# FCC Part 15, Subpart C Test Report FCC ID: 2AAGF-KILBURNIIB Applicant: Zound Industries International AB Address: Centralplan 15 SE-111 20 Stockholm Sweden Manufacturer: Zound Industries International AB Address: Centralplan 15 SE-111 20 Stockholm Sweden Product(s): PORTABLE STEREO LOUDSPEAKER Brand(s): Marshall Test Model(s): KILBURN II BT Series Model(s): N/A Test Date: Apr. 25, 2022~Jun. 19, 2022 Issued Date: Jul. 08, 2022 Issued By: Hwa-Hsing (Dongguan) Testing Co., Ltd. Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Test Firm Registration No.: 915896 Designation No.: CN1255 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10:2013 The above equipment has been tested by **Hwa-Hsing (Dongguan) Testing Co., Ltd.**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Prepared by: Tank Tan Reviewed by: Scott He Scott He Harry Li This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or ormission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into the account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Tel: <u>0769-83078199</u> Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com # **Table of Contents** | Re | leas | e Control Record | 4 | |-----|------|-------------------------------------------------------------|-----| | 1 | Sun | nmary of Test Results | 5 | | | | Measurement Uncertainty | | | | | | | | 2 | | eral Information | | | | | General Description of EUT | | | | | Description of Test Modes | | | | | Test Mode Applicability and Tested Channel Detail | | | | 2.4 | Description of Support Units | 10 | | | | 2.4.1 Configuration of System under Test | | | 3 | Test | t Types and Results | .11 | | | 3.1 | Radiated Emission and Band-edge Measurement | .11 | | | | 3.1.1 Limits of Radiated Emission and Band-edge Measurement | | | | | 3.1.2 Test Instruments | | | | | 3.1.3 Test Procedures | | | | | 3.1.4 Deviation from Test Standard | | | | | 3.1.5 Test Setup | | | | | 3.1.6 EUT Operating Conditions | | | | | 3.1.7 Test Results | 17 | | | 3.2 | Conducted Emission Measurement | 29 | | | | 3.2.1 Limits of Conducted Emission Measurement | 29 | | | | 3.2.2 Test Instruments | 29 | | | | 3.2.3 Test Procedures | 30 | | | | 3.2.4 Test Setup | 30 | | | | 3.2.5 EUT Operating Condition | | | | | 3.2.6 Deviation from Test Standard | | | | | 3.2.7 Test Results | | | | 3.3 | Number of Hopping Frequency Used | | | | | 3.3.1 Limits of Hopping Frequency Used Measurement | | | | | 3.3.2 Test Setup | | | | | 3.3.3 Test Instruments | | | | | 3.3.4 Test Procedure | | | | | 3.3.5 Deviation fromTest Standard | | | | | 3.3.6 Test Results | | | | 3.4 | Dwell Time on Each Channel | | | | | 3.4.1 Limits of Dwell Time on Each Channel Measurement | | | | | 3.4.2 Test Setup | | | | | 3.4.3 Test Instruments | | | | | 3.4.4 Test Procedures | | | | | 3.4.5 Deviation from Test Standard | | | | 2 5 | Channel Bandwidth | | | | 3.3 | 3.5.1 Limits of Channel Bandwidth Measurement | | | | | 3.5.2 Test Setup | | | | | 3.5.3 Test Instruments | | | | | 3.5.4 Test Procedure | | | | | 3.5.5 Deviation from Test Standard | | | | | 3.5.6 EUT Operating Condition | | | | | 3.5.7 Test Results | | | | 3.6 | Occupied Bandwidth Measurement | | | اما | | Lising (Dangguan) Testing Co. Ltd. | 74 | | Αp | pen | dix – Information on the Testing Laboratories | 60 | |----|------|------------------------------------------------------------|----| | 5 | Tes | t Instruments | 59 | | 4 | Pict | tures of Test Arrangements | 58 | | | | 3.9.7 Test Results | 53 | | | | 3.9.6 EUT Operating Condition | | | | | 3.9.5 Deviation from Test Standard | | | | | 3.9.4 Test Procedure | | | | | 3.9.3 Test Instruments | | | | | 3.9.2 Tets Setup | | | | 5.5 | 3.9.1 Limits of Conducted Out of Band Emission Measurement | | | | 3.9 | Conducted Out of Band Emission Measurement | | | | | 3.8.7 Test Results | | | | | 3.8.6 EUT Operating Condition | | | | | 3.8.5 Deviation fromTest Standard | | | | | 3.8.4 Test Procedure | | | | | 3.8.2 Test Setup | | | | | 3.8.1 Limits of Maximum Output Power Measurement | | | | ა.8 | Maximum Output Power | | | | 2.0 | 3.7.6 Test Results | | | | | 3.7.5 Deviation from Test Standard | | | | | 3.7.4 Test Procedure | | | | | 3.7.3 Test Instruments | | | | | 3.7.2 Test Setup | | | | | 3.7.1 Limits of Hopping Channel Separation Measurement | | | | 3.7 | Hopping Channel Separation | | | | | 3.6.6 Test Results | | | | | 3.6.5 EUT Operating Conditions | 42 | | | | 3.6.4 Deviation from Test Standard | 42 | | | | 3.6.3 Test Procedure | 42 | | | | 3.6.2 Test Instruments | | | | | 3.6.1 Test Setup | 42 | Tel: <u>0769-83078199</u> Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com # **Release Control Record** | Issue No. | Description | Date Issued | |---------------------|------------------|---------------| | 220425EL26-RF-US-01 | Original Release | Jul. 08, 2022 | Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com Tel: <u>0769-83078199</u> # **Summary of Test Results** | | 47 CFR FCC Part 15, Subpart C (Section 15.247) KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013; | | | | | | |---------------------------------|------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|--|--|--| | FCCClause | Test Item | Result | Remarks | | | | | 15.207 | AC Power Conducted Emission | Pass | Meet the requirement of limit. | | | | | 15.247(a)(1) (iii) | Number of Hopping Frequency Used | Pass | Meet the requirement of limit. | | | | | 15.247(a)(1) (iii) | Dwell Time on Each Channel | Pass | Meet the requirement of limit. | | | | | 15.247(a)(1) | Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System | Pass | Meet the requirement of limit. | | | | | 15.247(b) | Maximum Peak Output Power | Pass | Meet the requirement of limit. | | | | | | Occupied Bandwidth Measurement | Pass | Reference only | | | | | 15.205 & 209 Radiated Emissions | | Pass | Meet the requirement of limit. | | | | | 15.247(d) | 15.247(d) Band Edge Measurement | | Meet the requirement of limit. | | | | | 15.247(d) | 15.247(d) Antenna Port Emission | | Meet the requirement of limit. | | | | | 15.203 | Antenna Requirement | Pass | No antenna connector is used. | | | | Note1: If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater. Note2: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (sDoC). The test report has been issued separately. #### 1.1 **Measurement Uncertainty** Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUTas specified in CISPR 16-4-2: The listed uncertainties are the worst-case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results. | Measurement | Measurement Frequency | | |------------------------------------|-----------------------|---------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.66 dB | | Redicted Emissions up to 1 CHz | 9KHz ~ 30MHz | 2.16 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1000MHz | 3.47 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 4.84 dB | | Radiated Emissions above 1 GHZ | 18GHz ~ 40GHz | 4.67 dB | Note:This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### 1.2 **Modification Record** There were no modifications required for compliance. Lab: Hwa-Hsing (Dongguan) Testing Co., Ltd. Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com ## 2 General Information ## 2.1 General Description of EUT | Product(s) | PORTABLE STEREO LOUDSPEAKER | |---------------------|--------------------------------------------------------------| | Test Model(s) | KILBURN II BT | | Sample No. | HS220511-03-08/05 | | Series Model(s) | N/A | | Status of EUT | Engineering Prototype | | Power Supply Rating | AC input: 100-240V~, 50/60Hz, 36W<br>Or DC 7.2V from battery | | Modulation Type | GFSK, π/4 DQPSK, 8DPSK for FHSS | | Transfer Rate | 1Mbps, 2Mbps, 3Mbps | | Operating Frequency | 2402 ~ 2480MHz | | Number of Channel | 79 | | Output Power (Peak) | 12.102dBm | | Antenna Type | FPCB Antenna | | Antenna Gain | 2.2dBi | | Antenna Connector | I-PEX | | Accessory Device | N/A | | Cable Supplied | AC Line: Unshielded,Detachable, 150cm | ## Note: - 1. Please refer to the EUT photo document (Reference No.:220425EL26-01&02) for detailed product photo. - 2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual. # 2.2 Description of Test Modes 79 channels are provided to this EUT: | Channel | Freq. (MHz) | |---------|-------------|---------|-------------|---------|-------------|---------|-------------| | 0 | 2402 | 20 | 2422 | 40 | 2442 | 60 | 2462 | | 1 | 2403 | 21 | 2423 | 41 | 2443 | 61 | 2463 | | 2 | 2404 | 22 | 2424 | 42 | 2444 | 62 | 2464 | | 3 | 2405 | 23 | 2425 | 43 | 2445 | 63 | 2465 | | 4 | 2406 | 24 | 2426 | 44 | 2446 | 64 | 2466 | | 5 | 2407 | 25 | 2427 | 45 | 2447 | 65 | 2467 | | 6 | 2408 | 26 | 2428 | 46 | 2448 | 66 | 2468 | | 7 | 2409 | 27 | 2429 | 47 | 2449 | 67 | 2469 | | 8 | 2410 | 28 | 2430 | 48 | 2450 | 68 | 2470 | | 9 | 2411 | 29 | 2431 | 49 | 2451 | 69 | 2471 | | 10 | 2412 | 30 | 2432 | 50 | 2452 | 70 | 2472 | | 11 | 2413 | 31 | 2433 | 51 | 2453 | 71 | 2473 | | 12 | 2414 | 32 | 2434 | 52 | 2454 | 72 | 2474 | | 13 | 2415 | 33 | 2435 | 53 | 2455 | 73 | 2475 | | 14 | 2416 | 34 | 2436 | 54 | 2456 | 74 | 2476 | | 15 | 2417 | 35 | 2437 | 55 | 2457 | 75 | 2477 | | 16 | 2418 | 36 | 2438 | 56 | 2458 | 76 | 2478 | | 17 | 2419 | 37 | 2439 | 57 | 2459 | 77 | 2479 | | 18 | 2420 | 38 | 2440 | 58 | 2460 | 78 | 2480 | | 19 | 2421 | 39 | 2441 | 59 | 2461 | - | _ | Tel: <u>0769-83078199</u> # 2.3 Test Mode Applicability and Tested Channel Detail | EUT Configure<br>Mode | anniicania tast itams | | Y-Axis | Z-Axis | Voltage Supply | |-----------------------|---------------------------------------------------------------------------------|--------------|-----------|-----------|----------------| | Conducted | AC Power Conducted Emission | N/A | N/A | N/A | | | Radiated | Radiated Emissions | $\checkmark$ | $\sqrt{}$ | $\sqrt{}$ | | | | Number of Hopping Frequency Used | N/A | N/A | N/A | | | | Dwell Time on Each Channel | N/A | N/A | N/A | | | | Band Edge Measurement | N/A | N/A | N/A | | | Antenna Port | Antenna Port Emission | N/A | N/A | N/A | AC120V/60Hz | | Conducted Measurement | Conducted power | N/A | N/A | N/A | | | Modeurement | Hopping Channel Separation | N/A | N/A | N/A | | | | Spectrum Bandwidth of a Frequency<br>Hopping Sequence Spread Spectrum<br>System | N/A | N/A | N/A | | <sup>1. \*:</sup> The EUT had been pre-tested on the positioned of each 3 Axis. The worst case was found when positioned on **X-plane**. ## **Evaluation of difference data rate:** | Applicable test items | | Modulation Typ | The Worst-case modes recording in | | |------------------------------------|-----------|----------------|-----------------------------------|-------------| | Applicable test items | GFSK | π/4DQPSK | 8DPSK | report | | Radiated Emissions | $\sqrt{}$ | √ | $\sqrt{}$ | GFSK& 8DPSK | | Antenna Port Conducted Measurement | √ | √ | V | GFSK& 8DPSK | ## **Test Condition:** | Applicable test items | <b>Environmental Conditions</b> | Test Date | Tested by | |------------------------------------|---------------------------------|---------------|-------------| | AC Power Conducted Emission | 24deg. C, 60%RH | Jun. 11, 2022 | Jim Xu | | Radiated Emissions | 25deg. C, 49%RH | Jun. 17, 2022 | King Ye | | Antenna Port Conducted Measurement | 25deg. C, 63%RH | Jun. 18, 2022 | Dragon Long | Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. <sup>2. &</sup>quot;N/A" means no effect. ## Radiated Emission Test (Above 1 GHz): | EUT Configure<br>Mode | Available Channel | Tested Channel | Modulation<br>Technology | Modulation Type | Packet Type | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------| | - | 0 to 78 | 0, 39, 78 | FHSS | GFSK | DH5 | | - | 0 to 78 | 0, 39, 78 | FHSS | 8DPSK | 3DH5 | # Radiated Emission Test (Below 1 GHz): | EUT Configure<br>Mode | Available Channel | Tested Channel | Modulation<br>Technology | Modulation Type | Packet Type | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------| | - | 0 to 78 | 39 | FHSS | GFSK | DH5 | | - | 0 to 78 | 0, 39, 78 | FHSS | 8DPSK | 3DH5 | ## **Power Line Conducted Emission Test:** | EUT Configure<br>Mode | Available Channel | Tested Channel | Modulation<br>Technology | Modulation Type | Packet Type | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------| | - | 0 to 78 | 39 | FHSS | GFSK | DH5 | ## **Antenna Port Conducted Measurement:** This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. | EUT Configure<br>Mode | Available Channel | Tested Channel | Modulation<br>Technology | Modulation Type | Packet Type | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------| | - | 0 to 78 | 0, 39, 78 | FHSS | GFSK | DH5 | | - | 0 to 78 | 0, 39, 78 | FHSS | 8DPSK | 3DH5 | # 2.4 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | No. | Product | Brand | Model No. | Serial No. | FCC ID | |-----|----------|-------|---------------|------------|--------| | 1. | Notebook | DELL | Latitude 5300 | N/A | N/A | | No. | Signal Cable Description of The Above Support Units | | | |-----|-----------------------------------------------------|--|--| | 1. | USB serial cable Un-shielded1.2m | | | | 2. | V | | | # 2.4.1 Configuration of System under Test Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com Tel: 0769-83078199 ## 3 TestTypesand Results ## 3.1 Radiated Emission and Band-edge Measurement 3.1.1 Limits of Radiated Emission and Band-edge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power: | Frequencies<br>(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |----------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | <sup>\*</sup> DTS emissions in non-restricted frequency bands Subclause 11.11 of ANSI C63.10 is applicable. #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$ . - 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation. Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park,</u> <u>HuangJiang Town, Dongguan, China</u> Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com Tel: 0769-83078199 <sup>\*</sup> DTS emissions in restricted frequency bands Subclause 11.12 of ANSI C63.10 is applicable # 3.1.2 Test Instruments ## Radiated emission below 30MHz: | Equipment | Manufacturer | Model No. | Serial No. | Next Cal. | |----------------------------------------|---------------|-----------|----------------|-------------| | EMI Test Receiver | Rohde&Schwarz | ESR7 | 100962 | 2023-01-13 | | 3m Semi-anechoic<br>Chamber | MAORUI | 9m*6m*6m | NSEMC003 | 2023-04-15* | | Test software | FARAD | FARAD | EZ_EMCV1.1.4.2 | N/A | | Loop Antenna | EMCI | HLA 6121 | 56735 | 2023-04-15* | | Preamplifier | EMCI | EMC001340 | 980201 | 2022-09-08 | | Antenna Tower | MF | MFA-440H | NA | NA | | Turn Table | MF | MFT-201SS | NA | NA | | Antenna Tower&Turn<br>Table Controller | MF | MF-7802 | NA | NA | Frequency Range below 1GHz: | Equipment | Manufacturer | Model No. | Serial No. | Next Cal. | |-----------------------------|---------------|-----------|----------------|-------------| | 3m Semi-anechoic<br>Chamber | MAORUI | 9m*6m*6m | NSEMC003 | 2023-04-15* | | EMI Test Receiver | Rohde&Schwarz | ESR7 | 100962 | 2023-01-13 | | Broadband antenna | Schwarzbeck | VULB 9168 | 00937 | 2023-09-12* | | Signal Amplifier | Com-power | PAM-103 | 18020051 | 2022-09-08 | | Attenuator | Rohde&Schwarz | TS2GA-6dB | 18101101 | N/A | | Test software | FARAD | FARAD | EZ_EMCV1.1.4.2 | N/A | Frequency Range 1-18GHz: | Equipment | Manufacturer | Model No. | Serial No. | Next Cal. | |-------------------------------------|--------------|------------|------------|-------------| | 3m Semi-anechoic<br>Chamber | MAORUI | 9m*6m*6m | NSEMC003 | 2023-04-15* | | Horn Antenna | Schwarzbeck | BBHA 9120D | 01959 | 2022-09-12* | | Broadband Coaxial<br>Preamplifier | Com-power | PAM-118A | 1804003 | 2022-09-07 | | Spectrum | Keysight | N9020A | MY51240612 | 2022-09-08 | | Antenna Tower | MF | MFA-440H | NA | NA | | Turn Table | MF | MFT-201SS | NA | NA | | Antenna Tower&Turn Table Controller | MF | MF-7802 | NA | NA | Frequency Range 18-40GHz: | . requeriey rearrige to recent | | | | | | |-------------------------------------|---------------|------------|-------------|-------------|--| | Equipment | Manufacturer | Model No. | Serial No. | Next Cal. | | | 3m Semi-anechoic<br>Chamber | MAORUI | 9m*6m*6m | NSEMC003 | 2023-04-15* | | | Spectrum Analyzer | Rohde&Schwarz | FSV-40N | 101783 | 2023-01-13 | | | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170242 | 2023-04-10* | | | Pre-Amplifier | EMCI | EMC 184045 | 980102 | 2023-01-12 | | | Antenna Tower | MF | MFA-440H | NA | NA | | | Turn Table | MF | MFT-201SS | NA | NA | | | Antenna Tower&Turn Table Controller | MF | MF-7802 | NA | NA | | #### Note: 1. The calibration interval of the above test instruments is 12 months or 24 months (\*). 2. The test was performed in 966 Lab: Hwa-Hsing (Dongguan) Testing Co., Ltd. Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com ## 3.1.3 Test Procedures ## a. Peak emission levels are measured by setting the instrument as follow: 1) RBW&VBWsetting as a function of frequency: | Frequency | RBW | VBW | |---------------|--------|--------| | 9kHz~150kHz | 200Hz | 600Hz | | 0.15MHz~30MHz | 9kHz | 30kHz | | 30MHz~1000MHz | 120kHz | 300kHz | | >1000MHz | 1MHz | 3MHz | - 2) Detector = peak. - 3) Sweep time = auto. - 4) Trace mode = max hold. - 5) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be lengthened for low-duty-cycle applications.) Note: If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement ## b. Average emission levels are measured by setting the instrument as follow: ## Trace averaging with continuous EUT transmission at full power If the EUT can be configured or modified to transmit continuously ( $D \ge 98\%$ ). then the average emission levels shall be measured using the following method (with EUT transmitting continuously): - 1) RBW=1 MHz (unless otherwise specified). - 2) VBW≥ 3 \*RBW. - 3) Detector =RMS - 4) Sweep time = auto. - 5) Perform a trace average of at least 100 traces. ## Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction If continuous transmission of the EUT (D≥98%) cannot be achieved and the duty cycle is constant (duty cycle variations are less than ±2%). then the following procedure shall be used - 1) The EUT shall be configured to operate at the maximum achievable duty cycle. - 2) Measure the duty cycle D of the transmitter output signal as described in 11.6. - 3) RBW=1 MHz (unless otherwise specified). - 4) VBW≥ 3 \*RBW. - 5) Detector = RMS - 6) Sweep time = auto. - 7) Perform a trace average of at least 100 traces. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: \*If power averaging (rms) mode was used in step 5). then the applicable correction factor is [10 10g (1/ D)], where D is the duty cycle. \*\*If linear voltage averaging mode was used in step f). then the applicable correction factor is [20 10g (1/D)], where D is the duty cycle. \*\*\*If a specific emission is demonstrated to be continuous (D > 98%) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Tel: <u>0769-83078199</u> Web.: <u>www.hwa-hsing.com</u> E-Mail: <u>customerservice.dg@hwa-hsing.com</u> • Reduced VBW Averaging across ON and OFF times of the EUT transmissions with max hold If continuous transmission of the EUT (D > 98%) cannot be achieved and the duty cycle is not constant (duty - 1) RBW = 1 MHz. - 2) VBW≥1/T. - 3) Detector = peak - 4) Sweep time = auto. - 5) Trace mode = max hold. - 6) Allow max hold to run for at least [50 x (1/ D)] traces cycle variations exceed ±2%), then the following procedure shall be used: - c. The EUT was placed on the top of a rotating table 0.8 meters (below 1GHz) / 1.5 meters (1-18GHz) / 1.5 meters (18-40GHz) above the reference ground. The table was rotated 360 degrees to determine the position of the highest radiation. - d. The EUT was set 3 meters away from the interference-receiving antenna (Below 1GHz) & (Above 1-18GHz), which was mounted on the top of a variable-height antenna tower. The EUT was set 1meters away from the interference-receiving antenna (18-40GHz). - e. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - f. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - g. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. Test procedures for measuring FHSS device: The use of a duty cycle correction factor (DCCF) is permitted for calculating average radiated field strength emission levels for an FHSS device in 15.247. This DCCF can be applied when the unwanted emission limit is subject to an average field strength limit (e.g., within a Government Restricted band) and the conditions specified in Section 15.35(c) can be satisfied. The average radiated field strength is calculated by subtracting the DCCF from the maximum radiated field strength level as determined through measurement. The maximum radiated field strength level represents the worst-case (maximum amplitude) RMS measurement of the emission(s) during continuous transmission (i.e., not including any time intervals during which the transmitter is off or is transmitting at a reduced power level). It is also acceptable to apply the DCCF to a measurement performed with a peak detector instead of the specified RMS power averaging detector. Note that Section 15.35(c) specifies that the DCCF shall represent the worst-case (greatest duty cycle) over any 100 msec transmission period. Subclause 7.5 of ANSI C63.10 provides additional measurement guidance applicable to determination of the DCCF. - 2. All modes of operation were investigated and the worst-case emissions are reported. # 3.1.4 Deviation from Test Standard No deviation. Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Tel: 0769-83078199 Web.: www.hwa-hsing.com E Mail: outstands and a land have being E-Mail: customerservice.dg@hwa-hsing.com ## 3.1.5 Test Setup ## Radiated emission below 30MHz: ## Frequency Range below 1GHz: ## Frequency Range above 1GHz: # Frequency Range 18-40GHz: <sup>\*</sup>For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 3.1.6 EUT Operating Conditions Set the EUT under transmission condition continuously at specific channel frequency. Lab: Hwa-Hsing (Dongguan) Testing Co., Ltd. Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com #### 3.1.7 Test Results #### 9 kHz ~ 30 MHz Data: The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. ## 30 MHz ~ 1GHz Worst-Case Data: | Frequency Range | 30MHz ~ 1GHz | Detector Function | Peak (PK)<br>Quasi-peak (QP) | |-----------------|--------------|-------------------|------------------------------| | Test Channel | Channel 39 | | | ## Remarks: - 1.Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) - 2.Margin value = Emission level Limit value Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com | Frequency Range | 30MHz ~ 1GHz | Detector Function | Peak (PK)<br>Quasi-peak (QP) | |-----------------|--------------|-------------------|------------------------------| | Test Channel | Channel 39 | | | ## Remarks: - 1.Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) - 2. Margin value = Emission level Limit value #### **Above 1GHz Data:** #### **GFSK** | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 0 | | | #### Remarks: - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2402MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 0 | | | - 1.Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2.#2402MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 39 | | | | | Antenna Polarity & Test Distance: Horizontal at 3 m | | | | | | | | | |-----|-----------------------------------------------------|-------------------|----------------|-------------------------------|-------------------|-----------------|----------|------------------------|-------------------------| | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detecter | Antenna<br>Height (cm) | Table Angle<br>(Degree) | | 1 # | 2441.000 | 108.14 | 0.77 | 108.91 | | | peak | 207 | 118 | | 2 # | 2441.000 | 64.00 | 0.77 | 64.77 | | | AVG | 207 | 118 | | 3 | 4882.000 | 40.59 | 7.33 | 47.92 | 74.00 | -26.08 | peak | 119 | 227 | | 4 | 4882.000 | 28.55 | 7.33 | 35.88 | 54.00 | -18.12 | AVG | 119 | 227 | | 5 | 7323.000 | 38.46 | 12.25 | 50.71 | 74.00 | -23.29 | peak | 100 | 97 | | 6 | 7323.000 | 27.41 | 12.25 | 39.66 | 54.00 | -14.34 | AVG | 100 | 97 | | | | | Antenna F | Polarity & Tes | st Distance: \ | Vertical at 3 i | m | | | | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detecter | Antenna<br>Height (cm) | Table Angle<br>(Degree) | | 1 # | 2441.000 | 105.98 | 0.77 | 106.75 | | | peak | 118 | 97 | | 2 # | 2441.000 | 63.22 | 0.77 | 63.99 | | | AVG | 118 | 97 | | 3 | 4882.000 | 39.65 | 7.33 | 46.98 | 74.00 | -27.02 | peak | 211 | 287 | | 4 | 4882.000 | 28.52 | 7.33 | 35.85 | 54.00 | -18.15 | AVG | 211 | 287 | | 5 | 7323.000 | 37.91 | 12.25 | 50.16 | 74.00 | -23.84 | peak | 198 | 117 | | 6 | 7323.000 | 27.19 | 12.25 | 39.44 | 54.00 | -14.56 | AVG | 198 | 117 | ## Remarks: - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2441MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 78 | | | #### Remarks: - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2480MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 78 | | | - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2480MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. ## 8DPSK | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 0 | | | - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2402MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 0 | | | - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2402MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 39 | | | | | Antenna Polarity & Test Distance: Horizontal at 3 m | | | | | | | | | |-----|------------------------------------------------------------------------------------------|-------------------|----------------|-------------------------------|-------------------|---------------------------|----------------------------|---------------------------|----------------------------| | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detecter | Antenna<br>Height<br>(cm) | Table<br>Angle<br>(Degree) | | 1# | 2441.000 | 105.10 | 0.77 | 105.87 | | | peak | 223 | 74 | | 2# | 2441.000 | 62.35 | 0.77 | 63.12 | | | AVG | 223 | 74 | | 3 | 4882.000 | 39.60 | 7.33 | 46.93 | 74.00 | -27.07 | peak | 197 | 91 | | 4 | 4882.000 | 28.44 | 7.33 | 35.77 | 54.00 | -18.23 | AVG | 197 | 91 | | 5 | 7323.000 | 36.97 | 12.25 | 49.22 | 74.00 | -24.78 | peak | 311 | 108 | | 6 | 7323.000 | 25.94 | 12.25 | 38.19 | 54.00 | -15.81 | AVG | 311 | 108 | | | | | Antenna Po | larity & Test D | istance: Ver | tical at 3 m | ı | | | | No. | No. Frequency (MHz) Reading (dBuV) Factor (dB) Emission Level (dBuV/m) (dBuV/m) Detecter | | | | | Antenna<br>Height<br>(cm) | Table<br>Angle<br>(Degree) | | | | 1# | 2441.000 | 107.04 | 0.77 | 107.81 | | | peak | 193 | 273 | | 2# | 2441.000 | 63.45 | 0.77 | 64.22 | | | AVG | 193 | 273 | | 3 | 4882.000 | 40.60 | 7.33 | 47.93 | 74.00 | -26.07 | peak | 100 | 76 | | 4 | 4882.000 | 29.55 | 7.33 | 36.88 | 54.00 | -17.12 | AVG | 100 | 76 | | 5 | 7323.000 | 37.86 | 12.25 | 50.11 | 74.00 | -23.89 | peak | 269 | 118 | | 6 | 7323.000 | 25.68 | 12.25 | 37.93 | 54.00 | -16.07 | AVG | 269 | 118 | ## Remarks: - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2441MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 78 | | | #### Remarks: - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2480MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. | Frequency Range | 1GHz ~ 25GHz | Detector Function | Peak (PK)<br>Average (AVG) | |-----------------|--------------|-------------------|----------------------------| | Test Channel | Channel 78 | | | - Emission Level = Read Level + Factor (Antenna Factor + Cable Loss Preamp Factor) Margin value = Emission level Limit value - 2. #2480MHz: Fundamental frequency. - 3. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report. ## 3.2 Conducted Emission Measurement ## 3.2.1 Limits of Conducted Emission Measurement | Fraguency (MHz) | Conducted Limit (dBuV) | | | | | |-----------------|------------------------|---------|--|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | Note: 1. The lower limit shall apply at the transition frequencies. 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ## 3.2.2 Test Instruments | Description | Manufacturer | Model No. | ISerial No | Due Date of Calibration | |--------------------------|---------------|-----------------|--------------|-------------------------| | EMI Test Receiver | Rohde&Schwarz | ESR 7 | 101961 | 2023-01-13 | | Artificial Mains Network | Rohde&Schwarz | ENV216 | 3560.6550.15 | 2023-01-12 | | Test software | FARAD | EZ_EMC V1.1.4.2 | N/A | N/A | Note: 1. The calibration interval of the above test instruments is 12 months. 2. The test was performed in Shielded Room 1. ## 3.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB)was not recorded. Note: All modes of operation were investigated and the worst-case emissions are reported. ## 3.2.4 Test Setup For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 3.2.5 EUT Operating Condition Set the EUT under transmission condition continuously at specific channel frequency. ## 3.2.6 Deviation from Test Standard No deviation. Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Tel: <u>0769-83078199</u> Web.: <u>www.hwa-hsing.com</u> E-Mail: customerservice.dg@hwa-hsing.com ## 3.2.7 Test Results | Frequency Range | 1150kHz ~ 30MHz | | Quasi-Peak (QP) / | | |-------------------|-----------------|---------------------|--------------------|--| | Trequency realige | | Resolution andwidth | Average (AV), 9kHz | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Frequency Range | 1.150kHz ~ 30MHz = 1 | Detector Function & | Quasi-Peak (QP) / | |-----------------|----------------------|---------------------|--------------------| | | | Resolution andwidth | Average (AV), 9kHz | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. ## 3.3 Number of Hopping Frequency Used ## 3.3.1 Limits of Hopping Frequency Used Measurement At least 15 channels frequencies, and should be equally spaced. ## 3.3.2 Test Setup Spectrum analyzer test configuration #### 3.3.3 Test Instruments Refer to section 5 to get information of above instrument. ## 3.3.4 Test Procedure - a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range. - c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded. - d. Set the SA on View mode and then plot the result on SA screen. - e. Repeat above procedures until all frequencies measured were complete. #### 3.3.5 Deviation fromTest Standard No deviation. ## 3.3.6 Test Results There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced. #### 3.4 Dwell Time on Each Channel #### 3.4.1 Limits of Dwell Time on Each Channel Measurement The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. ## 3.4.2 Test Setup Spectrum analyzer test configuration ## 3.4.3 Test Instruments Refer to section 5 to get information of above instrument. #### 3.4.4 Test Procedures - a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range. - c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value. - d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration. - e. Repeat above procedures until all different time-slot modes have been completed. ## 3.4.5 Deviation from Test Standard No deviation. ## 3.4.6 Test Results ## **GFSK** | Mode Number of Hopping Channel | | Nι | Number of transmision in a period (channel number*0.4 sec) | | | Length of | Result | Limit | | |--------------------------------|-----------------|------------------|------------------------------------------------------------|----------------------|-----------------------------|-----------|---------|---------|------| | | Period<br>(sec) | Sweep time (sec) | times<br>in a sweep | times<br>in a period | transmission<br>time (msec) | (msec) | (msec) | Verdict | | | DH1 | 79 | 31.6 | 3.16 | 33 | 330 | 0.385 | 127.083 | 400 | Pass | | DH3 | 79 | 31.6 | 3.16 | 11 | 110 | 1.640 | 180.400 | 400 | Pass | | DH5 | 79 | 31.6 | 3.16 | 11 | 110 | 2.889 | 317.790 | 400 | Pass | **Note:** Test plots of the transmitting time slot are shown as below. # 8DPSK | Mode Hoppin | Number of | Number of transmision in a period (channel number*0.4 sec) | | | Length of | Dogult | Limit | | | |-------------|--------------------|------------------------------------------------------------|------------------|---------------------|----------------------|-----------------------------|------------------|--------|---------| | | Hopping<br>Channel | Period<br>(sec) | Sweep time (sec) | times<br>in a sweep | times<br>in a period | transmission<br>time (msec) | Result<br>(msec) | (msec) | Verdict | | 2DH1 | 79 | 31.6 | 3.16 | 33 | 330 | 0.388 | 127.908 | 400 | Pass | | 2DH3 | 79 | 31.6 | 3.16 | 11 | 110 | 1.637 | 180.070 | 400 | Pass | | 2DH5 | 79 | 31.6 | 3.16 | 7 | 70 | 2.888 | 202.160 | 400 | Pass | **Note:** Test plots of the transmitting time slot are shown as below. Tel: <u>0769-83078199</u> #### 3.5 Channel Bandwidth ## 3.5.1 Limits of Channel Bandwidth Measurement For frequency hopping system operating in the 2400-2483.5 MHz, if the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation. # 3.5.2 Test Setup Spectrum analyzer test configuration ## 3.5.3 Test Instruments Refer to section 5 to get information of above instrument. #### 3.5.4 Test Procedure - Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the instrument equal to the highest peak value. - C. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. - Repeat above procedures until all frequencies measured were complete. #### 3.5.5 Deviation from Test Standard No deviation. #### 3.5.6 EUT Operating Condition The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually. Lab: Hwa-Hsing (Dongguan) Testing Co., Ltd. Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com # 3.5.7 Test Results | Channel | Frequency<br>(MHz) | 20dB Bandwidth (MHz) | | | | |---------|--------------------|----------------------|-------|--|--| | | | GFSK | 8DPSK | | | | 0 | 2402 | 0.960 | 1.332 | | | | 39 | 2441 | 0.960 | 1.299 | | | | 78 | 2480 | 0.960 | 1.347 | | | ## 3.6 Occupied Bandwidth Measurement ## 3.6.1 Test Setup Spectrum analyzer test configuration #### 3.6.2 Test Instruments Refer to section 5 to get information of above instrument #### 3.6.3 Test Procedure The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to PEAK. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean power of a given emission. #### 3.6.4 Deviation from Test Standard No deviation. # 3.6.5 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. #### 3.6.6 Test Results | Channel | Frequency | Occupied Bandwidth (MHz) | | | | |----------|-----------|--------------------------|-------|--|--| | Charinei | (MHz) | GFSK | 8DPSK | | | | 0 | 2402 | 0.869 | 1.190 | | | | 39 | 2441 | 0.883 | 1.207 | | | | 78 | 2480 | 0.891 | 1.200 | | | Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Web.: <a href="www.hwa-hsing.com">www.hwa-hsing.com</a> E-Mail: <a href="customerservice.dg@hwa-hsing.com">customerservice.dg@hwa-hsing.com</a> Tel: 0769-83078199 # 3.7 Hopping Channel Separation ## 3.7.1 Limits of Hopping Channel Separation Measurement At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater). ## 3.7.2 Test Setup #### 3.7.3 Test Instruments Refer to section 5 to get information of above instrument. #### 3.7.4 Test Procedure - a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. - c. By using the MaxHold function record the separation of two adjacent channels. - d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen. - e. Repeat above procedures until all frequencies measured were complete. # 3.7.5 Deviation from Test Standard No deviation. # 3.7.6 Test Results | Channel<br>No. | Frequency<br>(MHz) | | nnel Separation<br>Hz) | Minimum Limit<br>(MHz) | | Pass / Fail | |----------------|--------------------|-------|------------------------|------------------------|-------|-------------| | | (IVITZ) | GFSK | 8DPSK | GFSK | 8DPSK | | | 0 | 2402 | 1.224 | 0.999 | 0.640 | 0.888 | Pass | | 39 | 2441 | 1.002 | 1.005 | 0.640 | 0.866 | Pass | | 78 | 2480 | 1.155 | 1.014 | 0.640 | 0.898 | Pass | Note: The minimum limit is two-third 20 dB bandwidth. Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China</u> Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com ## 3.8 Maximum Output Power ## 3.8.1 Limits of Maximum Output Power Measurement The Maximum Output Power Measurement is 125mW. ## 3.8.2 Test Setup Spectrum analyzer test configuration #### 3.8.3 Test Instruments Refer to section 5 to get information of above instrument. #### 3.8.4 Test Procedure Measurement using a spectrum analyzer (SA), Selection of test method: The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement: - a) Set the RBW > DTS bandwidth. - b) Set VBW> [3 x RBW] - c) Set span $> [3 \times RBW]$ - d) Sweep time = auto couple. - e) Detector = peak - f) Trace mode = max hold. - g) Allow trace to fully stabilize. - h) Use peak marker function to determine the peak amplitude level. - a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - b) Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value. - c) SA Setting: - 1)\* Set span to at least 1.5 times the OBW - 2)\* Set sweep trigger to "free run." - 3)\* Set RBW= 1% to 5% of the OBW. not to exceed 1MHz. - 4)\* Set VBW ≥ 3 x RBW - 5)\* Number of points in sweep $\geq$ 2 x span /RBW. (This gives bin-to-bin spacing $\leq$ RBW / 2. so that narrowband signals are not lost between frequency bins). - 6)\* Sweep time $\leq$ (number of points in sweep) x T. where T is defined in 11.6. If this gives a sweep time less than the auto sweep time of the instrument. then method AVGSA-3 shall not be used (use AVGSA-3A). The purpose of this step is so that the averaging time in each bin is less than or equal to the minimum time of a transmission. - 7)\* Detector =RMS (power averaging). - 8)\* Trace mode =Max hold. - 9)\* Allow max hold to run for at least 60 s or longer as needed to allow the trace to stabilize. - 10)\* Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW. - d. Measure the captured power within the band and recording the plot. - e. Repeat above procedures until all frequencies required were complete. #### 3.8.5 Deviation fromTest Standard No deviation. #### 3.8.6 EUT Operating Condition The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually. # 3.8.7 Test Results ## Peak power | Channel Freq. | • | Output Power<br>(dBm) | | Output Power<br>(mW) | | Power Limit | Pass / Fail | |---------------|------|-----------------------|--------|----------------------|--------|-------------|-------------| | No. (MHz) | | GFSK | 8DPSK | GFSK | 8DPSK | (mW) | | | 0 | 2402 | 9.500 | 12.102 | 8.913 | 16.226 | 125 | Pass | | 39 | 2441 | 8.902 | 11.584 | 7.766 | 14.401 | 125 | Pass | | 78 | 2480 | 9.238 | 11.968 | 8.391 | 15.733 | 125 | Pass | Average power | Tronuge per | | | | | | | | |---------------|-------|--------------------|--------|----------------------|-------|-------------|-------------| | Channel Freq. | • | Output Power (dBm) | | Output Power<br>(mW) | | Power Limit | Pass / Fail | | No. | (MHz) | GFSK | 8DPSK | GFSK | 8DPSK | (mW) | | | 0 | 2402 | 2.867 | -2.863 | 1.935 | 0.517 | 125 | Pass | | 39 | 2441 | 1.388 | -2.939 | 1.377 | 0.508 | 125 | Pass | | 78 | 2480 | 1.372 | -4.113 | 1.372 | 0.388 | 125 | Pass | Tel: <u>0769-83078199</u> #### 3.9 Conducted Out of Band Emission Measurement - 3.9.1 Limits of Conducted Out of Band Emission Measurement - a. If the maximum peak conducted output power procedure was used to determine compliance as described in 11.9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc). - b. If maximum conducted (average) output power was used to determine compliance as described in 11.9.2. then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc) ## 3.9.2 Tets Setup - DTS emissions in non-restricted frequency bands Subclause 11.11 of ANSI C63.10 is applicable. - DTS emissions in restricted frequency bands Subclause 11.12 of ANSI C63.10 is applicable Spectrum analyzer test configuration ## 3.9.3 Test Instruments Refer to section 5 to get information of above instrument. #### 3.9.4 Test Procedure - a. Establish a reference level by using the following procedure: - 1) Set instrument center frequency to DTS channel center frequency. - 2) Set the span to 21.5 times the DTS bandwidth) - 3) Set the RBW= 100 kHz) - 4) Set the VBW ≥3 x RBW - 5) Detector = peak - 6) Sweep time = auto coupling - 7) Trace mode =max hold - 8) Allow trace to fully stabilize - 9) Use the peak marker function to determine the maximum PSD level. Note that the channel found to contain the maximum PSD level can be used to establish the reference level. - b. Establish an emission level by using the following procedure: - 1) Set the center frequency and span to encompass frequency range to be measured. - 2) Set the RBW = 100 kHz - 3) Set the VBW ≥ 300 kHz. - 4) Detector = peak. - 5) Sweep time = auto couple. - 6) Trace mode = max hold. - 7) Allow trace to fully stabilize. - 8) Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. #### 3.9.5 Deviation from Test Standard No deviation. ## 3.9.6 EUT Operating Condition The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually. ## 3.9.7 Test Results The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park,</u> <u>HuangJiang Town, Dongguan, China</u> Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com Tel: 0769-83078199 Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com # 4 Pictures of Test Arrangements Please refer to the attached file (Test Setup Photo). Lab: Hwa-Hsing (Dongguan) Testing Co., Ltd. Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Web.: www.hwa-hsing.com E-Mail: customerservice.dg@hwa-hsing.com Tel: <u>0769-83078199</u> # 5 Test Instruments | Description | Manufacturer | Model No. | Serial No. | Due Date of Calibration | |------------------------|---------------|-----------|------------|-------------------------| | Spectrum | Keysight | N9020A | MY51240612 | 2022-09-08 | | Spectrum Analyzer | Rohde&Schwarz | FSV-40N | 101783 | 2023-01-13 | | Power Meter 10Hz~18GHz | Tonscend | JS0806-2 | 188060126 | 2022-09-08 | | Signal generator | Keysight | E4421B | GB40051020 | 2022-09-12 | | Signal generator | Keysight | N5182A | MY47420944 | 2022-09-08 | | Test Software | Tonscend | JS0806-2 | NA | NA | | Hygrothermograph | Yuhuaze | HTC-1 | NA | 2022-09-09 | Note: 1. The calibration interval of the above test instruments is 12 months. 2. The test was performed in Chamber. Tel: <u>0769-83078199</u> ## Appendix - Information on the Testing Laboratories We, <u>Hwa-Hsing (Dongguan) Co., Ltd.</u>, A global provider of TESTING and CERTIFICATION services for consumer products, electronic products and wireless information technology products. Adhering to the core values "HONEST and TRUSTWORTHY, OBJECTIVE and IMPARTIALITY, RIGOROUS and AFFICIENT", commitment to provide professional, perfect and efficient comprehensive ONE-STOP solution of TESTING and CERTIFICATION services for Manufacturers, Buyers, Traders, Brands, Retailers. Assist client to better manage risk, protect their brands, reduce costs and cut time to over 150 markets in global. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Lab Address: No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China Contact Tel: <u>0769-83078199</u> Email: <u>Customerservice.dg@hwa-hsing.com</u> Web Site: www.hwa-hsing.com The address and road map of all our labs can be found in our web site also. --- END --- Lab: <u>Hwa-Hsing (Dongguan) Testing Co., Ltd.</u> Address: <u>No.101, Bld N1, Yuyuan 2Rd, Yuyuan Industrial Park,</u> <u>HuangJiang Town, Dongguan, China</u> Web.: <a href="www.hwa-hsing.com">www.hwa-hsing.com</a> E-Mail: <a href="customerservice.dg@hwa-hsing.com">customerservice.dg@hwa-hsing.com</a> Tel: 0769-83078199