

Report No. : EED32L00044601 Page 1 of 51

TEST REPORT

Product : SurroSense Rx
Trade mark : SurroSense
Model/Type reference : METIMURV1

Serial Number : N/A

Report Number : EED32L00044601 **FCC ID** : 2AAH8-METIMURV1

Date of Issue : May 06, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Orpyx Medical Technologies Inc.
Bay 2, 1440 28 Street N.E., Calgary, Alberta, Canada T2A 7W6

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay

Compiled by:

Kevin Ian

Ware xin

May 06, 2019

Check No.: 3570102508

Report No.: EED32L00044601

2 Version

Version No.	Date	(6	Description	<u> </u>
00	May 06, 2019		Original	
	100	100	75	705
((c ² 5)	(642)	(6%)

3 Test Summary

Report No.: EED32L00044601

o rest outilitially		(20)		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

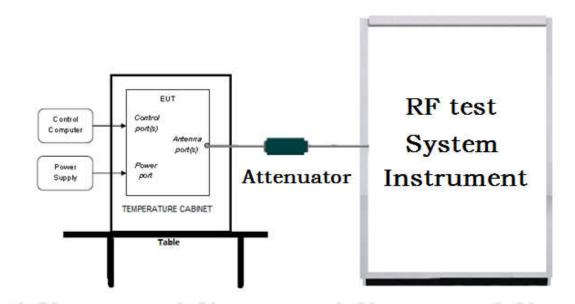
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00044601 Page 4 of 51

4 Content

1 COVER PAGE				1
2 VERSION				2
TEST SUMMARY				3
4 CONTENT				4
5 TEST REQUIREMENT				5
5.1.1 For Conducted to 5.1.2 For Radiated Em 5.1.3 For Conducted E 5.2 TEST ENVIRONMENT	est setup nissions test setup Emissions test setup			
6 GENERAL INFORMATIO	N			7
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATI 6.4 DESCRIPTION OF SUPP 6.5 TEST LOCATION 6.6 DEVIATION FROM STAN 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION I	N OF EUT ON SUBJECTIVE TO THIS STAPORT UNITS NDARDS STANDARD CONDITIONS REQUESTED BY THE CUSTON RTAINTY (95% CONFIDENCE	ANDARD		
7 EQUIPMENT LIST				10
B RADIO TECHNICAL REG	QUIREMENTS SPECIFICA	TION		14
Appendix B): Conductor Appendix C): Band-ed Appendix D): RF Cond Appendix E): Power S Appendix F): Antenna Appendix G): AC Power Appendix H): Restricted	eupied Bandwidthed Peak Output Powerge for RF Conducted Emisducted Spurious Emissions pectral Density	ssions on ntal frequency (Radiate	d)	
PHOTOGRAPHS OF TEST	SETUP			38
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DET	AILS		40



Report No. : EED32L00044601 Page 5 of 51

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

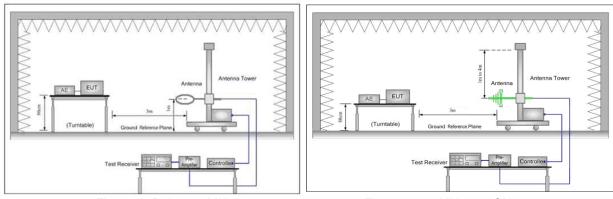


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

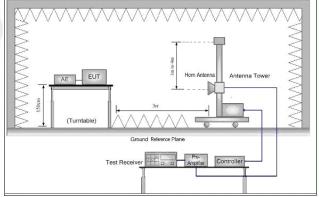
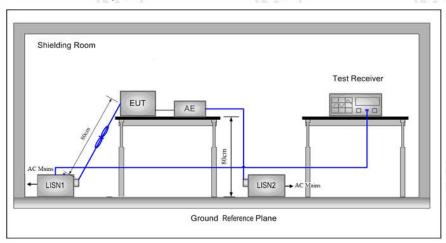
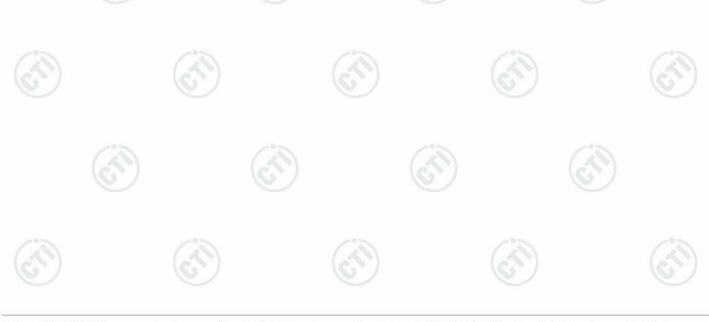



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment for	RF Conducted test:		(9)
Temperature:	26°C		
Humidity:	52% RH	2 200	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		/03			
rest Mode	TX/RX	Low(L)	Middle(M)	High(H)		
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40		
GFSK	2402IVIH2 ~2460 IVIH2	2402MHz	2440MHz	2480MHz		
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).					

General Information

6.1 Client Information

Applicant:	Orpyx Medical Technologies Inc.	
Address of Applicant:	Bay 2, 1440 28 Street N.E., Calgary, Alberta, Canada T2A 7W6	
Manufacturer:	Orpyx Medical Technologies Inc.	100
Address of Manufacturer:	Bay 2, 1440 28 Street N.E., Calgary, Alberta, Canada T2A 7W6	
Factory:	Orpyx Medical Technologies Inc.	100
Address of Factory:	Bay 2, 1440 28 Street N.E., Calgary, Alberta, Canada T2A 7W6	

6.2 General Description of EUT

Product Name:	SurroSense F	₹x					
Model No.(EUT):	METIMURV1	METIMURV1					
Trade mark:	SurroSense	SurroSense					
EUT Supports Radios application:	BT 5.0 Single	mode, 2402-2480MHz		/*>			
Power Supply:	AC Adapter	Model: HDP12-MD05024U Input: 100-240Vac~ 50/60Hz Output: 5Vdc2.4A, 12W					
	Battery	Lithium-ion Battery:180mAh 3.7V					
Hardware Version:	N/A		-05				
Firmware Version:	1.5(manufactu	urer declare)					
Sample Received Date:	Mar. 07, 2019						
Sample tested Date:	Mar. 20, 2019	to Mar. 28, 2019					

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		(62)		(0)
Bluetooth Version:	5.0				
Modulation Technique:	DSSS				
Modulation Type:	GFSK			7'8	
Number of Channel:	40	(35)		(653)	
Test Power Grade:	N/A				
Test Software of EUT:	nRFgo Studio (manufac	cturer declare)			
Antenna Type:	PCB Antenna		-0-		-0-
Antenna Gain:	3.3dBi	A	(49)		(4)
Test Voltage:	AC 120V, 60Hz		(0)		6

Report No. : EED32L00044601 Page 8 of 51

100				100		/12	_
Operation F	requency eac	h of channe	ļ	(2)		(3))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No.: EED32L00044601 Page 9 of 51

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0 - 55		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadieted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction oniceion	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32L00044601 Page 10 of 51

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398-0 02		01-09-2019	01-08-2020
High-pass filter	MICRO-TRO NICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00044601

Page 11 of 51

	Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019			
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020			
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020			
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019			
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019			
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020			
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019			
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020			

Report No. : EED32L00044601 Page 12 of 51

	3M S	semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGRE N	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938-0	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-29-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12-039 8-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Report No. : EED32L00044601 Page 13 of 51

	Manufa	3M full-anech	oic Chamber	Cal data	Cal Director
Equipment	Manufac turer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscen d	JS36-RSE	10166	06-20-2018	06-19-2019
Receiver	Keysight	N9038A	MY57290136	03-28-2018 03-27-2019	03-27-2019 03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarz beck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarz beck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarz beck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarz beck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarz beck	CLSA 0110L	1014	02-15-2018	02-14-2019
Biconical antenna	Schwarz beck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGR EN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC184055SE	980596	06-20-2018	06-19-2019
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-02-2018	05-01-2019
Signal Generator	KEYSIG HT	E8257D	MY53401106	03-13-2018	03-12-2019
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-2021
Filter bank	JS Tonscen d	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

8 Radio Technical Requirements Specification

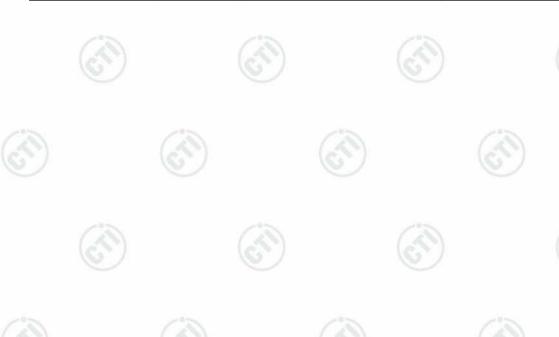
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Report No.: EED32L00044601

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6759	1.0702	PASS
BLE	MCH	0.6826	1.0744	PASS
BLE	НСН	0.6927	1.0774	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00044601 Page

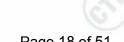
Test Graphs

Report No. : EED32L00044601 Page 17 of 51

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-13.191	PASS
BLE	MCH	-10.361	PASS
BLE	HCH	-9.444	PASS



Report No.: EED32L00044601 Page 18 of 51

Test Graphs

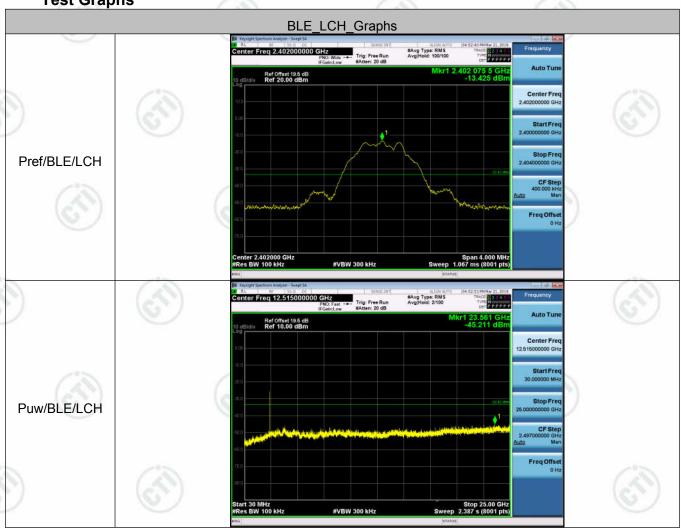
Report No. : EED32L00044601 Page 19 of 51

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	-13.351	-60.466	-33.35	PASS
4	BLE	НСН	-9.490	-60.491	-29.49	PASS

Test Graphs

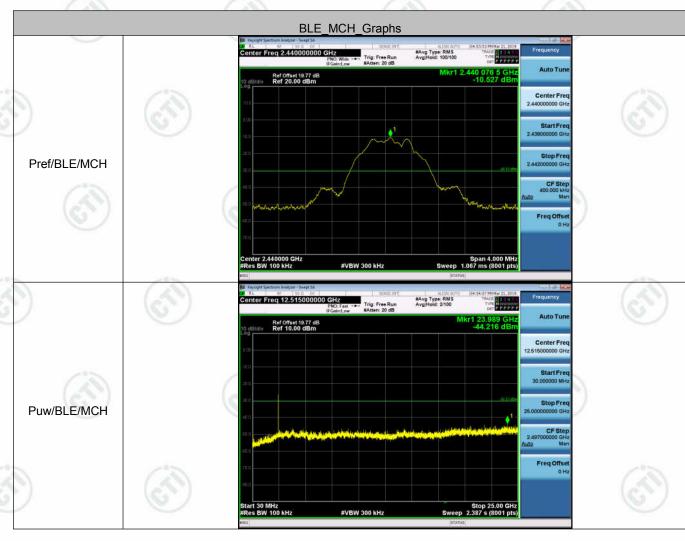


Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-13.425	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-10.527	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-9.66	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs



Report No.: EED32L00044601



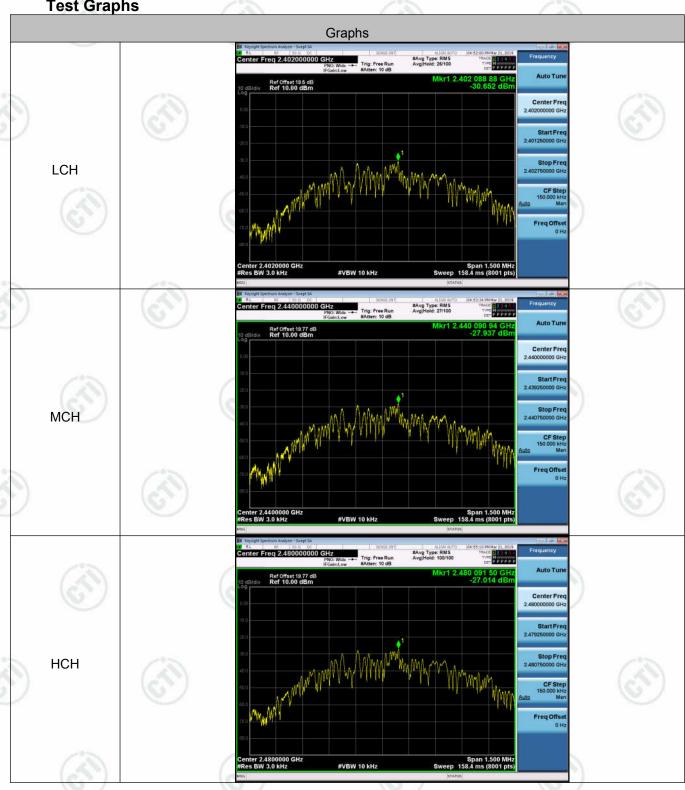
Report No. : EED32L00044601 Page 22 of 51

Report No.: EED32L00044601

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-30.652	8	PASS
BLE	MCH	-27.937	8	PASS
BLE	HCH	-27.014	8	PASS

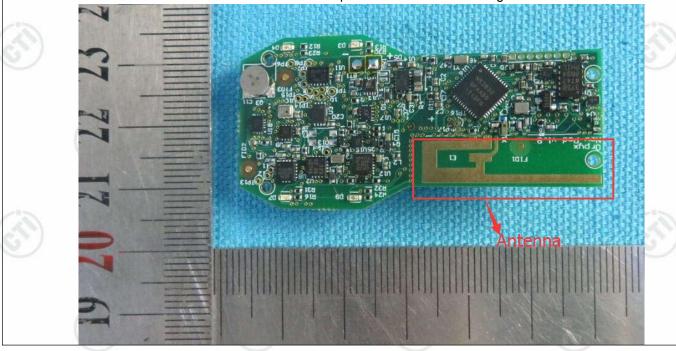


Report No.: EED32L00044601 Page 24 of 51

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

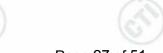

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

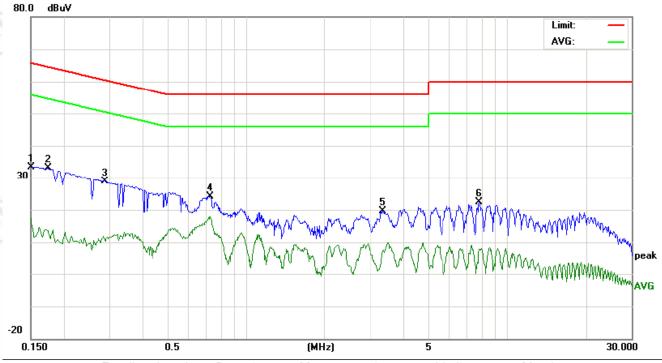
EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 3.3dBi.


Report No. : EED32L00044601 Page 26 of 51

Appendix G): AC Power Line Conducted Emission

Test Procedure:		turbance voltage test was c					
)	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.						
		s placed upon a non-metall for floor-standing arrangemerence plane,					
	EUT shall be 0.4 m fr reference plane was 1 was placed 0.8 m ground reference pla plane. This distance	red with a vertical ground referom the vertical ground referonded to the horizontal grounded to the horizontal grounders of the user for LISNs mounted owas between the closest possibility and associated equipment.	rence plane. The ve ound reference plan unit under test and n top of the grour pints of the LISN 1 a	rtical grounge. The LIST bonded to nd reference and the EUT			
(ii)		eximum emission, the relative bles must be changed a nent.					
Limit:		Limit (c	dBµV)				
	Frequency range (MH	Z) Quasi-peak	Average	-0-			
	0.15-0.5	66 to 56*	56 to 46*	(49)			
	0.5-5	56	46	(0)			
	5-30	60	50				
	* The limit decreases lin		the frequency in the				
	MHz to 0.50 MHz.	early with the logarithm of applicable at the transition	7.5	e range 0.1			

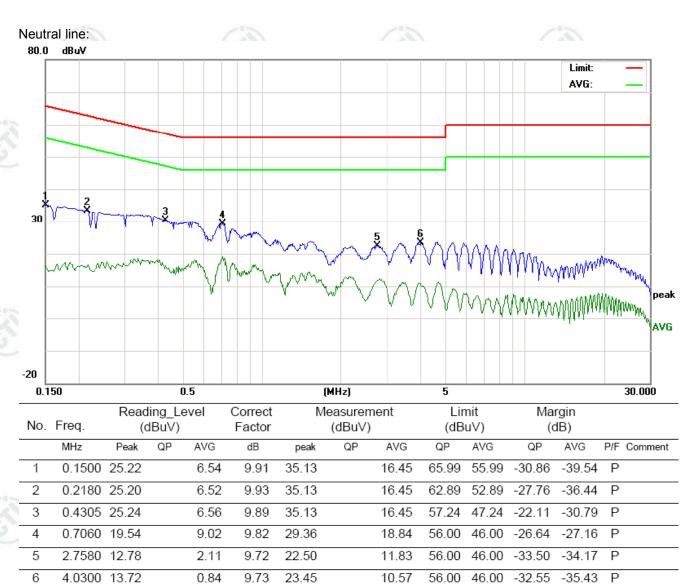

Report No. : EED32L00044601 Page 27 of 51

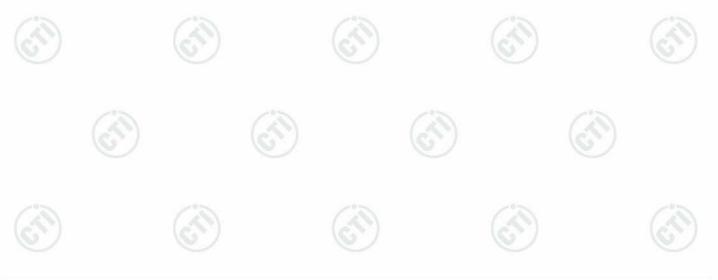
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


No	Freq.		ing_L dBu∀)	evel	Correct Factor	N	leasurem (dBu∀)		Lin (dB			rgin dB)		
-110.		(0	ibuv,		1 actor		(GDGV)		(GD	uv,	(1	<i>(</i> D)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	23.58		7.48	9.91	33.49		17.39	65.99	55.99	-32.50	-38.60	Р	
2	0.1740	23.12		3.80	9.91	33.03		13.71	64.76	54.76	-31.73	-41.05	Р	
3	0.2909	23.50		7.40	9.99	33.49		17.39	60.50	50.50	-27.01	-33.11	Р	
4	0.7300	14.41		7.95	9.81	24.22		17.76	56.00	46.00	-31.78	-28.24	Р	
5	3.3460	9.95		-2.29	9.72	19.67		7.43	56.00	46.00	-36.33	-38.57	Р	
6	7.8300	12.63		-1.80	9.77	22.40		7.97	60.00	50.00	-37.60	-42.03	Р	

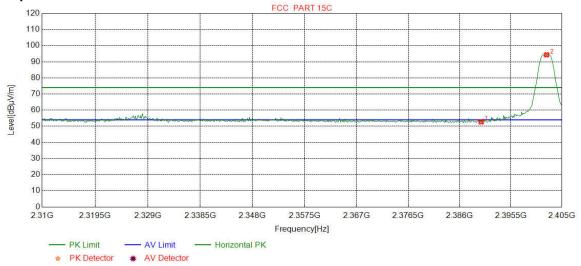


Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

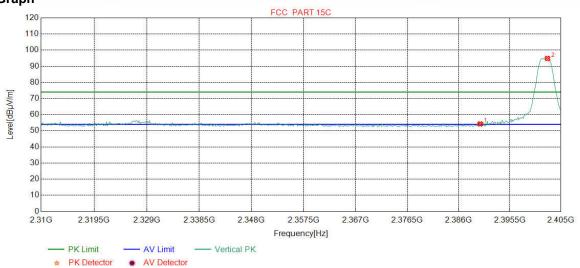
Appendix H): Restricted bands around fundamental frequency (Radiated)

	132 /	132				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Al 4011-	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 metwas mounted on the total control of the antenna height is determine the maximu polarizations of the antenna was turned from 0 deg e. The test-receiver systems bandwidth with Maxim f. Place a marker at the of frequency to show control of the support of the antenna was turned from the support of the su	ure as below: on the top of a rotal choic camber. The of the highest rade eters away from the portion of a variable-he varied from one man value of the field tenna are set to manission, the EUT value of the fees to 360 degreem was set to Peaum Hold Mode, end of the restricted.	ating table table wa liation. le interfer- light anter heter to fo d strength lake the n was arran meter to les to find k Detect	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasurement ged to its way 4 meters a the maxing Function a	es above the graph of the transmit	to, which ound to ertical and there
	bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lower in the radiation measure Transmitting mode, an j. Repeat above procedured.	rum analyzer plot. channel ure as below: we is the test site, ber change form 1 meter and table bwest channel, the ments are perforn d found the X axis	change fr table 0.8 is 1.5 me e Highest ned in X, s positioni	or each portion Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo positioning for t is worse cas	ambe ove
_imit:	Frequency	Limit (dBµV/m	n @3m)	Rer	mark	
	30MHz-88MHz	40.0	,		eak Value	
	88MHz-216MHz	43.5		· ·	eak Value	
	216MHz-960MHz	46.0	71.0		eak Value	
	960MHz-1GHz	54.0			eak Value	
		54.0	- 6	·	e Value	
	Above 1GHz	74.0			Value	
				1		



Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		

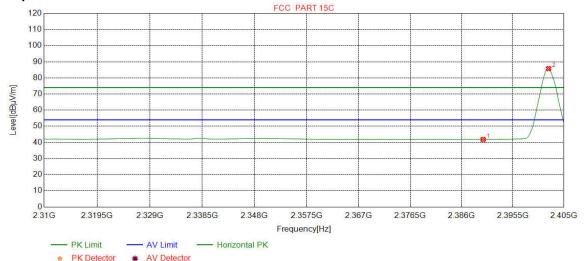

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.56	52.74	74.00	21.26	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	91.18	94.32	74.00	-20.32	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2402
Remark:	Peak		\

Test Graph

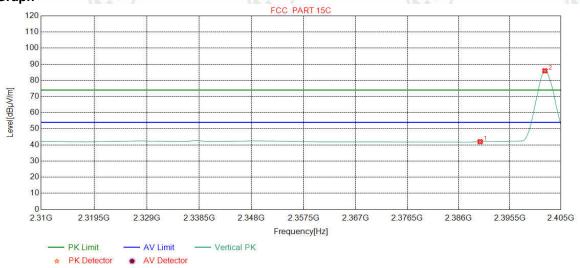
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.05	54.23	74.00	19.77	Pass	Vertical
2	2402.5031	32.26	13.31	-42.43	91.69	94.83	74.00	-20.83	Pass	Vertical



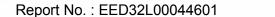
Report No.: EED32L00044601

Page 31 of 51

0	Mode:	GFSK Transmitting	Channel:	2402
129	Remark:	AV		

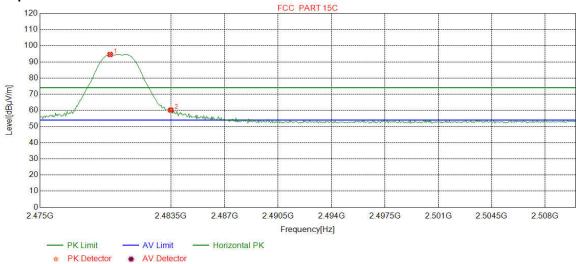

Test Graph

Ant Cable Pream Reading Level Limit Margin Freq. Factor Result NO loss gain Polarity [MHz] [dBµV] $[dB\mu V/m]$ [dBµV/m] [dB] [dB] [dB] [dB] Pass 1 2390.0000 32.25 13.37 -42.44 38.64 41.82 54.00 12.18 Horizontal **Pass** 2 2402.1464 -42.43 85.77 54.00 -31.77 32.26 13.31 82.63 Horizontal


Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

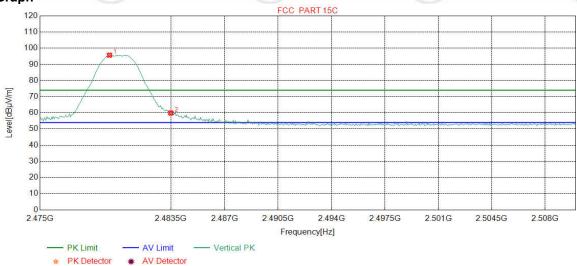
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.84	42.02	54.00	11.98	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	82.81	85.95	54.00	-31.95	Pass	Vertical



Page 32 of 51

1	Mode:	GFSK Transmitting	Channel:	2480
10	Remark:	Peak	3	(0.)

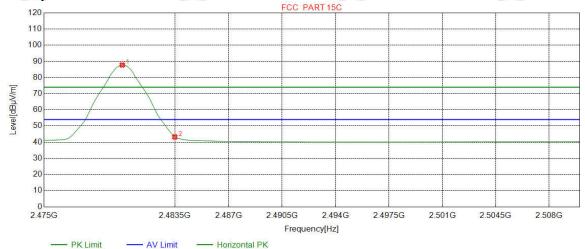

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5557	32.37	13.39	-42.39	91.21	94.58	74.00	-20.58	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	56.80	60.16	74.00	13.84	Pass	Horizontal

Mode:	GFSK Transmitting	Channel:	2480
Remark:	Peak	(30)	/

Test Graph

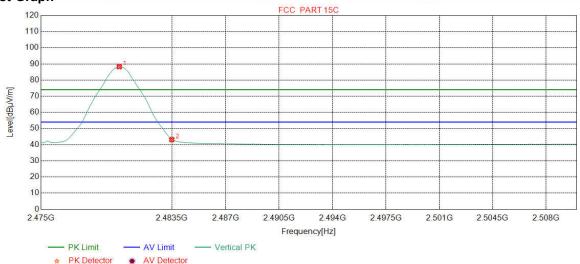
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5119	32.37	13.39	-42.39	92.33	95.70	74.00	-21.70	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	56.59	59.95	74.00	14.05	Pass	Vertical


Report No.: EED32L00044601

AV Detector

Page 33 of 51

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		


Test Graph

Cable Pream Ant Limit Freq. Reading Level Margin NO Factor loss gain Result **Polarity** [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] **Pass** 1 2480.0814 32.37 13.39 -42.4084.39 87.75 -33.75 54.00 Horizontal **Pass** 2 2483.5000 32.38 13.38 -42.40 43.24 10.76 39.88 54.00 Horizontal

Mode:	GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	84.87	88.23	54.00	-34.23	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	39.79	43.15	54.00	10.85	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32L00044601 Page 34 of 51

Appendix I): Radiated Spurious Emissions

15.5		16.				1
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
4	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0.)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(4)	A h 4 O L l -	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
To at Dua and duas		•		•	•	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

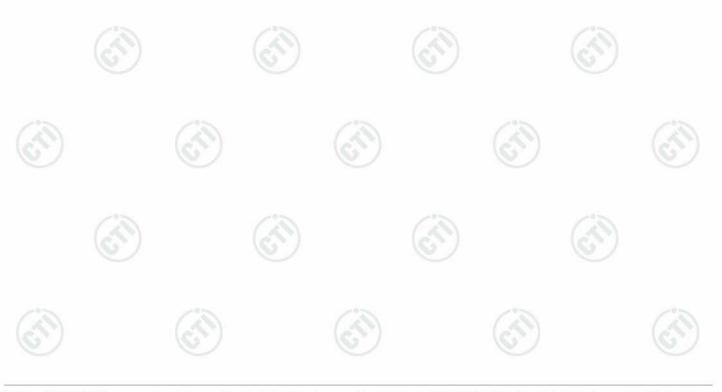
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3
	0.009MHz-0.490MHz 0.490MHz-1.705MHz 1.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	Frequency (microvolt/meter) 0.009MHz-0.490MHz 2400/F(kHz) 0.490MHz-1.705MHz 24000/F(kHz) 1.705MHz-30MHz 30 30MHz-88MHz 100 88MHz-216MHz 150 216MHz-960MHz 200 960MHz-1GHz 500	microvolt/meter (dBμV/m) 0.009MHz-0.490MHz 2400/F(kHz) - 0.490MHz-1.705MHz 24000/F(kHz) - 1.705MHz-30MHz 30 - 30MHz-88MHz 100 40.0 88MHz-216MHz 150 43.5 216MHz-960MHz 200 46.0 960MHz-1GHz 500 54.0	Frequency (microvolt/meter) (dBμV/m) Remark 0.009MHz-0.490MHz 2400/F(kHz) - - 0.490MHz-1.705MHz 24000/F(kHz) - - 1.705MHz-30MHz 30 - - 30MHz-88MHz 100 40.0 Quasi-peak 88MHz-216MHz 150 43.5 Quasi-peak 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 54.0 Quasi-peak

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 25°C Humid.: 56% Press.: 101kPa



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Мо	de:		GFSK Tra	nsmitting			Channel: 2480						
Re	mark:	QP											
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity			
1	83.9374	8.01	1.06	-32.09	45.82	22.80	40.00	17.20	Pass	Horizontal			
2	108.0928	10.92	1.23	-32.07	46.41	26.49	43.50	17.01	Pass	Horizontal			
3	180.0740	9.01	1.58	-31.99	41.21	19.81	43.50	23.69	Pass	Horizontal			
4	291.1501	13.02	2.03	-31.87	53.11	36.29	46.00	9.71	Pass	Horizontal			
5	444.0374	16.10	2.49	-31.88	44.94	31.65	46.00	14.35	Pass	Horizontal			
6	599.3499	18.99	2.96	-31.99	41.68	31.64	46.00	14.36	Pass	Horizontal			

Mode	e:		GFSK Tra	insmitting			Channel: 2480						
Remark:			QP										
NO	Freq. [MHz]	' Faciul Ingg nain °		Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity				
1	48.7229	13.20	0.79	-32.12	36.86	18.73	40.00	21.27	Pass	Vertical			
2	108.0928	10.92	1.23	-32.07	39.44	19.52	43.50	23.98	Pass	Vertical			
3	208.8859	11.13	1.71	-31.94	46.17	27.07	43.50	16.43	Pass	Vertical			
4	293.1873	13.06	2.04	-31.87	47.91	31.14	46.00	14.86	Pass	Vertical			
5	443.5524	16.10	2.49	-31.89	46.44	33.14	46.00	12.86	Pass	Vertical			
6	611.4761	19.09	2.96	-32.04	41.67	31.68	46.00	14.32	Pass	Vertical			

Transmitter Emission above 1GHz

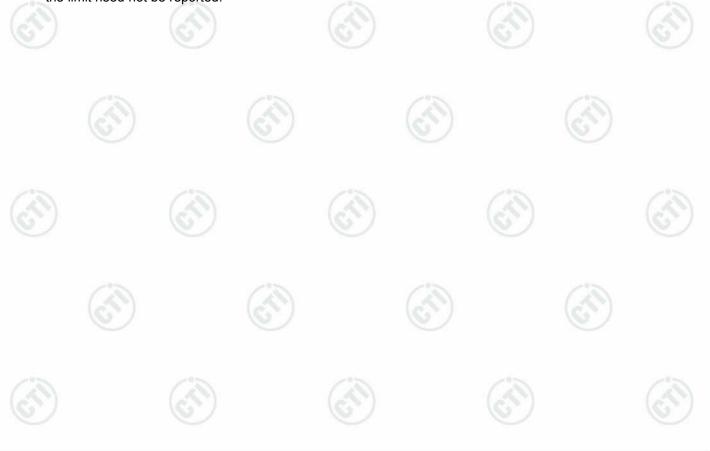
Mode	: :	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1597.4597	29.04	3.07	-42.89	52.35	41.57	74.00	32.43	Pass	Н	PK
2	3182.0121	33.27	4.62	-42.01	49.58	45.46	74.00	28.54	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	50.64	49.03	74.00	24.97	Pass	Н	PK
4	6088.3559	35.82	5.25	-41.11	47.16	47.12	74.00	26.88	Pass	Н	PK
5	7206.0000	36.31	5.81	-41.02	46.25	47.35	74.00	26.65	Pass	Н	PK
6	9608.0000	37.64	6.63	-40.76	44.50	48.01	74.00	25.99	Pass	Н	PK
7	1396.4396	28.30	2.89	-42.68	54.79	43.30	74.00	30.70	Pass	V	PK
8	1905.2905	31.07	3.42	-42.65	54.21	46.05	74.00	27.95	Pass	V	PK
9	3148.8599	33.26	4.57	-42.03	53.63	49.43	74.00	24.57	Pass	V	PK
10	4804.0000	34.50	4.55	-40.66	52.03	50.42	74.00	23.58	Pass	V	PK
11	7206.0000	36.31	5.81	-41.02	46.52	47.62	74.00	26.38	Pass	V	PK
12	9608.0000	37.64	6.63	-40.76	45.14	48.65	74.00	25.35	Pass	V	PK

Mode):	GFSK T	ransmitt	ing			Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1593.6594	29.02	3.06	-42.88	52.78	41.98	74.00	32.02	Pass	Н	PK
2	2841.7842	32.95	4.23	-42.21	54.49	49.46	74.00	24.54	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	51.64	50.34	74.00	23.66	Pass	Н	PK
4	6152.7102	35.83	5.25	-41.12	47.54	47.50	74.00	26.50	Pass	Н	PK
5	7320.0000	36.42	5.85	-40.92	44.98	46.33	74.00	27.67	Pass	Н	PK
6	9760.0000	37.70	6.73	-40.62	44.55	48.36	74.00	25.64	Pass	Н	PK
7	1395.6396	28.30	2.89	-42.69	50.61	39.11	74.00	34.89	Pass	V	PK
8	1594.4594	29.02	3.07	-42.89	50.83	40.03	74.00	33.97	Pass	V	PK
9	2997.3997	33.20	4.54	-42.12	52.26	47.88	74.00	26.12	Pass	V	PK
10	4880.0000	34.50	4.80	-40.60	52.09	50.79	74.00	23.21	Pass	V	PK
11	7320.0000	36.42	5.85	-40.92	48.56	49.91	74.00	24.09	Pass	V	PK
12	9760.0000	37.70	6.73	-40.62	43.51	47.32	74.00	26.68	Pass	V	PK

Report No. : EED32L00044601

Page 37 of 51

Mode:		GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1288.2288	28.19	2.73	-42.80	51.83	39.95	74.00	34.05	Pass	Н	PK
2	1775.0775	30.22	3.28	-42.71	51.18	41.97	74.00	32.03	Pass	Н	PK
3	3189.8127	33.28	4.63	-42.01	49.97	45.87	74.00	28.13	Pass	Н	PK
4	4960.0000	34.50	4.82	-40.53	50.73	49.52	74.00	24.48	Pass	Н	PK
5	7440.0000	36.54	5.85	-40.82	46.31	47.88	74.00	26.12	Pass	Н	PK
6	9920.0000	37.77	6.79	-40.48	44.12	48.20	74.00	25.80	Pass	Н	PK
7	1395.0395	28.30	2.89	-42.69	55.34	43.84	74.00	30.16	Pass	V	PK
8	1875.4875	30.88	3.40	-42.67	56.43	48.04	74.00	25.96	Pass	V	PK
9	3432.9289	33.37	4.47	-41.85	50.50	46.49	74.00	27.51	Pass	V	PK
10	4960.0000	34.50	4.82	-40.53	50.40	49.19	74.00	24.81	Pass	V	PK
11	7440.0000	36.54	5.85	-40.82	46.78	48.35	74.00	25.65	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	43.80	47.88	74.00	26.12	Pass	V	PK


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2)Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

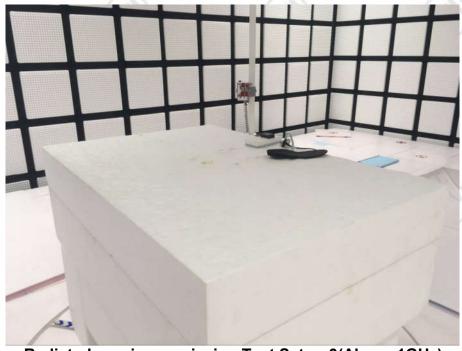
Report No.: EED32L00044601 Page 38 of 51

PHOTOGRAPHS OF TEST SETUP

Test model No.: METIMURV1

Radiated spurious emission Test Setup-1(Below 30MHz)

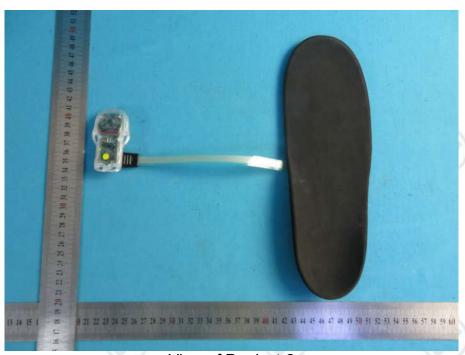
Radiated spurious emission Test Setup-2(30MHz-1GHz)



Report No.: EED32L00044601

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup


Report No. : EED32L00044601 Page 40 of 51

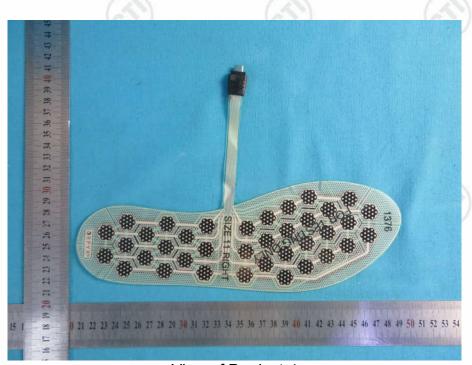
PHOTOGRAPHS OF EUT Constructional Details

Test model No.: METIMURV1

View of Product-1

View of Product-2

(ii)



Report No.: EED32L00044601

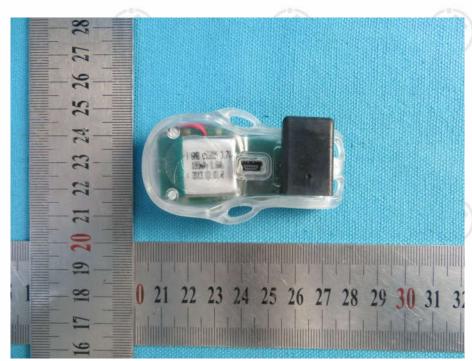
View of Product-3

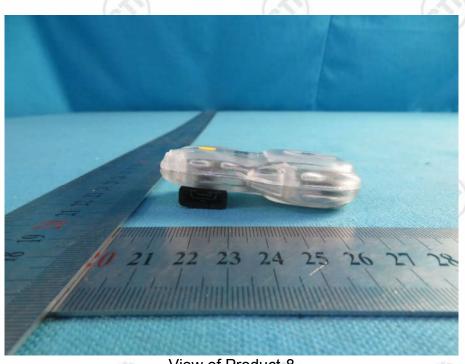
View of Product-4

Report No. : EED32L00044601 Page 42 of 51

View of Product-5

View of Product-6





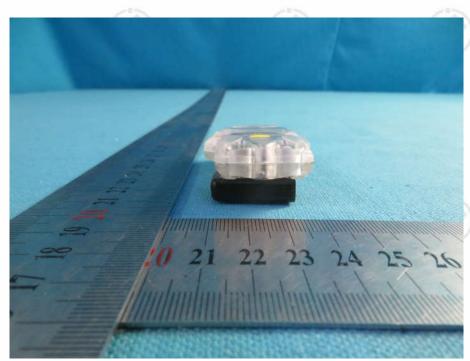
Page 43 of 51 Report No.: EED32L00044601

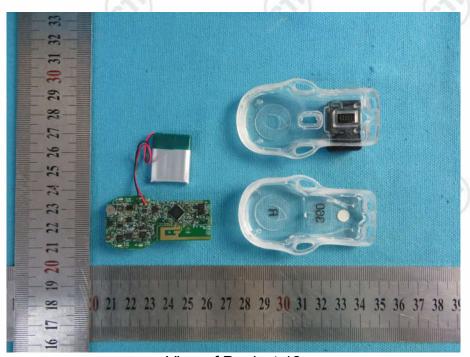
View of Product-7

View of Product-8

Report No.: EED32L00044601 Page 44 of 51

View of Product-9

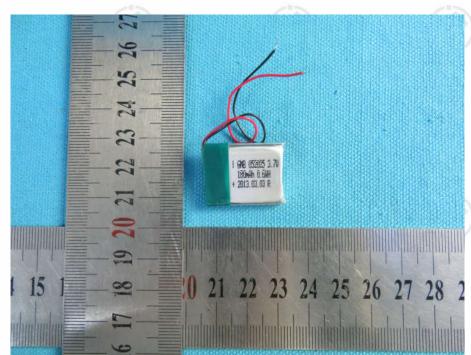


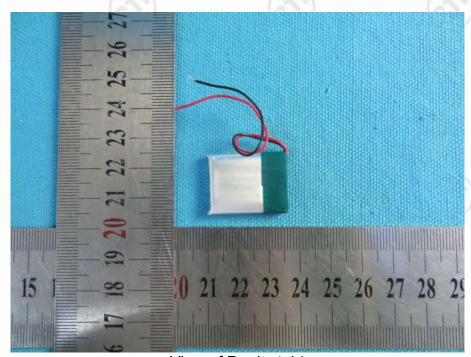


Report No. : EED32L00044601 Page 45 of 51

View of Product-11

View of Product-12

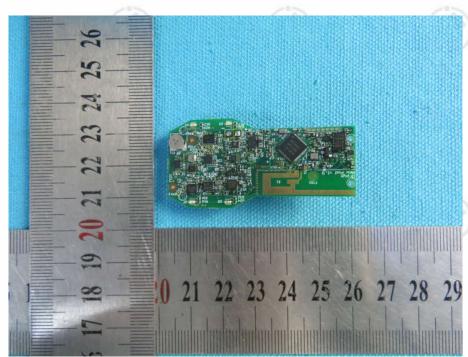


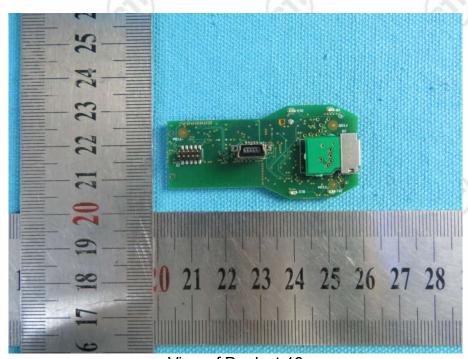


Report No. : EED32L00044601 Page 46 of 51

View of Product-13

View of Product-14

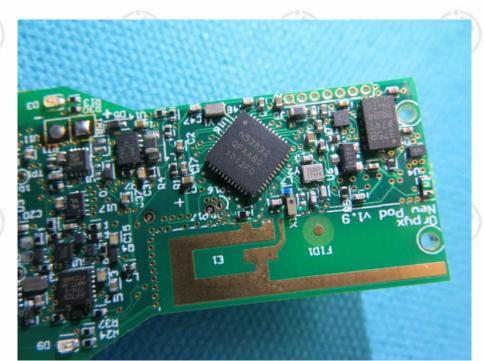




Report No. : EED32L00044601 Page 47 of 51

View of Product-15

View of Product-16

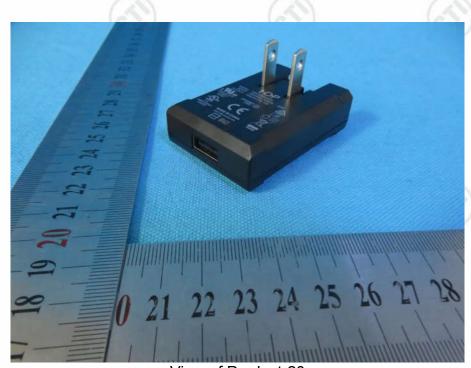


Report No. : EED32L00044601

View of Product-17

View of Product-18

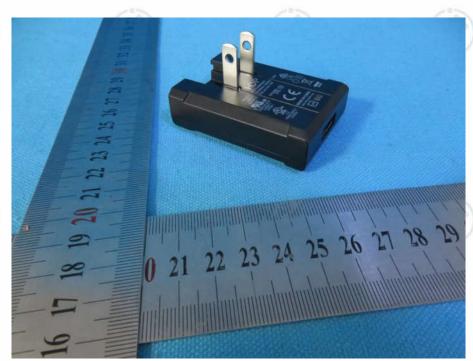
(21)

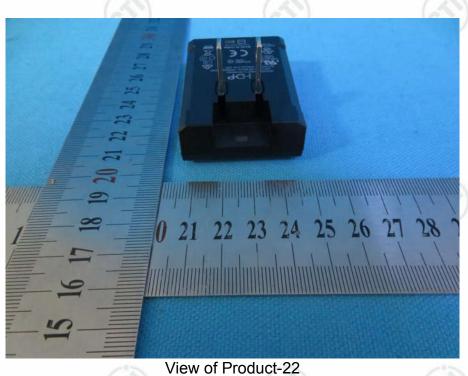


Report No.: EED32L00044601

View of Product-19

View of Product-20





Report No.: EED32L00044601 Page 50 of 51

View of Product-21

View of Product-23

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

