	-0.77	41.96	74.00	-32.04	Н	peak
4990.0000	42.42	3.86	46.28	74.00	-27.72	Н	peak
6010.0000	41.52	7.59	49.11	74.00	-24.89	Н	peak
7435.0000	42.28	7.41	49.69	74.00	-24.31	Н	peak

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Uncorrected Analyzer / Receiver Reading Correction Factor (dB) = Antenna factor + Cable loss – Amplifier gain

 $Limit (dB\mu V/m) = Limit stated in standard$

Margin (dB) = Result (dB μ V/m)- Limit (dB μ V/m)

Pk = Peak Reading
AV. = Average Reading

Remark = Mark Peak Reading or Average Reading

FCC ID: 2AAHXBTH20 Page 57 / 60

6.9 POWERLINE CONDUCTED EMISSIONS

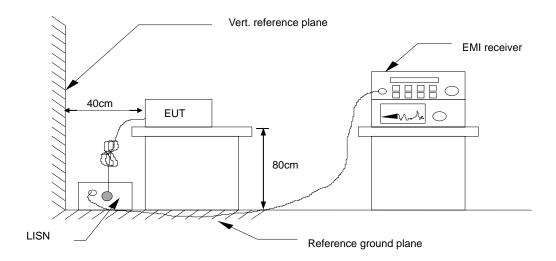
LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Report No.: C140428Z02-RP1

Frequency Range (MHz)	Limits (dBμV)				
Frequency Kange (MIDZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


MEASUREMENT EQUIPMENT USED

Conducted Emission Test Site											
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Due Calibration							
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100783	03/09/2014	03/08/2015						
LISN(EUT)	ROHDE&SCHWARZ	ENV216	101543-WX	04/20/2014	04/19/2015						
LISN	EMCO	3825/2	8901-1459	03/09/2014	03/08/2015						
Temp. / Humidity Meter	VICTOR	HTC-1	N/A	03/17/2014	03/17/2015						
Test S/W	FARAD	EZ-EMC/ CCS-3A1-CE									

Remark: Each piece of equipment is scheduled for calibration once a year.

FCC ID: 2AAHXBTH20 Page 58 / 60

TEST CONFIGURATION

Report No.: C140428Z02-RP1

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

FCC ID: 2AAHXBTH20 Page 59 / 60

Test Data

Operation Mode: Charge + Line in Test Date: May 4, 2014

Report No.: C140428Z02-RP1

Temperature: 26°C **Humidity:** 60% RH

Tested by: Eve Wang

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Line (L1/L2)
0.1500	37.93	31.68	9.58	47.51	41.26	65.99	56.00	-18.48	-14.74	L1
0.2620	28.02	17.31	9.69	37.71	27.00	61.36	51.37	-23.65	-24.37	L1
0.5260	26.04	14.86	9.69	35.73	24.55	56.00	46.00	-20.27	-21.45	L1
3.7820	38.68	24.55	9.70	48.38	34.25	56.00	46.00	-7.62	-11.75	L1
4.4540	38.73	28.47	9.69	48.42	38.16	56.00	46.00	-7.58	-7.84	L1
12.3540	34.58	24.62	9.89	44.47	34.51	60.00	50.00	-15.53	-15.49	L1
0.1500	36.26	30.95	9.78	46.04	40.73	65.99	56.00	-19.95	-15.27	L2
0.5299	26.65	15.11	9.68	36.33	24.79	56.00	46.00	-19.67	-21.21	L2
3.9140	38.09	28.44	9.76	47.85	38.20	56.00	46.00	-8.15	-7.80	L2
4.4540	39.43	29.26	9.77	49.20	39.03	56.00	46.00	-6.80	-6.97	L2
8.3700	34.15	25.35	9.83	43.98	35.18	60.00	50.00	-16.02	-14.82	L2
12.3540	34.92	25.99	9.80	44.72	35.79	60.00	50.00	-15.28	-14.21	L2

Note:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Peak detector, Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit.
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. L1= Line One (Live Line)/ L2= Line Two (Neutral Line)

FCC ID: 2AAHXBTH20 Page 60 / 60