

## **FCC SAR Test Report**

| Report No.           | : W7L-P211200023SA02                                                                                                                  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Applicant            | : Zound Industries International AB                                                                                                   |
| Address              | : Centralplan 15 SE-111 20 Stockholm Sweden                                                                                           |
| Manufacturer         | : Zound Industries International AB                                                                                                   |
| Address              | : Centralplan 15 SE-111 20 Stockholm Sweden                                                                                           |
| Product              | : PORTABLE STEREO LOUDSPEAKER                                                                                                         |
| FCC ID               | : 2AAGF-EMBERTONB                                                                                                                     |
| Brand                | : Marshall                                                                                                                            |
| Model No.            | : EMBERTON BLUETOOTH                                                                                                                  |
| Standards            | : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2013<br>KDB 865664 D01 v01r04 / KDB 865664 D02 v01r02 / KDB 447498 D01 v06 |
| Sample Received Date | : Dec. 16, 2021                                                                                                                       |
| Date of Testing      | : Dec. 21, 2021                                                                                                                       |
| FCC Designation No.  | : CN1171                                                                                                                              |

**CERTIFICATION:** The above equipment have been tested by **BV 7LAYERS COMMUNICATIONS TECHNOLOGY** (SHENZHEN) CO. LTD., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies.

Prepared By :

Jerry Chen / Engineer



Approved By :

Luke Lu / Manager

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about\_us/our-business/gps/about\_us/tems-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issue or to raise to its report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report Format Version 5.0.0 Report No. : W7L-P211200023SA02



## Table of Contents

| Rel |        | ontrol Record                                                                   |    |
|-----|--------|---------------------------------------------------------------------------------|----|
| 1.  |        | hary of Maximum SAR Value                                                       |    |
| 2.  |        | iption of Equipment Under Test                                                  |    |
| 3.  | SAR N  | Neasurement System                                                              |    |
|     | 3.1    | Definition of Specific Absorption Rate (SAR)                                    | 6  |
|     | 3.2    | SPEAG DASY System                                                               |    |
|     |        | 3.2.1 Robot                                                                     | 7  |
|     |        | 3.2.2 Probes                                                                    | 8  |
|     |        | 3.2.3 Data Acquisition Electronics (DAE)                                        | 8  |
|     |        | 3.2.4 Phantoms                                                                  | 9  |
|     |        | 3.2.5 Device Holder                                                             |    |
|     |        | 3.2.6 System Validation Dipoles                                                 |    |
|     |        | 3.2.7 Tissue Simulating Liquids                                                 |    |
|     | 3.3    | SAR System Verification                                                         |    |
|     | 3.4    | SAR Measurement Procedure                                                       |    |
|     |        | 3.4.1 Area & Zoom Scan Procedure                                                |    |
|     |        | 3.4.2 Volume Scan Procedure                                                     |    |
|     |        | 3.4.3 Power Drift Monitoring                                                    |    |
|     |        | 3.4.4 Spatial Peak SAR Evaluation                                               |    |
|     |        | 3.4.5 SAR Averaged Methods                                                      |    |
| 4.  | SAR N  | leasurement Evaluation                                                          |    |
|     | 4.1    | EUT Configuration and Setting                                                   |    |
|     | 4.2    | EUT Testing Position                                                            |    |
|     | 4.3    | Tissue Verification                                                             |    |
|     | 4.4    | System Verification                                                             |    |
|     | 4.5    | Maximum Output Power                                                            | 18 |
|     |        | 4.5.1 Maximum Conducted Power                                                   |    |
|     |        | 4.5.2 Measured Conducted Power Result                                           |    |
|     | 4.6    | SAR Testing Results                                                             |    |
|     |        | 4.6.1 SAR Test Reduction Considerations                                         |    |
|     |        | 4.6.2 SAR Results for Body Exposure Condition (Separation Distance is 0 cm Gap) | 19 |
|     |        | 4.6.3 SAR Measurement Variability                                               |    |
|     |        | ation of Test Equipment                                                         |    |
| 6.  |        | irement Uncertainty                                                             |    |
| 7.  | Inform | nation on the Testing Laboratories                                              | 22 |

Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement

Appendix C. Calibration Certificate for Probe and Dipole

Appendix D. Photographs of EUT and Setup



## **Release Control Record**

| Reason for Change | Date Issued  |
|-------------------|--------------|
| Initial release   | Dec. 22 2021 |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |
|                   |              |



## 1. Summary of Maximum SAR Value

| Equipment<br>Class | Mode      | Highest Reported<br>Body SAR <sub>1g</sub><br>(0 cm Gap)<br>(W/kg) |
|--------------------|-----------|--------------------------------------------------------------------|
| DSS                | Bluetooth | 0.43                                                               |

Note:

1. The SAR limit (Head & Body: SAR<sub>1g</sub> 1.6 W/kg, Extremity: SAR<sub>10g</sub> 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.



## 2. Description of Equipment Under Test

| EUT Type                                       | PORTABLE STEREO LOUDSPEAKER                   |
|------------------------------------------------|-----------------------------------------------|
| FCC ID                                         | 2AAGF-EMBERTONB                               |
| Brand Name                                     | Marshall                                      |
| Model Name                                     | EMBERTON BLUETOOTH                            |
| HW Version                                     | BT5.1                                         |
| SW Version                                     | BM321                                         |
| Tx Frequency Bands<br>(Unit: MHz)              | Bluetooth : 2402 ~ 2480                       |
|                                                | Bluetooth : GFSK, π/4-DQPSK, 8-DPSK           |
| Maximum Tune-up Conducted Power<br>(Unit: dBm) | Please refer to section 4.5.1 of this report. |
| Antenna Type                                   | FPC Antenna                                   |
| EUT Stage                                      | Identical Prototype                           |

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.



## 3. SAR Measurement System

## 3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

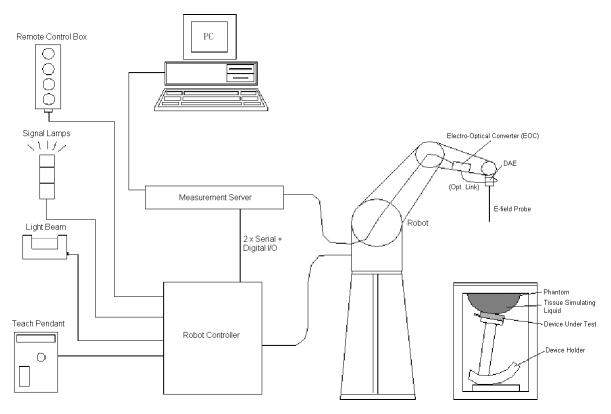
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and E is the RMS electrical field strength.

## 3.2 SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.



## FCC SAR Test Report



## Fig-3.1 DASY System Setup

## 3.2.1 Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)



## FCC SAR Test Report



## 3.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

| Model         | EX3DV4                                                                                                                                                         |     |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Construction  | Symmetrical design with triangular core. Built-in shielding against<br>static charges. PEEK enclosure material (resistant to organic<br>solvents, e.g., DGBE). |     |
| Frequency     | 10 MHz to 6 GHz<br>Linearity: ± 0.2 dB                                                                                                                         |     |
| Directivity   | ± 0.3 dB in HSL (rotation around probe axis)<br>± 0.5 dB in tissue material (rotation normal to probe axis)                                                    |     |
| Dynamic Range | 10 μW/g to 100 mW/g<br>Linearity: ± 0.2 dB (noise: typically < 1 μW/g)                                                                                         | //# |
| Dimensions    | Overall length: 337 mm (Tip: 20 mm)<br>Tip diameter: 2.5 mm (Body: 12 mm)<br>Typical distance from probe tip to dipole centers: 1 mm                           |     |

| Model         | ES3DV3                                                                                                                                                                              |   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Construction  | Symmetrical design with triangular core. Interleaved sensors.<br>Built-in shielding against static charges. PEEK enclosure material<br>(resistant to organic solvents, e.g., DGBE). | 1 |
| Frequency     | 10 MHz to 4 GHz<br>Linearity: ± 0.2 dB                                                                                                                                              |   |
| Directivity   | $\pm$ 0.2 dB in HSL (rotation around probe axis)<br>$\pm$ 0.3 dB in tissue material (rotation normal to probe axis)                                                                 |   |
| Dynamic Range | 5 $\mu$ W/g to 100 mW/g<br>Linearity: ± 0.2 dB                                                                                                                                      |   |
| Dimensions    | Overall length: 337 mm (Tip: 20 mm)<br>Tip diameter: 3.9 mm (Body: 12 mm)<br>Distance from probe tip to dipole centers: 2.0 mm                                                      |   |

## 3.2.3 Data Acquisition Electronics (DAE)

| Model              | DAE3, DAE4                                                                                                                                                                                                                                                   |                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Construction       | Signal amplifier, multiplexer, A/D converter and control logic.<br>Serial optical link for communication with DASY embedded<br>system (fully remote controlled). Two step probe touch detector<br>for mechanical surface detection and emergency robot stop. |                   |
| Measurement        | -100 to +300 mV (16 bit resolution and two range settings: 4mV,                                                                                                                                                                                              |                   |
| Range              | 400mV)                                                                                                                                                                                                                                                       | The second second |
| Input Offset       | < 5µV (with auto zero)                                                                                                                                                                                                                                       |                   |
| Voltage            |                                                                                                                                                                                                                                                              |                   |
| Input Bias Current | < 50 fA                                                                                                                                                                                                                                                      |                   |
| Dimensions         | 60 x 60 x 68 mm                                                                                                                                                                                                                                              |                   |



#### 3.2.4 Phantoms

| Model           | Twin SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction    | The shell corresponds to the specifications of the Specific<br>Anthropomorphic Mannequin (SAM) phantom defined in IEEE<br>1528 and IEC 62209-1. It enables the dosimetric evaluation of<br>left and right hand phone usage as well as body mounted usage<br>at the flat phantom region. A cover prevents evaporation of the<br>liquid. Reference markings on the phantom allow the complete<br>setup of all predefined phantom positions and measurement<br>grids by teaching three points with the robot. |  |
| Material        | Vinylester, glass fiber reinforced (VE-GF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Dimensions      | Length: 1000mm<br>Width: 500mm<br>Height: adjustable feet                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Filling Volume  | approx. 25 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

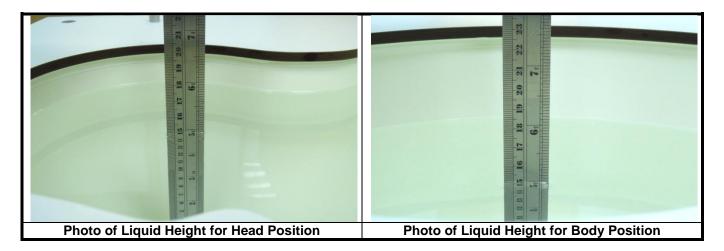
| Model                        | ELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction                 | Phantom for compliance testing of handheld and body-mounted<br>wireless devices in the frequency range of 30 MHz to 6 GHz. ELI<br>is fully compatible with the IEC 62209-2 standard and all known<br>tissue simulating liquids. ELI has been optimized regarding its<br>performance and can be integrated into our standard phantom<br>tables. A cover prevents evaporation of the liquid. Reference<br>markings on the phantom allow installation of the complete setup,<br>including all predefined phantom positions and measurement<br>grids, by teaching three points. The phantom is compatible with<br>all SPEAG dosimetric probes and dipoles. |  |
| Material                     | Vinylester, glass fiber reinforced (VE-GF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Shell Thickness              | $2.0 \pm 0.2$ mm (bottom plate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Dimensions<br>Filling Volume | Major axis: 600 mm<br>Minor axis: 400 mm<br>approx. 30 liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |



#### 3.2.5 Device Holder

| Model        | Mounting Device                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction | In combination with the Twin SAM Phantom or ELI4, the<br>Mounting Device enables the rotation of the mounted transmitter<br>device in spherical coordinates. Rotation point is the ear opening<br>point. Transmitter devices can be easily and accurately<br>positioned according to IEC, IEEE, FCC or other specifications.<br>The device holder can be locked for positioning at different<br>phantom sections (left head, right head, flat). |  |
| Material     | РОМ                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| Model        | Laptop Extensions Kit                                                                                                                                                                                                                                                                   |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction | Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. |  |
| Material     | POM, Acrylic glass, Foam                                                                                                                                                                                                                                                                |  |


## 3.2.6 System Validation Dipoles

| Model            | D-Serial                                                                                                                                                             |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Construction     | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. |  |
| Frequency        | 750 MHz to 5800 MHz                                                                                                                                                  |  |
| Return Loss      | > 20 dB                                                                                                                                                              |  |
| Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz)                                                                                                                                |  |

## FCC SAR Test Report

## 3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.



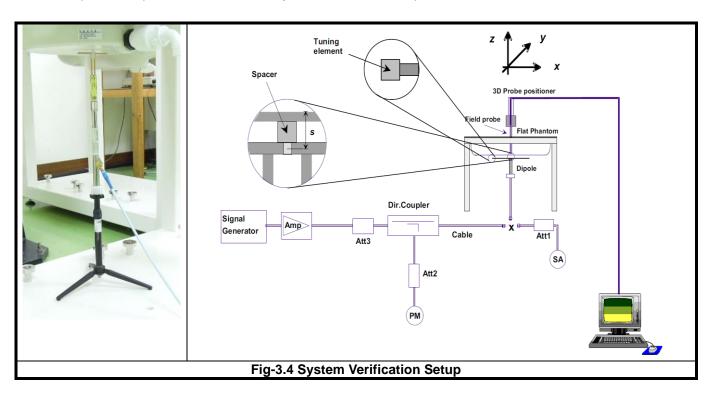
The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.



| Frequency<br>(MHz) | Target<br>Permittivity                | Range of<br>±5% | Target<br>Conductivity | Range of<br>±5% |
|--------------------|---------------------------------------|-----------------|------------------------|-----------------|
|                    | · · · · · · · · · · · · · · · · · · · | For Head        |                        |                 |
| 750                | 41.9                                  | 39.8 ~ 44.0     | 0.89                   | 0.85 ~ 0.93     |
| 835                | 41.5                                  | 39.4 ~ 43.6     | 0.90                   | 0.86 ~ 0.95     |
| 900                | 41.5                                  | 39.4 ~ 43.6     | 0.97                   | 0.92 ~ 1.02     |
| 1450               | 40.5                                  | 38.5 ~ 42.5     | 1.20                   | 1.14 ~ 1.26     |
| 1640               | 40.3                                  | 38.3 ~ 42.3     | 1.29                   | 1.23 ~ 1.35     |
| 1750               | 40.1                                  | 38.1 ~ 42.1     | 1.37                   | 1.30 ~ 1.44     |
| 1800               | 40.0                                  | 38.0 ~ 42.0     | 1.40                   | 1.33 ~ 1.47     |
| 1900               | 40.0                                  | 38.0 ~ 42.0     | 1.40                   | 1.33 ~ 1.47     |
| 2000               | 40.0                                  | 38.0 ~ 42.0     | 1.40                   | 1.33 ~ 1.47     |
| 2300               | 39.5                                  | 37.5 ~ 41.5     | 1.67                   | 1.59 ~ 1.75     |
| 2450               | 39.2                                  | 37.2 ~ 41.2     | 1.80                   | 1.71 ~ 1.89     |
| 2600               | 39.0                                  | 37.1 ~ 41.0     | 1.96                   | 1.86 ~ 2.06     |
| 3500               | 37.9                                  | 36.0 ~ 39.8     | 2.91                   | 2.76 ~ 3.06     |
| 5200               | 36.0                                  | 34.2 ~ 37.8     | 4.66                   | 4.43 ~ 4.89     |
| 5300               | 35.9                                  | 34.1 ~ 37.7     | 4.76                   | 4.52 ~ 5.00     |
| 5500               | 35.6                                  | 33.8 ~ 37.4     | 4.96                   | 4.71 ~ 5.21     |
| 5600               | 35.5                                  | 33.7 ~ 37.3     | 5.07                   | 4.82 ~ 5.32     |
| 5800               | 35.3                                  | 33.5 ~ 37.1     | 5.27                   | 5.01 ~ 5.53     |

The following table gives the recipes for tissue simulating liquids.

| Table | -3.2 Recipes | s of Tissue S | Simulating L | iquid |
|-------|--------------|---------------|--------------|-------|
|       |              |               |              | -     |


| Tissue<br>Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton<br>X-100 | Water | Diethylene<br>Glycol<br>Mono-<br>hexylether |
|----------------|-------------|------|-----|------|---------|-----------------|-------|---------------------------------------------|
| H750           | 0.2         | -    | 0.2 | 1.5  | 56.0    | -               | 42.1  | -                                           |
| H835           | 0.2         | -    | 0.2 | 1.5  | 57.0    | -               | 41.1  | -                                           |
| H900           | 0.2         | -    | 0.2 | 1.4  | 58.0    | -               | 40.2  | -                                           |
| H1450          | -           | 43.3 | -   | 0.6  | -       | -               | 56.1  | -                                           |
| H1640          | -           | 45.8 | -   | 0.5  | -       | -               | 53.7  | -                                           |
| H1750          | -           | 47.0 | -   | 0.4  | -       | -               | 52.6  | -                                           |
| H1800          | -           | 44.5 | -   | 0.3  | -       | -               | 55.2  | -                                           |
| H1900          | -           | 44.5 | -   | 0.2  | -       | -               | 55.3  | -                                           |
| H2000          | -           | 44.5 | -   | 0.1  | -       | -               | 55.4  | -                                           |
| H2300          | -           | 44.9 | -   | 0.1  | -       | -               | 55.0  | -                                           |
| H2450          | -           | 45.0 | -   | 0.1  | -       | -               | 54.9  | -                                           |
| H2600          | -           | 45.1 | -   | 0.1  | -       | -               | 54.8  | -                                           |
| H3500          | -           | 8.0  | -   | 0.2  | -       | 20.0            | 71.8  | -                                           |
| H5G            | -           | -    | -   | -    | -       | 17.2            | 65.5  | 17.3                                        |

## FCC SAR Test Report



## 3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.



The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.



## 3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

## 3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

| Items                 | <= 2 GHz | 2-3 GHz  | 3-4 GHz  | 4-5 GHz  | 5-6 GHz  |
|-----------------------|----------|----------|----------|----------|----------|
| Area Scan<br>(Δx, Δy) | <= 15 mm | <= 12 mm | <= 12 mm | <= 10 mm | <= 10 mm |
| Zoom Scan<br>(Δx, Δy) | <= 8 mm  | <= 5 mm  | <= 5 mm  | <= 4 mm  | <= 4 mm  |
| Zoom Scan<br>(Δz)     | <= 5 mm  | <= 5 mm  | <= 4 mm  | <= 3 mm  | <= 2 mm  |
| Zoom Scan<br>Volume   | >= 30 mm | >= 30 mm | >= 28 mm | >= 25 mm | >= 22 mm |

#### Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of  $\Delta x / \Delta y$  (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

#### 3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

## FCC SAR Test Report



## 3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

#### 3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

#### 3.4.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.



## 4. SAR Measurement Evaluation

## 4.1 EUT Configuration and Setting

## <Considerations Related to Bluetooth for Setup and Testing>

This device has installed Bluetooth engineering testing software which can provide continuous transmitting RF signal. During Bluetooth SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

## <Duty Cycle of Test Signal>

|              | rig: Free Run<br>ttten: 10 dB | 2∆1         | ΔMkr3 3.7                                                                                                                                   | .93 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |
|--------------|-------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ¢1           |                               | 2∆1         | 1.                                                                                                                                          | .93 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>Iarker Count<br>[Off]                                                                                                                                                         |
| ¢1           |                               | 2∆1         | _3∆1                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
| ¢1           |                               | 2∆1         | _3∆1                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [Off]                                                                                                                                                                              |
| ¢1           |                               | \$201       | 341                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coup<br>Marker                                                                                                                                                                     |
|              |                               |             |                                                                                                                                             | On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>a</u>                                                                                                                                                                           |
| monthly      |                               | guelou from | -n.                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
| VBW( 3.0     | MHZ                           | Sween       | Sp<br>8 000 ms (10                                                                                                                          | an 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| VB4V 5.0     |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
| 3.752 ms (Δ) | 1.93 dB                       |             |                                                                                                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ll Markers O                                                                                                                                                                       |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|              |                               |             |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mor                                                                                                                                                                                |
|              | VBW 3.0                       | VBW 3.0 MHz | VBW 3.0 MHz         Sweep           2.592 mi         37.67 dBm         Flacton M2           2.888 mi (a)         2.86 dB         Flacton M2 | VBW 3.0 MHz Sweep 8.000 ms (1)<br>2.592 m - 37.57 dBm Factors Factors Factors Factors - | VBW 3.0 MHz         Symmetry           VBW 3.0 MHz         Sweep 8.000 ms (100 pts)           2.592 ms         .57.67 dBm           2.488 ms (i.0.1 2.89 dB)         Function Work |

## 4.2 EUT Testing Position

This EUT was tested for all the Close to the human body of intended use surfaces of the EUT. The separation distance between this EUT and phantom is 0 cm.



## 4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

| Test<br>Date  | Tissue<br>Type | Frequency<br>(MHz) | Liquid<br>Temp.<br>(℃) | Measured<br>Conductivity<br>(σ) | Measured<br>Permittivity<br>(ε <sub>r</sub> ) | Target<br>Conductivity<br>(σ) | Target<br>Permittivity<br>(ε <sub>r</sub> ) | Conductivity<br>Deviation<br>(%) | Permittivity<br>Deviation<br>(%) |
|---------------|----------------|--------------------|------------------------|---------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------|----------------------------------|----------------------------------|
| Dec. 21, 2021 | Head           | 2450               | 22.3                   | 1.786                           | 39.390                                        | 1.80                          | 39.20                                       | -0.78                            | 0.48                             |

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within  $\pm 5\%$  of the target values. Liquid temperature during the SAR testing must be within  $\pm 2$  °C.

## 4.4 System Verification

The measuring result for system verification is tabulated as below.

| Test<br>Date  | Mode | Frequency<br>(MHz) | 1W Target<br>SAR-1g<br>(W/kg) | Measured<br>SAR-1g<br>(W/kg) | Normalized<br>to 1W<br>SAR-1g<br>(W/kg) | Deviation<br>(%) | Dipole<br>S/N | Probe<br>S/N | DAE<br>S/N |
|---------------|------|--------------------|-------------------------------|------------------------------|-----------------------------------------|------------------|---------------|--------------|------------|
| Dec. 21, 2021 | Head | 2450               | 53.60                         | 13.30                        | 53.20                                   | -0.75            | 893           | 3268         | 1288       |

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.



## 4.5 Maximum Output Power

## 4.5.1 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

|           | Blueto  | ooth            |                        |
|-----------|---------|-----------------|------------------------|
| Mode      | Channel | Frequency (MHz) | Tune up limit<br>(dBm) |
|           | 0       | 2402            | 4.50                   |
| GFSK      | 39      | 2441            | 4.50                   |
|           | 78      | 2480            | 4.50                   |
|           | 0       | 2402            | 4.00                   |
| 8-DPSK    | 39      | 2441            | 4.00                   |
|           | 78      | 2480            | 4.00                   |
|           | 0       | 2402            | 4.00                   |
| BLE 1Mbps | 19      | 2440            | 4.00                   |
|           | 39      | 2480            | 4.00                   |
|           | 0       | 2402            | 4.00                   |
| BLE 2Mbps | 19      | 2440            | 4.00                   |
|           | 39      | 2480            | 4.00                   |

## 4.5.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

|           | Blueto  | oth             |                     |
|-----------|---------|-----------------|---------------------|
| Mode      | Channel | Frequency (MHz) | Avg. Power<br>(dBm) |
|           | 0       | 2402            | 3.54                |
| GFSK      | 39      | 2441            | 3.58                |
|           | 78      | 2480            | 3.42                |
|           | 0       | 2402            | 3.67                |
| 8-DPSK    | 39      | 2441            | 3.53                |
|           | 78      | 2480            | 3.52                |
|           | 0       | 2402            | 3.46                |
| BLE 1Mbps | 19      | 2440            | 3.52                |
|           | 39      | 2480            | 3.35                |
|           | 0       | 2402            | 3.32                |
| BLE 2Mbps | 19      | 2440            | 3.52                |
|           | 39      | 2480            | 3.32                |



## 4.6 SAR Testing Results

## 4.6.1 SAR Test Reduction Considerations

## <KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1)  $\leq 0.8$  W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is  $\leq 100$  MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3)  $\leq 0.4$  W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is  $\geq 200$  MHz

| Plot<br>No. | Band | Mode | Test<br>Position | Separation<br>Distance<br>(cm) | Ch. | Duty<br>Cycle<br>% | Max.<br>Tune-up<br>Power<br>(dBm) | Measured<br>Conducted<br>Power<br>(dBm) | Power<br>Drift<br>(dB) | Measured<br>SAR-1g<br>(W/kg) | Duty<br>Cycle<br>Scaling<br>Factor | Tune-up<br>Scaling<br>Factor | Scaled<br>SAR-1g<br>(W/kg) |
|-------------|------|------|------------------|--------------------------------|-----|--------------------|-----------------------------------|-----------------------------------------|------------------------|------------------------------|------------------------------------|------------------------------|----------------------------|
|             | BT   | GFSK | Front Face       | 0                              | 39  | 76.97              | 4.5                               | 3.58                                    | 0                      | 0.011                        | 1.30                               | 1.24                         | 0.02                       |
|             | BT   | GFSK | Rear Face        | 0                              | 39  | 76.97              | 4.5                               | 3.58                                    | 0                      | 0.001                        | 1.30                               | 1.24                         | 0.00                       |
|             | BT   | GFSK | Left Side        | 0                              | 39  | 76.97              | 4.5                               | 3.58                                    | 0                      | 0.001                        | 1.30                               | 1.24                         | 0.00                       |
|             | BT   | GFSK | Right Side       | 0                              | 39  | 76.97              | 4.5                               | 3.58                                    | -0.04                  | 0.224                        | 1.30                               | 1.24                         | 0.36                       |
|             | BT   | GFSK | Top Side         | 0                              | 39  | 76.97              | 4.5                               | 3.58                                    | 0.09                   | 0.003                        | 1.30                               | 1.24                         | 0.01                       |
|             | BT   | GFSK | Bottom Side      | 0                              | 39  | 76.97              | 4.5                               | 3.58                                    | 0.00                   | 0.016                        | 1.30                               | 1.24                         | 0.03                       |
| 1           | BT   | GFSK | Right Side       | 0                              | 0   | 76.97              | 4.5                               | 3.54                                    | 0                      | 0.265                        | 1.30                               | 1.25                         | 0.43                       |
|             | BT   | GFSK | Right Side       | 0                              | 78  | 76.97              | 4.5                               | 3.42                                    | -0.04                  | 0.218                        | 1.30                               | 1.28                         | 0.36                       |

4.6.2 SAR Results for Body Exposure Condition (Separation Distance is 0 cm Gap)

#### 4.6.3 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are  $\leq 1.45$  W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is  $\leq 1.10$ , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Since all the measured SAR are less than 0.8 W/kg, the repeated measurement is not required.

Test Engineer : GengDong Deng,



## 5. Calibration of Test Equipment

| Equipment                    | Manufacturer | Model          | SN         | Cal. Date     | Cal.<br>Interval |
|------------------------------|--------------|----------------|------------|---------------|------------------|
| System Validation Dipole     | SPEAG        | D2450V2        | 893        | Sep. 18, 2021 | 1 Year           |
| Dosimetric E-Field Probe     | SPEAG        | ES3DV3         | 3268       | Aug. 24, 2021 | 1 Year           |
| Data Acquisition Electronics | SPEAG        | DAE4           | 1288       | Aug. 20, 2021 | 1 Year           |
| ENA Series Network Analyzer  | Agilent      | E5071C         | MY46214638 | Jun. 03, 2021 | 1 Year           |
| Spectrum Analyzer            | KEYSIGHT     | N9010A         | MY54510355 | Jun. 03, 2021 | 1Year            |
| MXG Analog Signal Generator  | KEYSIGHT     | N5183A         | MY50143024 | Mar. 09, 2021 | 1 Year           |
| Power Meter                  | Agilent      | N1914A         | MY52180044 | Mar. 02, 2021 | 1 Year           |
| Power Sensor                 | Agilent      | E9304A H18     | MY52050011 | Feb. 25, 2021 | 1 Year           |
| Power Meter                  | ANRITSU      | ML2495A        | 1506002    | Apr. 07, 2021 | 1 Year           |
| Power Sensor                 | ANRITSU      | MA2411B        | 1339353    | Mar. 07, 2021 | 1 Year           |
| Temp. & Humi. Recorder       | CLOCK        | HTC-1          | 157248     | Jun. 02, 2021 | 1 Year           |
| Electronic Thermometer       | YONGFA       | YF-160A        | 120100323  | Jun. 02, 2021 | 1 Year           |
| Coupler                      | Woken        | 0110A056020-10 | COM27RW1A3 | Jun. 02, 2021 | 1 Year           |



## 6. Measurement Uncertainty

| DASY5 Uncertainty Budget          |                                          |             |         |            |             |                                      |                                       |         |
|-----------------------------------|------------------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------|---------|
| Error Description                 | Uncertainty<br>Value<br>(±%)             | Probability | Divisor | (Ci)<br>1g | (Ci)<br>10g | Standard<br>Uncertainty<br>(1g) (±%) | Standard<br>Uncertainty<br>(10g) (±%) |         |
| Measurement System                |                                          |             |         |            |             |                                      |                                       | _       |
| Probe Calibration                 | 6.0                                      | N           | 1       | 1          | 1           | 6.0                                  | 6.0                                   | Т       |
| Axial Isotropy                    | 4.7                                      | R           | 1.732   | 0.7        | 0.7         | 1.9                                  | 1.9                                   | +       |
| Hemispherical Isotropy            | 9.6                                      | R           | 1.732   | 0.7        | 0.7         | 3.9                                  | 3.9                                   | +       |
| Boundary Effects                  | 1.0                                      | R           | 1.732   | 1          | 1           | 0.6                                  | 0.6                                   | +       |
| Linearity                         | 4.7                                      | R           | 1.732   | 1          | 1           | 2.7                                  | 2.7                                   | +       |
| System Detection Limits           | 1.0                                      | R           | 1.732   | 1          | 1           | 0.6                                  | 0.6                                   | +       |
| Modulation Response               | 3.2                                      | R           | 1.732   | 1          | 1           | 1.8                                  | 1.8                                   | +       |
| Readout Electronics               | 0.3                                      | N           | 1       | 1          | 1           | 0.3                                  | 0.3                                   | +       |
| Response Time                     | 0.0                                      | R           | 1.732   | 1          | 1           | 0.0                                  | 0.0                                   | +       |
| Integration Time                  | 2.6                                      | R           | 1.732   | 1          | 1           | 1.5                                  | 1.5                                   | +       |
| RF Ambient Noise                  | 3.0                                      | R           | 1.732   | 1          | 1           | 1.7                                  | 1.7                                   | +       |
| RF Ambient Reflections            | 3.0                                      | R           | 1.732   | 1          | 1           | 1.7                                  | 1.7                                   | +       |
| Probe Positioner                  | 0.4                                      | R           | 1.732   | 1          | 1           | 0.2                                  | 0.2                                   | +       |
| Probe Positioning                 | 2.9                                      | R           | 1.732   | 1          | 1           | 1.7                                  | 1.7                                   | +       |
| Max. SAR Eval.                    | 2.0                                      | R           | 1.732   | 1          | 1           | 1.2                                  | 1.2                                   | +       |
| Test Sample Related               |                                          | 1           |         | <u> </u>   | <u> </u>    |                                      |                                       |         |
| Device Positioning                | 3.0                                      | N           | 1       | 1          | 1           | 3.0                                  | 3.0                                   | Т       |
| Device Holder                     | 3.6                                      | N           | 1       | 1          | 1           | 3.6                                  | 3.6                                   | T       |
| Power Drift                       | 5.0                                      | R           | 1.732   | 1          | 1           | 2.9                                  | 2.9                                   | Τ       |
| Power Scaling                     | 0.0                                      | R           | 1.732   | 1          | 1           | 0.0                                  | 0.0                                   |         |
| Phantom and Setup                 |                                          |             |         |            |             |                                      |                                       |         |
| Phantom Uncertainty               | 6.1                                      | R           | 1.732   | 1          | 1           | 3.5                                  | 3.5                                   |         |
| SAR correction                    | 0.0                                      | R           | 1.732   | 1          | 0.84        | 0.0                                  | 0.0                                   |         |
| Liquid Conductivity Repeatability | 0.2                                      | N           | 1       | 0.78       | 0.71        | 0.1                                  | 0.1                                   |         |
| Liquid Conductivity (target)      | 5.0                                      | R           | 1.732   | 0.78       | 0.71        | 2.3                                  | 2.0                                   |         |
| Liquid Conductivity (mea.)        | 2.5                                      | R           | 1.732   | 0.78       | 0.71        | 1.1                                  | 1.0                                   |         |
| Temp. unc Conductivity            | 3.4                                      | R           | 1.732   | 0.78       | 0.71        | 1.5                                  | 1.4                                   |         |
| Liquid Permittivity Repeatability | 0.15                                     | N           | 1       | 0.23       | 0.26        | 0.0                                  | 0.0                                   |         |
| Liquid Permittivity (target)      | 5.0                                      | R           | 1.732   | 0.23       | 0.26        | 0.7                                  | 0.8                                   |         |
| Liquid Permittivity (mea.)        | 2.5                                      | R           | 1.732   | 0.23       | 0.26        | 0.3                                  | 0.4                                   | $\perp$ |
| Temp. unc Permittivity            | 0.83                                     | R           | 1.732   | 0.23       | 0.26        | 0.1                                  | 0.1                                   |         |
|                                   | nbined Std. Uncerta                      |             |         |            |             | 11.4%                                | 11.4%                                 | 1       |
|                                   | verage Factor for 9<br>anded STD Uncerta |             |         | _          |             | K=2<br>22.9%                         | K=2<br>22.7%                          | 4       |

Uncertainty budget for frequency range 30 MHz to 3 GHz



## 7. Information on the Testing Laboratories

We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Add: No. B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industry Park, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-8869-6566 Fax: 86-755-8869-6577

Email: <u>customerservice.sw@cn.bureauveritas.com</u> Web Site: <u>www.bureauveritas.com</u>

The road map of all our labs can be found in our web site also.

---END----



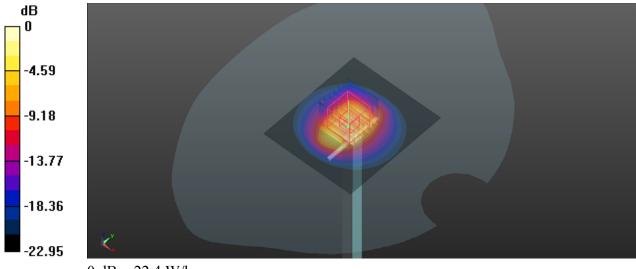
## Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Test Laboratory: BV 7LAYERS SAR/HAC Testing Lab

## System Check\_HSL2450\_211221

## DUT: Dipole 2450 MHz;Type:D2450V2


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL2450\_1221 Medium parameters used: f = 2450 MHz;  $\sigma = 1.786$  S/m;  $\epsilon_r = 39.39$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature : 23.1°C; Liquid Temperature : 22.3°C

DASY5 Configuration:

- Probe: ES3DV3 SN3268; ConvF(4.56, 4.56, 4.56); Calibrated: 2021/8/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1288; Calibrated: 2021/8/20
- Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1610
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

**Pin=250mW/Area Scan (71x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.9 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 22.4 W/kg



 $<sup>0 \</sup>text{ dB} = 22.4 \text{ W/kg}$ 

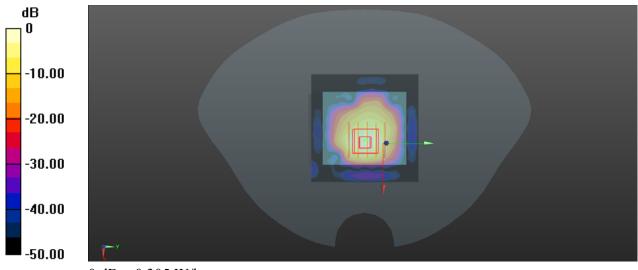


## Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Date: 2021/12/21

## P01 BT\_GFSK\_Right Side\_0cm\_Ch0


Communication System: BT; Frequency: 2402 MHz;Duty Cycle: 1:1.3 Medium: HSL2450\_1221 Medium parameters used: f = 2402 MHz;  $\sigma = 1.754$  S/m;  $\epsilon_r = 39.461$ ;  $\rho = 1000$  kg/m<sup>3</sup> Ambient Temperature : 23.1°C; Liquid Temperature : 22.3°C

DASY5 Configuration:

- Probe: ES3DV3 SN3268; ConvF(4.56, 4.56, 4.56); Calibrated: 2021/8/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1288; Calibrated: 2021/8/20
- Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1610
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

- Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.329 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.284 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.668 W/kg
SAR(1 g) = 0.265 W/kg; SAR(10 g) = 0.096 W/kg Maximum value of SAR (measured) = 0.305 W/kg



 $<sup>0 \</sup>text{ dB} = 0.305 \text{ W/kg}$ 



## Appendix C. Calibration Certificate for Probe and Dipole

The SPEAG calibration certificates are shown as follows.



中国认可 国际互认 校准 CALIBRATION CNAS L0570

Z21-60338

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Client

nt B.V.ADT

Certificate No:

# CALIBRATION CERTIFICATE Object D2450V2 - SN: 893

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

September 18, 2021

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID #       | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|-------------------------------------------|-----------------------|
| Power Meter NRP2        | 106277     | 23-Sep-20 (CTTL, No.J20X08336)            | Sep-21                |
| Power sensor NRP8S      | 104291     | 23-Sep-20 (CTTL, No.J20X08336)            | Sep-21                |
| Reference Probe EX3DV4  | SN 7517    | 03-Feb-21(CTTL-SPEAG,No.Z21-60001)        | Feb-22                |
| DAE4                    | SN 1556    | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21)       | Jan-22                |
| Secondary Standards     | ID #       | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593)            | Jan-22                |
| NetworkAnalyzer E5071C  | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232)            | Jan-22                |
|                         |            |                                           | 9                     |
|                         |            |                                           |                       |

|                           | Name                         | Function                                            | Signature          |
|---------------------------|------------------------------|-----------------------------------------------------|--------------------|
| Calibrated by:            | Zhao Jing                    | SAR Test Engineer                                   | EN .               |
| Reviewed by:              | Lin Hao                      | SAR Test Engineer                                   | THE AS             |
| Approved by:              | Qi Dianyuan                  | SAR Project Leader                                  | A Hall             |
| This collibration cortifi | acts shall not be repreduced | Issued:<br>ced except in full without written appro | September 26, 2021 |

Certificate No: Z21-60338





Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

## Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



S P CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

In Collaboration with

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C | Υ           |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        | (*)<br>(*)  |
| Frequency                    | 2450 MHz ± 1 MHz         |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.9 ± 6 %   | 1.79 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                                   |
|------------------------------------------------|--------------------|-----------------------------------|
| SAR measured                                   | 250 mW input power | 13.4 W/kg                         |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 53.6 W/kg ± 18.8 % (k=2)          |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                                   |
| SAR measured                                   | 250 mW input power | 6.10 W/kg                         |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 24.4 W/kg ± 18.7 % ( <i>k</i> =2) |



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

## Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.0Ω+ 6.26jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 22.4dB      |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.069 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by |  | actured by SPEAG |  |  |
|-----------------|--|------------------|--|--|
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |
|                 |  |                  |  |  |



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

**DASY5 Validation Report for Head TSL** 

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e CALIBRATION LABORATORY

Date: 09.18.2021

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 893 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.79$  S/m;  $\epsilon_r = 38.85$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Right Section

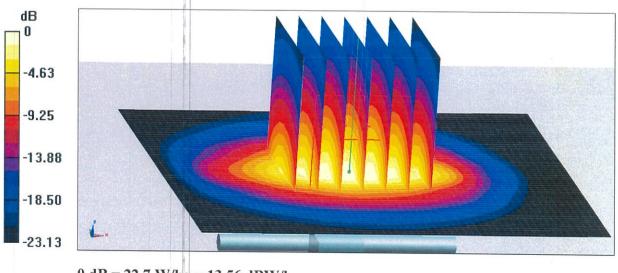
In Collaboration with

DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.0 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.1 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 46.9%

Maximum value of SAR (measured) = 22.7 W/kg



0 dB = 22.7 W/kg = 13.56 dBW/kg

Certificate No: Z21-60338

Page 5 of 6

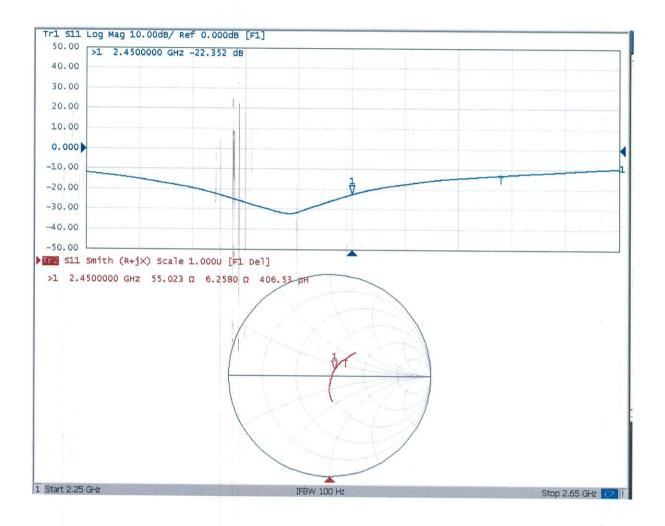


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

In Collaboration with

D

Add: No.52 HuaYuanBei Road, Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com


d, Haidian District, Beijing, 100191, Chin Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

а

## Impedance Measurement Plot for Head TSL

S



## s p e a g

## **IMPORTANT NOTICE**

## USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

**Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

**E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

**Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

**DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

## Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

#### Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

#### Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-1288\_Aug21

Accreditation No.: SCS 0108

**ADT-CN** (Auden) Client

| CALIBRATION CERTIFICATE |  |
|-------------------------|--|
|-------------------------|--|

| just 20, 2021<br>traceability to national stand<br>with confidence probability                          | or the data acquisition electron<br>dards, which realize the physical units of r<br>are given on the following pages and are<br>environment temperature (22 ± 3)°C and | neasurements (SI).<br>part of the certificate.                                                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ibration procedure fo<br>gust 20, 2021<br>traceability to national stand<br>with confidence probability | lards, which realize the physical units of r<br>are given on the following pages and are                                                                               | neasurements (SI).<br>part of the certificate.                                                                                                                                                                                                                                                     |  |
| traceability to national stand<br>with confidence probability                                           | are given on the following pages and are                                                                                                                               | part of the certificate.                                                                                                                                                                                                                                                                           |  |
| with confidence probability                                                                             | are given on the following pages and are                                                                                                                               | part of the certificate.                                                                                                                                                                                                                                                                           |  |
| al for calibration)                                                                                     |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |  |
| cal Da                                                                                                  | te (Certificate No.)                                                                                                                                                   | Schodulad Calibratian                                                                                                                                                                                                                                                                              |  |
|                                                                                                         |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                         |                                                                                                                                                                        | Scheduled Check                                                                                                                                                                                                                                                                                    |  |
|                                                                                                         |                                                                                                                                                                        | In house check: Jan-22<br>In house check: Jan-22                                                                                                                                                                                                                                                   |  |
| ne<br>Ninique Steffen                                                                                   | Function                                                                                                                                                               | Signature                                                                                                                                                                                                                                                                                          |  |
|                                                                                                         | Laboratory rechnician                                                                                                                                                  | 210_                                                                                                                                                                                                                                                                                               |  |
| n Kühn                                                                                                  | Deputy Manager                                                                                                                                                         | 1.V.BJUUUN                                                                                                                                                                                                                                                                                         |  |
| roduced except in full without                                                                          | It written approval of the laboratory                                                                                                                                  | Issued: August 20, 2021                                                                                                                                                                                                                                                                            |  |
|                                                                                                         | Cal Da<br>0810278 07-Sep<br>Check<br>UWS 053 AA 1001 07-Jan<br>UMS 006 AA 1002 07-Jan<br>UMS 006 AA 1002 07-Jan                                                        | Cal Date (Certificate No.)         0810278       07-Sep-20 (No:28647)         Check Date (in house)         UWS 053 AA 1001       07-Jan-21 (in house check)         UMS 006 AA 1002       07-Jan-21 (in house check)         Me       Function         inique Steffen       Laboratory Technician |  |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

## Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - *Common mode sensitivity:* Influence of a positive or negative common mode voltage on the differential measurement.
  - *Channel separation:* Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - *Input resistance:* Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - *Power consumption:* Typical value for information. Supply currents in various operating modes.

## DC Voltage Measurement A/D - Converter Resolution nominal

| High Range:        | 1LSB =                                                                                              | 6.1μV , | full range = | -100…+300 mV |
|--------------------|-----------------------------------------------------------------------------------------------------|---------|--------------|--------------|
| Low Range:         | 1LSB =                                                                                              | 61nV ,  |              | -1+3mV       |
| DASY measurement p | Range:1LSB =61nV ,full range =-1+3mVeasurement parameters:Auto Zero Time:3 sec;Measuring time:3 sec |         |              |              |

| Calibration Factors | X                     | Y                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 403.981 ± 0.02% (k=2) | 404.169 ± 0.02% (k=2) | 404.190 ± 0.02% (k=2) |
| Low Range           | 3.97870 ± 1.50% (k=2) | 3.98516 ± 1.50% (k=2) | 3.93301 ± 1.50% (k=2) |

## **Connector Angle**

| Connector Angle to be used in DASY system | 107.5 ° ± 1 ° |
|-------------------------------------------|---------------|
|                                           | 107.0 ± 1     |

## Appendix (Additional assessments outside the scope of SCS0108)

## 1. DC Voltage Linearity

| High Range |         | Reading (μV) | Difference (µV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 200039.24    | 2.17            | 0.00      |
| Channel X  | + Input | 20007.43     | 1.26            | 0.01      |
| Channel X  | - Input | -20003.73    | 2.14            | -0.01     |
| Channel Y  | + Input | 200036.65    | -0.33           | -0.00     |
| Channel Y  | + Input | 20003.55     | -2.58           | -0.01     |
| Channel Y  | - Input | -20006.54    | -0.51           | 0.00      |
| Channel Z  | + Input | 200037.39    | 0.55            | 0.00      |
| Channel Z  | + Input | 20003.51     | -2.55           | -0.01     |
| Channel Z  | - Input | -20006.03    | 0.05            | -0.00     |

| Low Range |         | Reading (µV) | Difference (µV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 2001.25      | -0.21           | -0.01     |
| Channel X | + Input | 201.51       | 0.09            | 0.04      |
| Channel X | - Input | -198.20      | 0.25            | -0.13     |
| Channel Y | + Input | 2002.07      | 0.77            | 0.04      |
| Channel Y | + Input | 200.13       | -1.17           | -0.58     |
| Channel Y | - Input | -199.60      | -0.95           | 0.48      |
| Channel Z | + Input | 2002.18      | 0.87            | 0.04      |
| Channel Z | + Input | 200.69       | -0.61           | -0.30     |
| Channel Z | - Input | -198.64      | 0.01            | -0.01     |

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 16.12                              | 14.85                             |
|           | - 200                             | -14.52                             | -15.42                            |
| Channel Y | 200                               | -0.47                              | -1.20                             |
|           | - 200                             | -1.23                              | -1.31                             |
| Channel Z | 200                               | 6.17                               | 5.57                              |
|           | - 200                             | -7.79                              | -7.55                             |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | 3.70           | -1.66          |
| Channel Y | 200                | 8.17           | -              | 6.02           |
| Channel Z | 200                | 8.58           | 6.51           | -              |