

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Report No. : CQASZ20220100086E-02 Chengdu Vantron Technology Co., Ltd. **Applicant:** Address of Applicant: No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China 610045 **Equipment Under Test (EUT): Product:** Portable electronic tablet computer All Model No.: IQRemote PG, V MPG **Test Model No.: IQRemote PG Brand Name:** N/A FCC ID: 2AAGE-IQRTPGV4 Standards: 47 CFR Part 15, Subpart C Date of Receipt: 2022-01-14 Date of Test: 2022-01-14 to 2022-06-25 Date of Issue: 2022-9-20 **Test Result :** PASS*

Test Report

 Tested By:
 Image: Clewis Zhou

 (Lewis Zhou)

 7/mo Lei

 (Timo Lei)

 Approved By:

 (Jack Ai)

* In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s)

tested. Without written approval of CQA, this report can't be reproduced except in full.

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220100086E-02	Rev.01	Initial report	2022-9-20

Note:

This test report (Ref. No.: CQASZ20220100086E-02)

All test data comes from source test reports (Ref. No.: CQASZ20220100087E-02).

Only on the basis of the original report Change Applicant, Address of Applicant.

The tested samples have not been changed.

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak & Average Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

1 VERSION	2
2 TEST SUMMARY	
3 CONTENTS	
4 GENERAL INFORMATION	5
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST ENVIRONMENT AND MODE 4.4 DESCRIPTION OF SUPPORT UNITS 4.5 TEST LOCATION 4.6 TEST FACILITY 4.6 TEST FACILITY 4.7 STATEMENT OF THE MEASUREMENT UNCERTAINTY 4.8 DEVIATION FROM STANDARDS 4.9 ABNORMALITIES FROM STANDARD CONDITIONS 4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER 4.11 EQUIPMENT LIST 	5
5 TEST RESULTS AND MEASUREMENT DATA	11
 5.1 ANTENNA REQUIREMENT	12 16 23 30
6 PHOTOGRAPHS - EUT TEST SETUP	69
6.1 RADIATED SPURIOUS EMISSION	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Chengdu Vantron Technology Co., Ltd.
Address of Applicant:	No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China 610045
Manufacturer:	Chengdu Vantron Technology Co., Ltd.
Address of Manufacturer:	No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China 610045
Factory:	Chengdu Vantron Technology Co., Ltd.
Address of Factory:	No.5 GaoPeng Road, Hi-Tech Zone, Chengdu, SiChuan, P.R. China 610045

4.2 General Description of EUT

Product Name:	Portable electronic tablet computer
Model No.:	IQRemote PG, V MPG
Test Model No.:	IQRemote PG
Trade Mark:	N/A
Software Version:	1.0 FCC
Hardware Version:	Rev 5.1.1
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20) : OFDM (64QAM, 16QAM,QPSK,BPSK)
Transfer Rate:	IEEE for 802.11b: 1Mbps/2Mbps/5.5Mbps/11Mbps IEEE for 802.11g : 6Mbps/9Mbps/12Mbps/18Mbps/24Mbps/36Mbps/48Mbps/54Mbps IEEE for 802.11n(HT20) : 6.5Mbps/13Mbps/19.5Mbps/26Mbps/39Mbps/52Mbps/58.5Mbps/65Mbps
Product Type:	□ Mobile □ Portable ⊠ Fix Location
Test Software of EUT:	Wi-Fi Continuous TX-Modulation
Antenna Type:	FPC antenna
Antenna Gain:	2.67 dBi
Power Supply:	lithium battery: DC 3.7V 2600mAh 9.62Wh, Charge by adapter
Adapter:	AC/DC Adapter: Model: SW-120100 Input: 100-240V~ 50/60Hz 0.68A MAX
	Output: 12V 1000mA

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

Note:

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

4.3 Test Environment and Mode

Operating Env	Operating Environment:				
Temperature:	25.5 °C				
Humidity:	53 % RH				
Atmospheric Pressure:	1009 mbar				
Test mode:					
Transmitting	Keep the EUT in transmitting mode with all kind of modulation and all				
mode:	kind of data rate.				
Run Software:	© ■ 4:12 dulation widown wimpc0				
•	ii = 412				
Wi-Fi Continuous Tx - Moo Mode 802.11n	dulation wi down wi mpc 0 wi tourity 4.LL wi band a				
Wi-Fi Continuous Tx - Moo Mode	widown widown winochtry ALL wimme.bw::api 1 wimme.bw::api 1 wimme: bw::api 1 wimme: bw::api 1 wimme: bw::api 1 wimme: bw::api 1 wimp: bw::api 2 wimp: bw::a				
WI-FI Continuous Tx - Mode Mode 802.11n Bandwidth 20 MHz Channel 1 : 2412 Antenna	dulation wildown wimpc0 wilcountry ALL wiband a wimmic.btw-19 wigg wisg_rate-r6-b20 wilcounter86 windowne				
WI-FI Continuous Tx - Mode Mode 802.11n Bandwidth 20 MHz Channel 1 : 2412	dulation wi down wi mpc 0 wi wicontry ALL wi mouthow -1 wi mimo_bw.cap 1 wi mi				

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
/	/	/	/	/

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• ISED Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

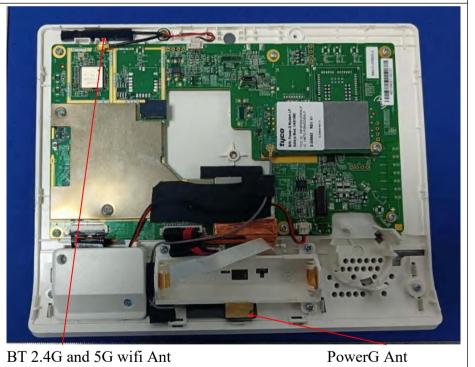
			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2021/9/10	2022/9/9
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2021/9/10	2022/9/9
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2021/9/10	2022/9/9
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2021/9/10	2022/9/9
EMI Test Receiver	R&S	ESPI3	CQA-013	2021/9/10	2022/9/9
LISN	R&S	ENV216	CQA-003	2021/9/10	2022/9/9
Coaxial cable	CQA	N/A	CQA-C009	2021/9/10	2022/9/9

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:

47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

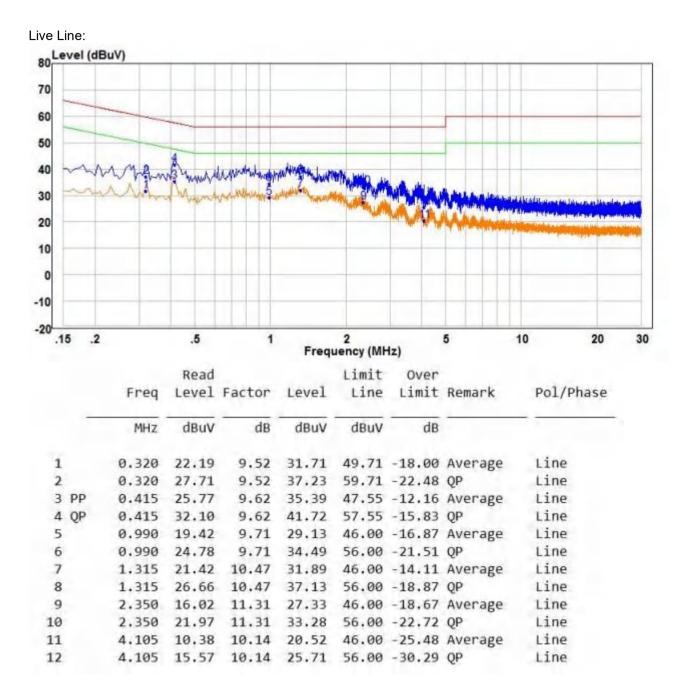
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

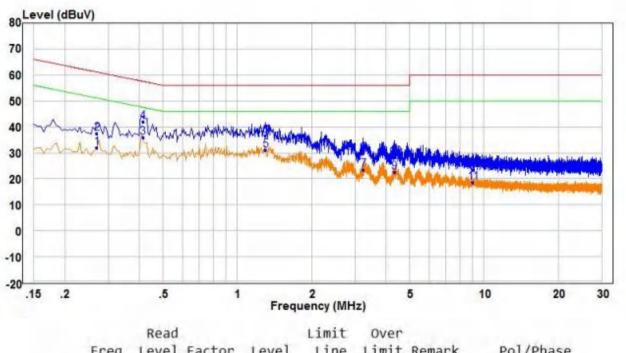
The 2.4G WIFI antenna is FPC antenna. The best case gain of the 2.4G WIFI antenna is 2.67dBi. The best case gain of the 5G WIFI antenna is 1.02dBi.The distance between the two antennas does not exceed 20CM.

5.2 Conducted Emissions


5310115				
47 CFR Part 15C Section 15.2	207			
ANSI C63.10: 2013				
150kHz to 30MHz				
	Limit (dBuV)			
Frequency range (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				
 The mains terminal disturbution. The EUT was connected to Impedance Stabilization Nuimpedance. The power call connected to a second reference plane in the same way as the multiple socket outlet stription a single LISN provided the rational ground reference plane. And placed on the horizontal gription 4) The test was performed with of the EUT shall be 0.4 m the vertical ground reference plane. The ISN unit under test and bonded mounted on top of the grout between the closest points the EUT and associated ed 5) In order to find the maximule equipment and all of the internal sectors. 	bance voltage test was o AC power source thro etwork) which provides oles of all other units of LISN 2, which was the LISN 1 for the unit was used to connect ating of the LISN was r ced upon a non-metallind for floor-standing ar round reference plane, th a vertical ground ref from the vertical ground plane was bonded to th 1 was placed 0.8 m fro d to a ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 and emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω lin f the EUT were bonded to the gro being measured. A multiple power cable not exceeded. c table 0.8m above the rangement, the EUT wards d reference plane. The read d reference plane for LISNs his distance was EUT. All other units co 0.8 m from the LISN 2 we positions of a changed according to the plane for LISNS	near bund es to ne was ar ne ne of 2.	
Shielding Room	AE UISN2 A Ground Reference Plane	Test Receiver		
	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm 1) The mains terminal disturb room. 2) The EUT was connected to Impedance Stabilization N impedance. The power cal connected to a second reference plane in the same way as to multiple socket outlet strip a single LISN provided the ra 3) The tabletop EUT was placed ground reference plane. An placed on the horizontal gr 4) The test was performed wi of the EUT shall be 0.4 m vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ext 5) In order to find the maximumed equipment and all of the in ANSI C63.10: 2013 on cor	150kHz to 30MHz Frequency range (MHz) Limit (c Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 60 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was room. 2) The EUT was connected to AC power source through the provides of all other units of connected to a second LISN 2, which was reference plane in the same way as the LISN 1 for the unit multiple socket outlet strip was used to connect a single LISN provided the rating of the LISN was reference plane. And for floor-standing ar placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The LISN 1 was placed 0.8 m frounit under test and bonded to a ground reference plane. The EUT and associated equipment was at least 0.5 ln order to find the maximum emission, the relative equipment and all of the interface cables must be ANSI C63.10: 2013 on conducted measurement.	ANSI C63.10: 2013 150kHz to 30MHz Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shiel room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω lir impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the grow reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cable a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8 m above th ground reference plane. And for floor-standing arrangement, the EUT placed on the horizontal ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of th unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables mu	

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC120V/60Hz
Test Results:	Pass

Measurement Data



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral Line:

	Freq	rever	Factor	rever	rine	LIMIT	Rellark	POI/Pliase
-	MHz	dBuV	dB	dBuV	dBuV	dB	_	
1	0.270	22.34	9.51	31.85	51.12	-19.27	Average	Neutral
2	0.270	28.07	9.51	37.58	61.12	-23.54	QP	Neutral
3 PP	0.415	26.18	9.62	35.80	47.55	-11.75	Average	Neutral
4 QP	0.415	32,36	9.62	41.98	57.55	-15.57	QP	Neutral
5	1,300	21.44	9.72	31.16	46.00	-14.84	Average	Neutral
6 7	1.300	26.92	9.72	36.64	56.00	-19.36	QP	Neutral
7	3.240	13.74	9.77	23.51	46.00	-22.49	Average	Neutral
8	3.240	20.12	9.77	29.89	56.00	-26.11	QP	Neutral
9	4.330	12.91	9,80	22.71	46,00	-23.29	Average	Neutral
10	4.330	18.61	9.80	28.41	56.00	-27.59	QP	Neutral
11	9.005	8.67	9.87	18.54	50.00	-31.46	Average	Neutral
12	9.005	13.63	9.87	23.50	60.00	-36.50	QP	Neutral

Remark:

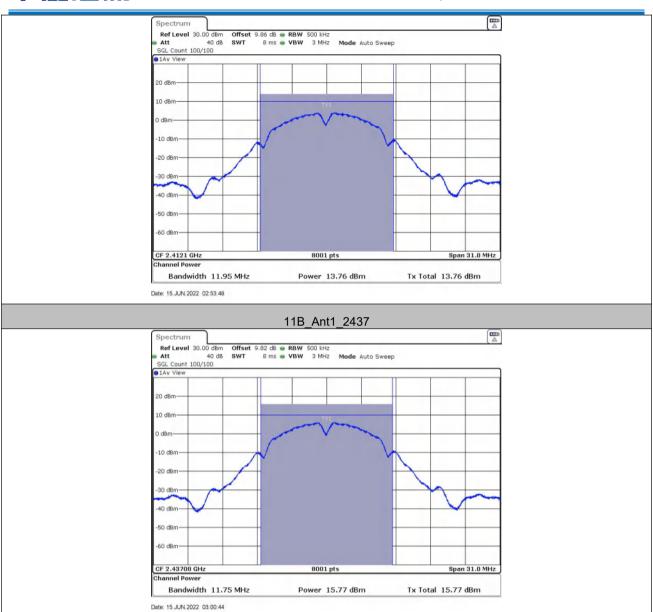
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

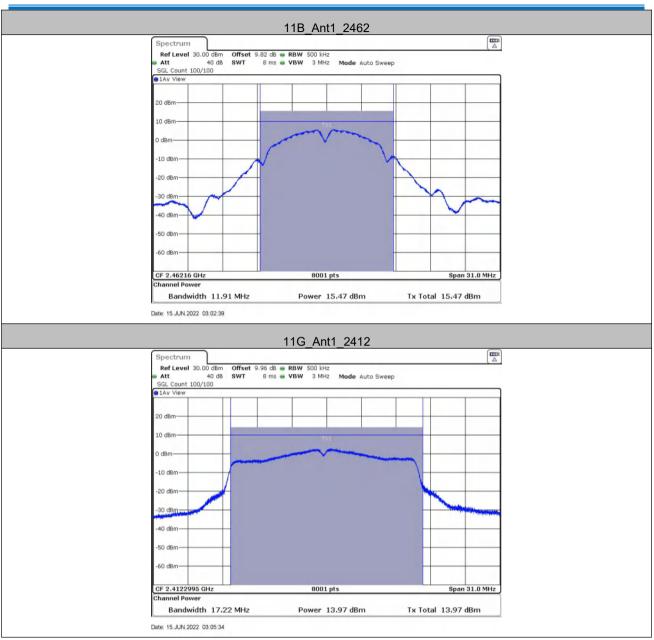
3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak & Average Output Power

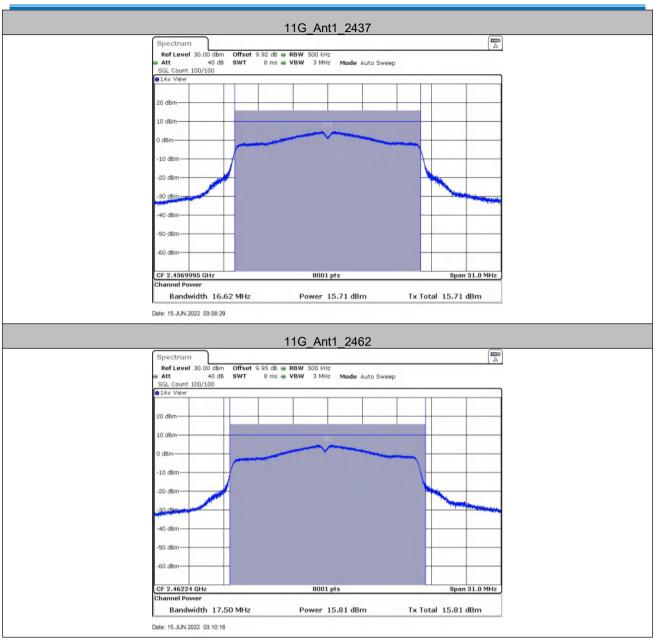
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10: 2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Exploratory Test Meder	Remark: Offset=Cable loss+ attenuation factor.		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ;		
Limit:	30dBm		
Test Results:	Pass		

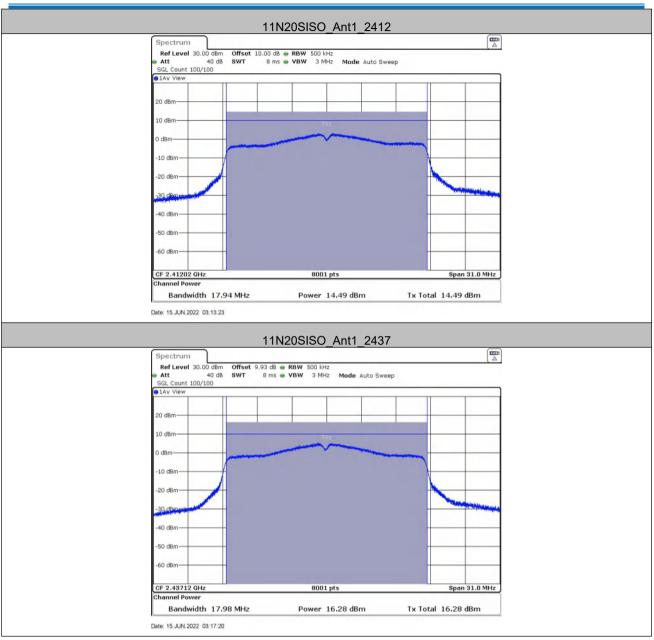

Measurement Data

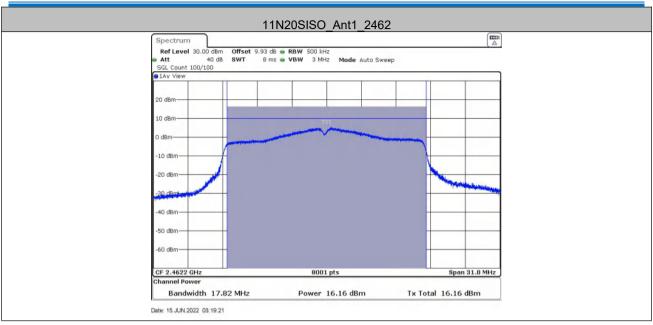
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2412	13.76	≤30	PASS
11B	Ant1	2437	15.77	≤30	PASS
		2462	15.47	≤30	PASS
	Ant1	2412	13.97	≤30	PASS
11G		2437	15.71	≤30	PASS
		2462	15.81	≤30	PASS
		2412	14.49	≤30	PASS
11N20SISO	Ant1	2437	16.28	≤30	PASS
		2462	16.16	≤30	PASS


The Result is averge output power.

11B_Ant1_2412

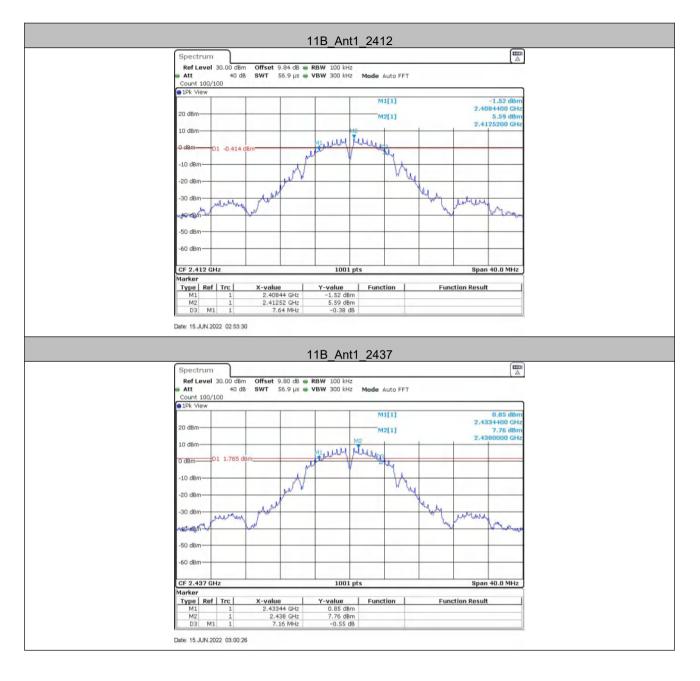




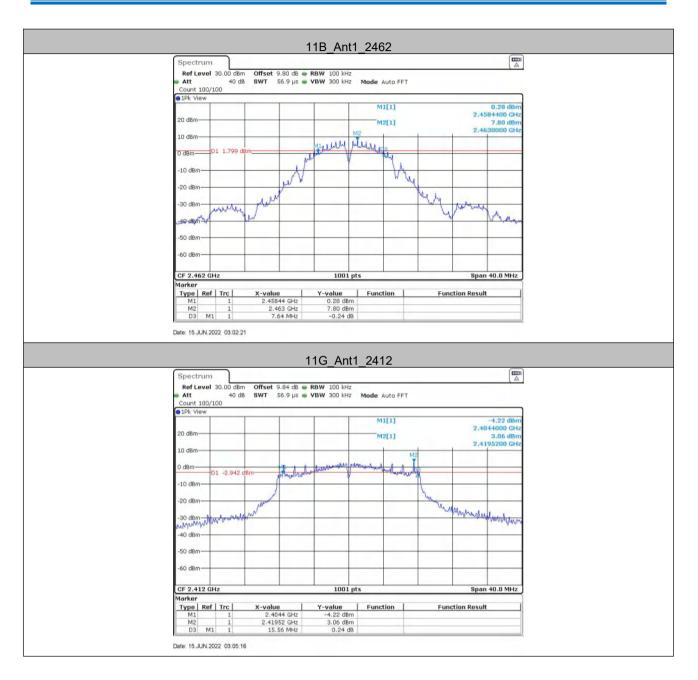


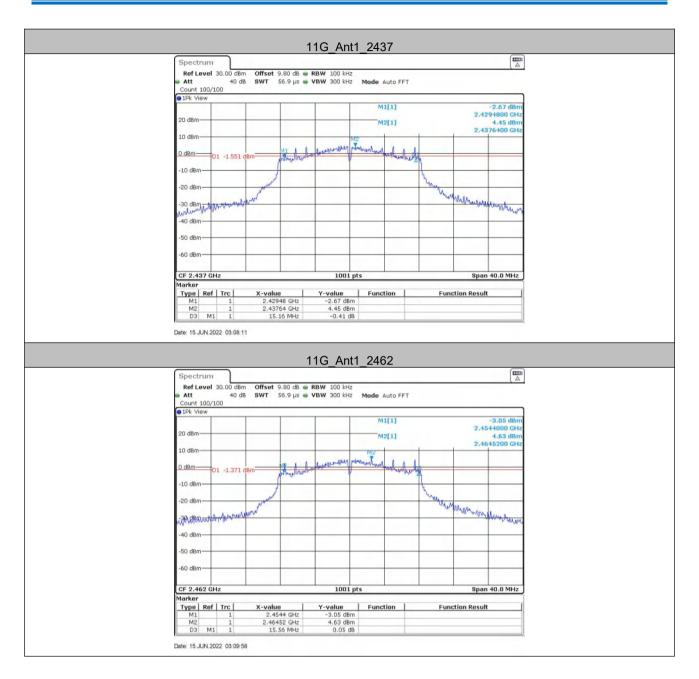
5.4 6dB Occupy Bandwidth

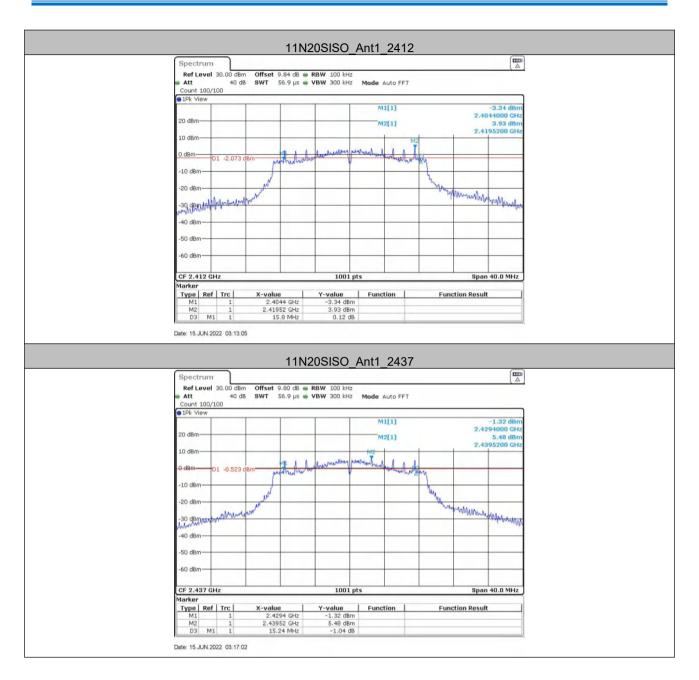
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10: 2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
	Offset=cable loss+ attenuation factor			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ;			
Limit:	≥ 500 kHz			
Test Results:	Pass			



Measurement Data

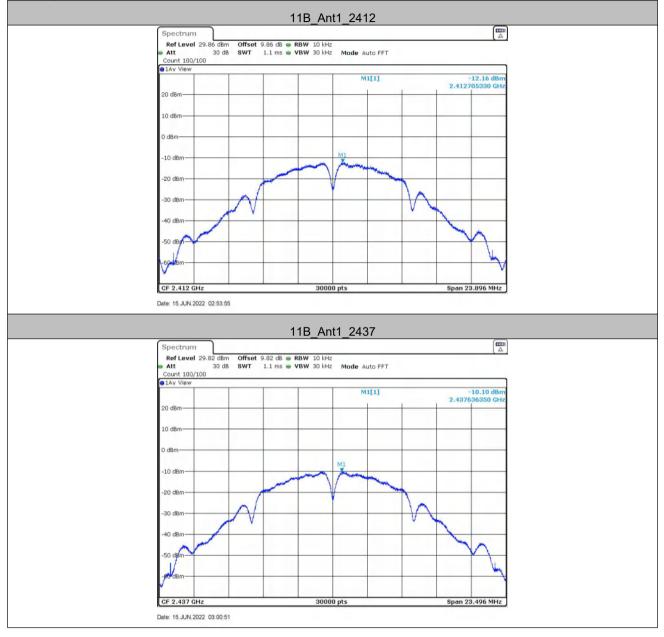

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2412	7.640	2408.440	2416.080	0.5	PASS
11B	Ant1	2437	7.160	2433.440	2440.600	0.5	PASS
		2462	7.640	2458.440	2466.080	0.5	PASS
		2412	15.560	2404.400	2419.960	0.5	PASS
11G	Ant1	2437	15.160	2429.480	2444.640	0.5	PASS
		2462	15.560	2454.400	2469.960	0.5	PASS
11N20SIS	Ant1	2412	15.800	2404.400	2420.200	0.5	PASS
		2437	15.240	2429.400	2444.640	0.5	PASS
0		2462	15.240	2454.400	2469.640	0.5	PASS


Test plot as follows:

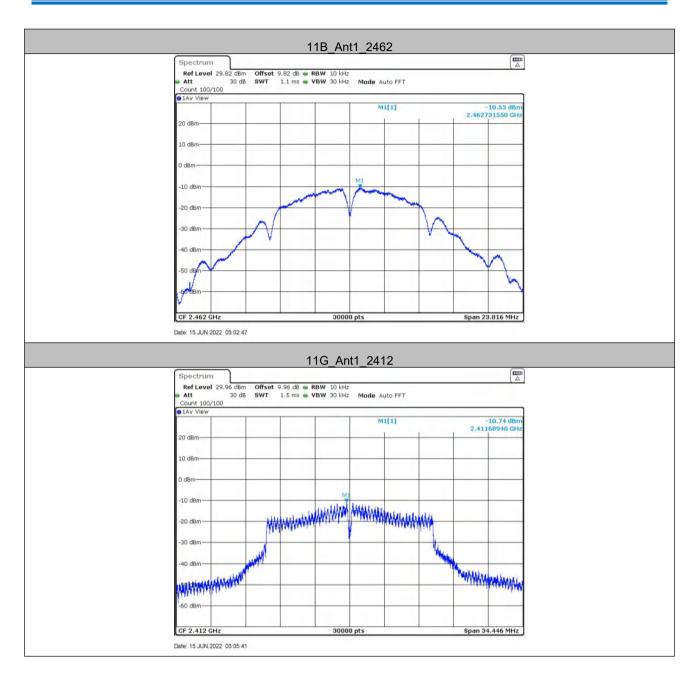


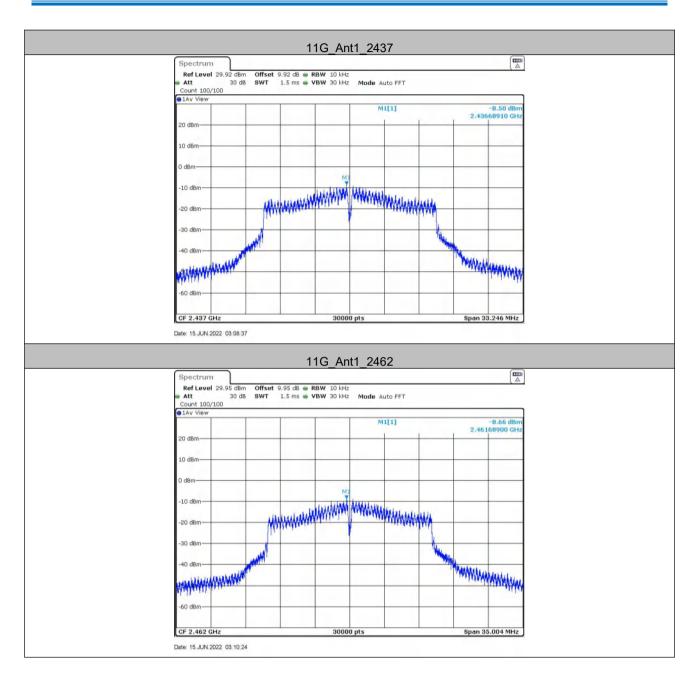
5.5 Power Spectral Density

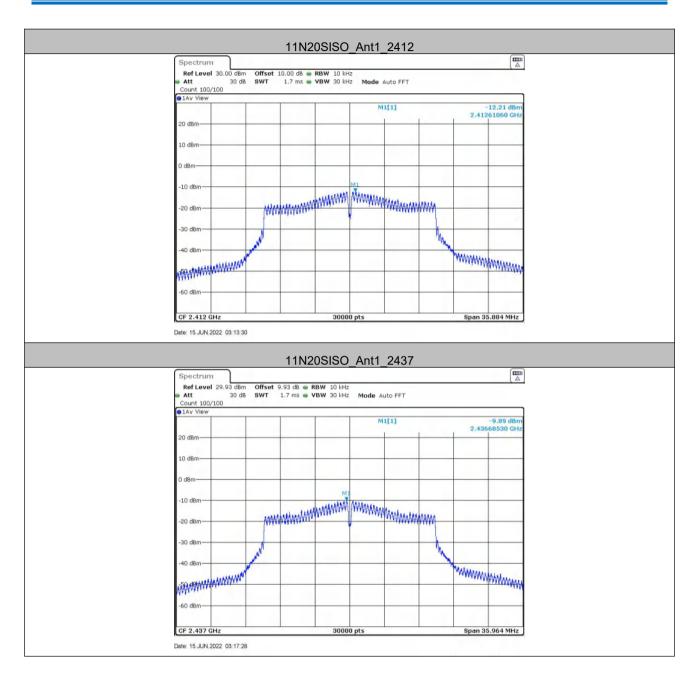
Test Requirement:	47 CFR Part 15C Section 15.247 (e)		
Test Method:	ANSI C63.10: 2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Offset=cable loss+ attenuation factor		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ;		
Limit:	≤8.00dBm/3kHz		
Test Results:	Pass		

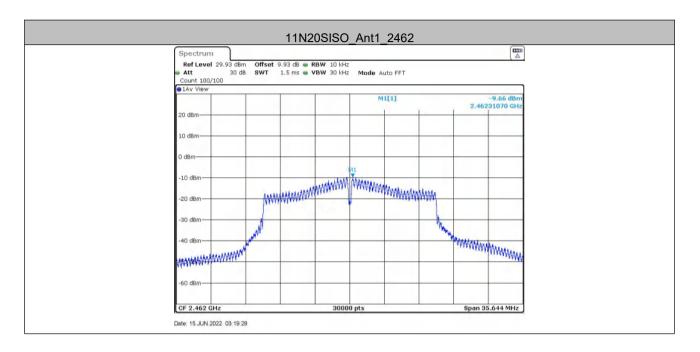

Measurement Data

802.11b mode							
Test channel	Power Spectral Density (dBm/10kHz)	Limit (dBm/10kHz)	Result				
Lowest	-12.16	≤13.23	Pass				
Middle	-10.1	≤13.23	Pass				
Highest	-10.53	≤13.23	Pass				
	802.11g mode						
Test channel	Power Spectral Density (dBm/10kHz)	Limit (dBm/10kHz)	Result				
Lowest	-10.74	≤13.23	Pass				
Middle	-8.5	≤13.23	Pass				
Highest	-8.66	≤13.23	Pass				
	802.11n(HT20) mode						
Test channel	Power Spectral Density (dBm/10kHz)	Limit (dBm/10kHz)	Result				
Lowest	-12.21	≤13.23	Pass				
Middle	-9.89	≤13.23	Pass				
Highest	-9.66	≤13.23	Pass				


The Result is average PSD.

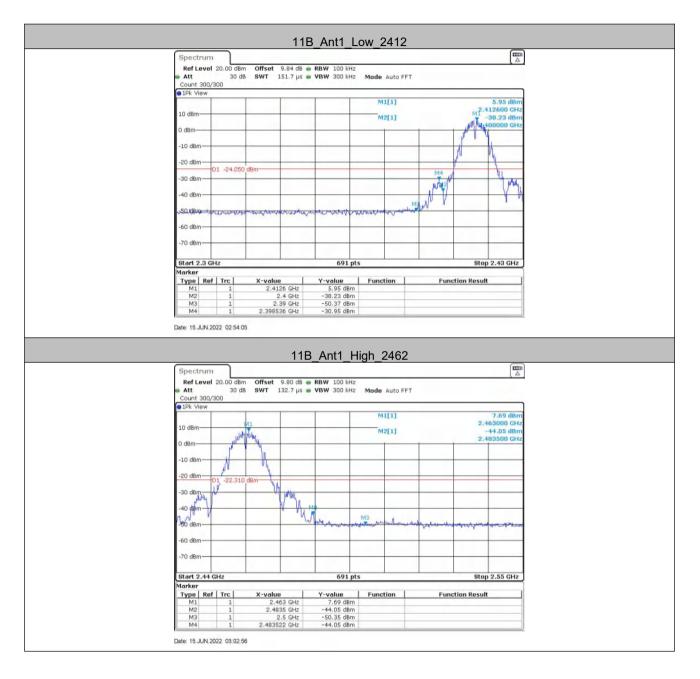

Test plot as follows:





5.6 Band-edge for RF Conducted Emissions

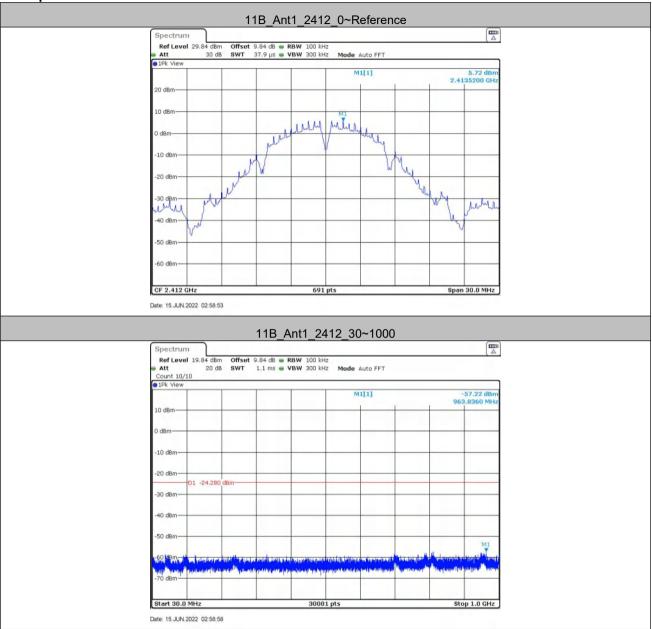
Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
	Offset=cable loss+ attenuation factor			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
. Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ;			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Results:	Pass			



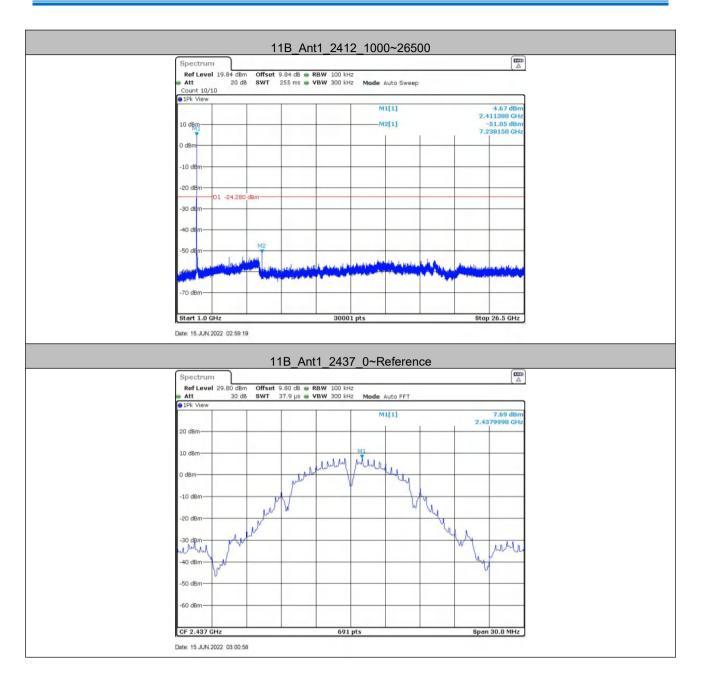
Test Data:

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
		Low	2412	5.95	-30.95	≤-24.05	PASS
11B	Ant1	High	2462	7.69	-44.05	≤-22.31	PASS
		Low	2412	2.45	-28.55	≤-27.55	PASS
11G	Ant1	High	2462	4.45	-33.76	≤-25.55	PASS
		Low	2412	0.01	-37.43	≤-29.99	PASS
11N20SISO	Ant1	High	2462	5.10	-33.84	≤-24.9	PASS

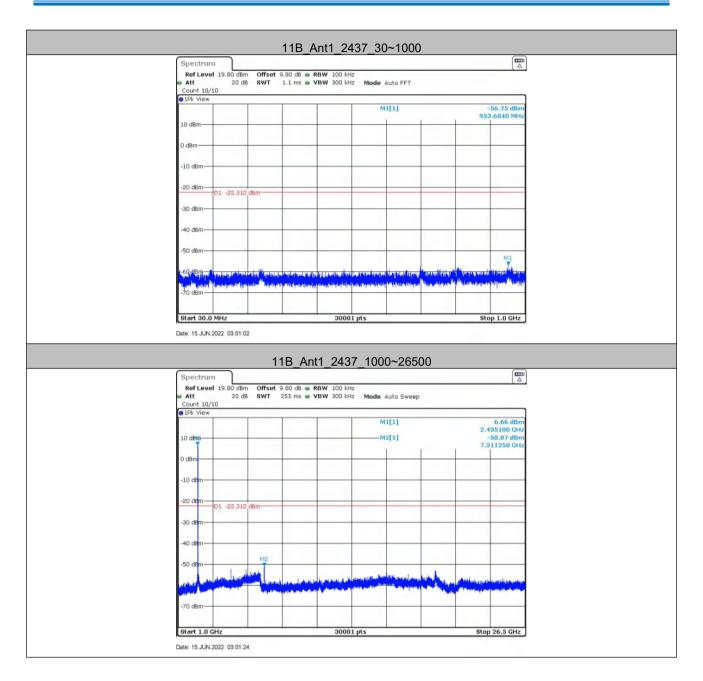
Test plot as follows:

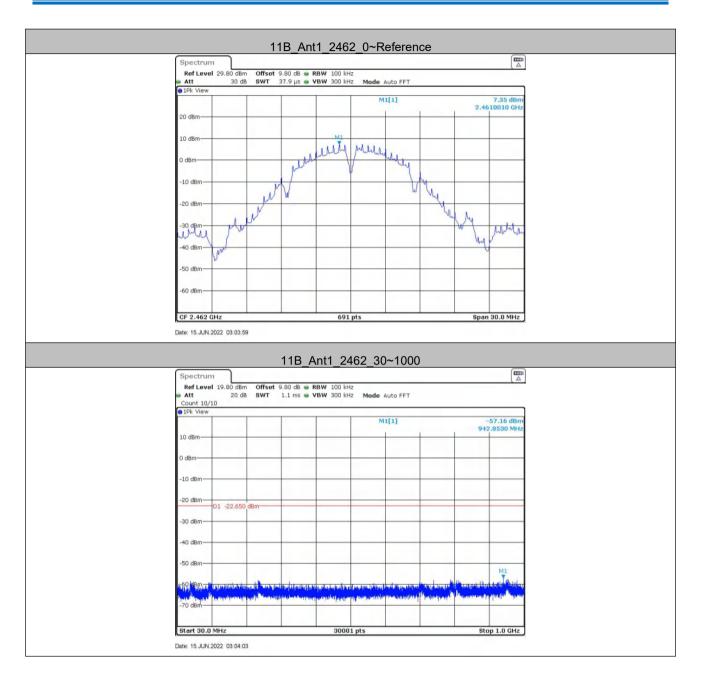

5.7 RF Conducted Spurious Emissions

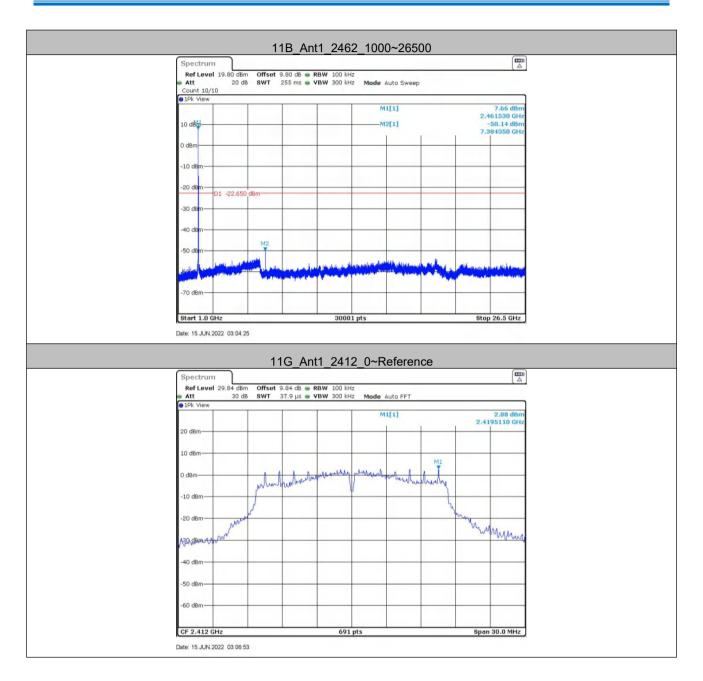
Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10: 2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Offset=cable loss+ attenuation factor		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ;		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test Results:	Pass		

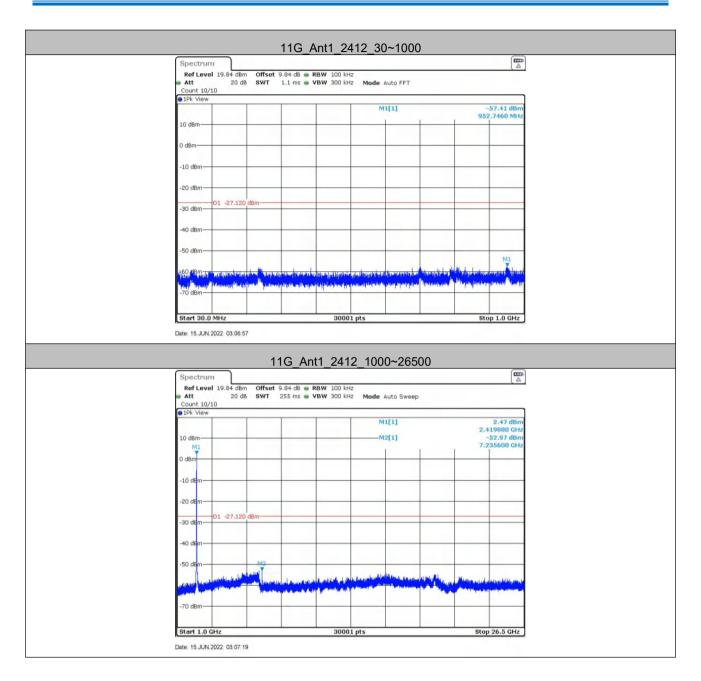


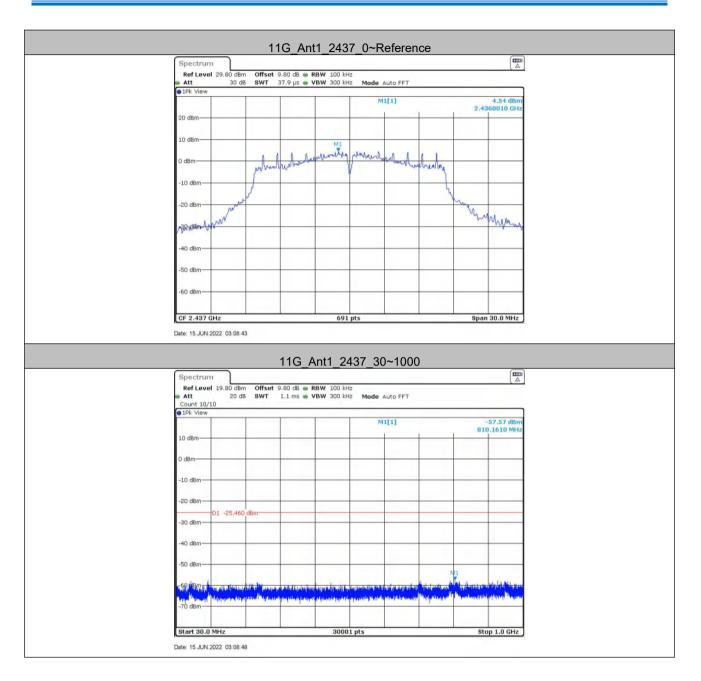
Report No.: CQASZ20220100086E-02

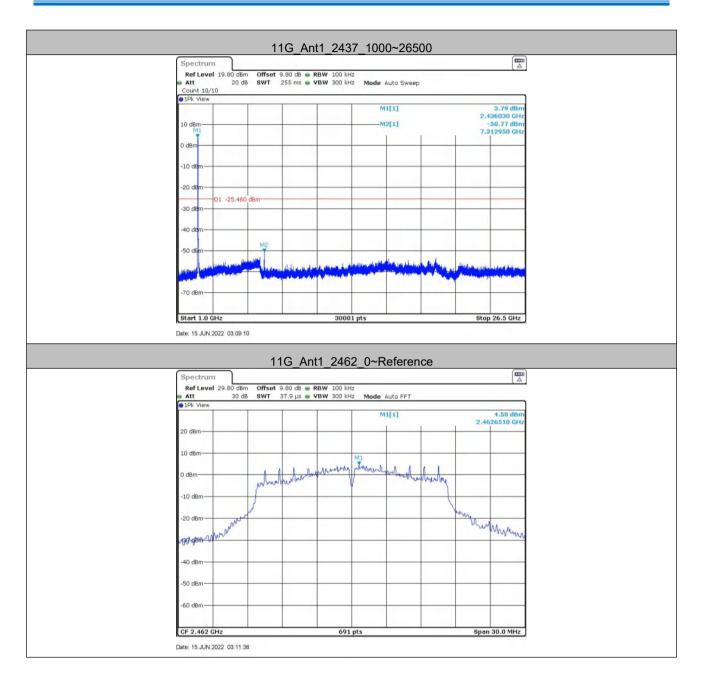

Test plot as follows:

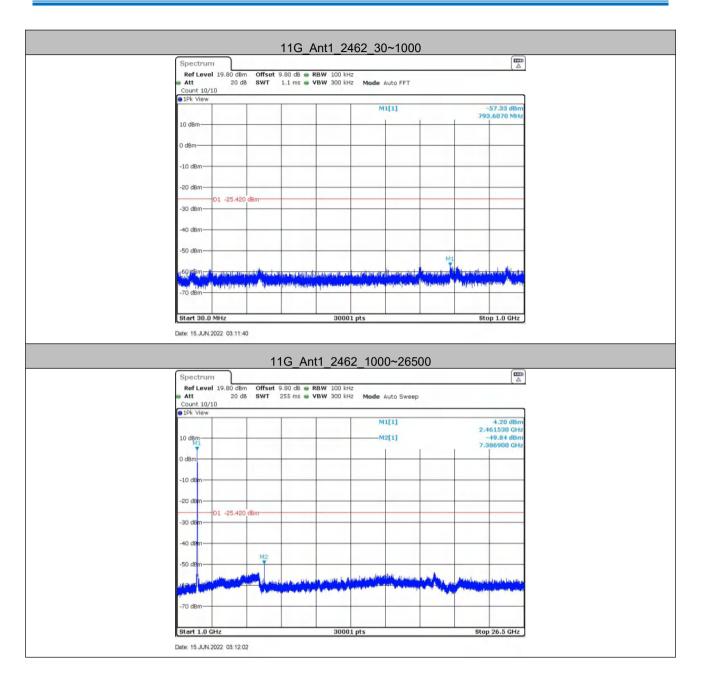


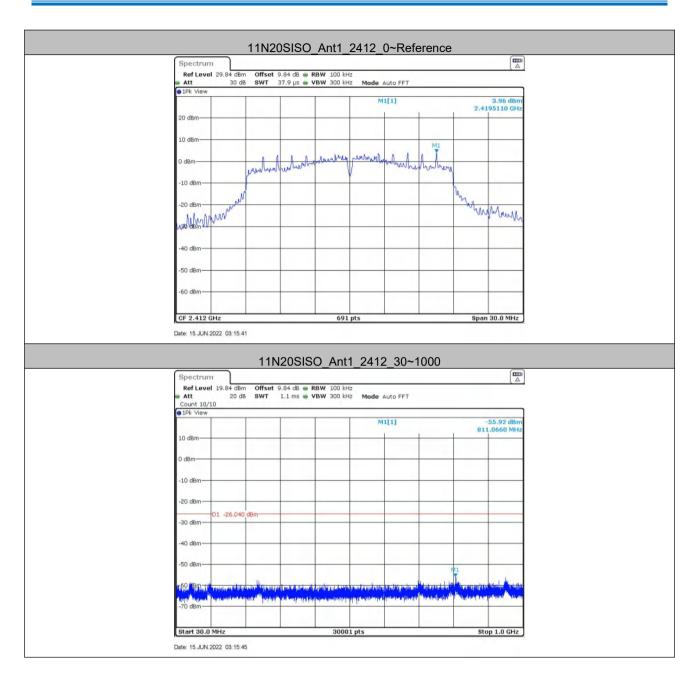


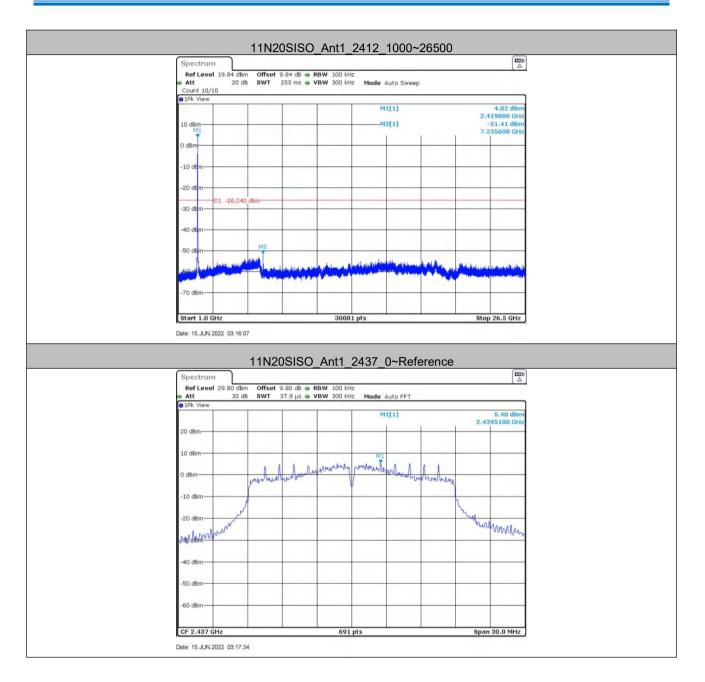


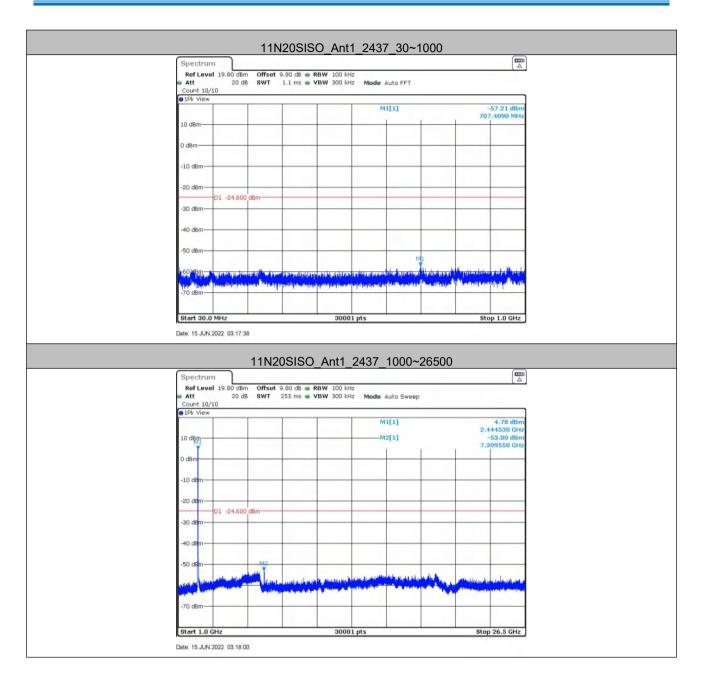


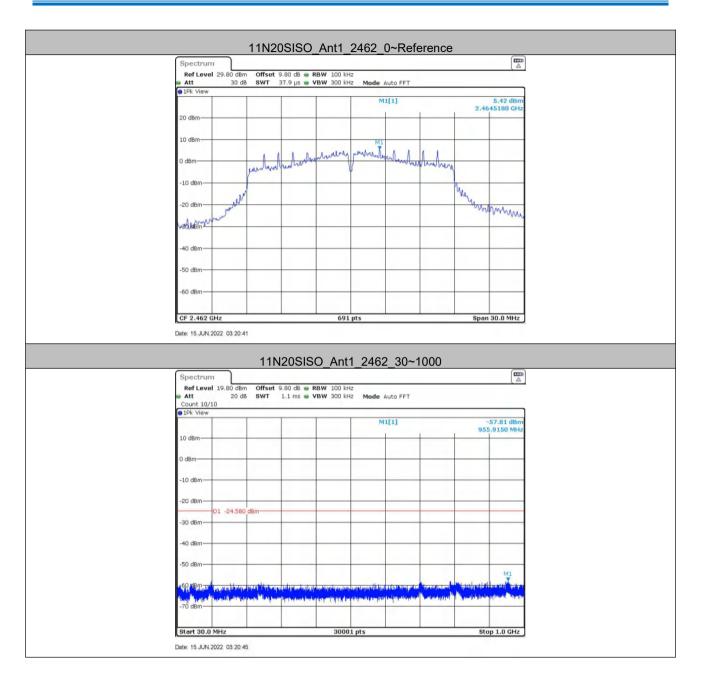


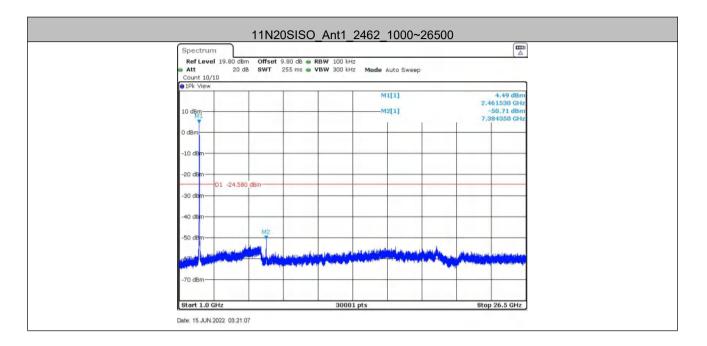




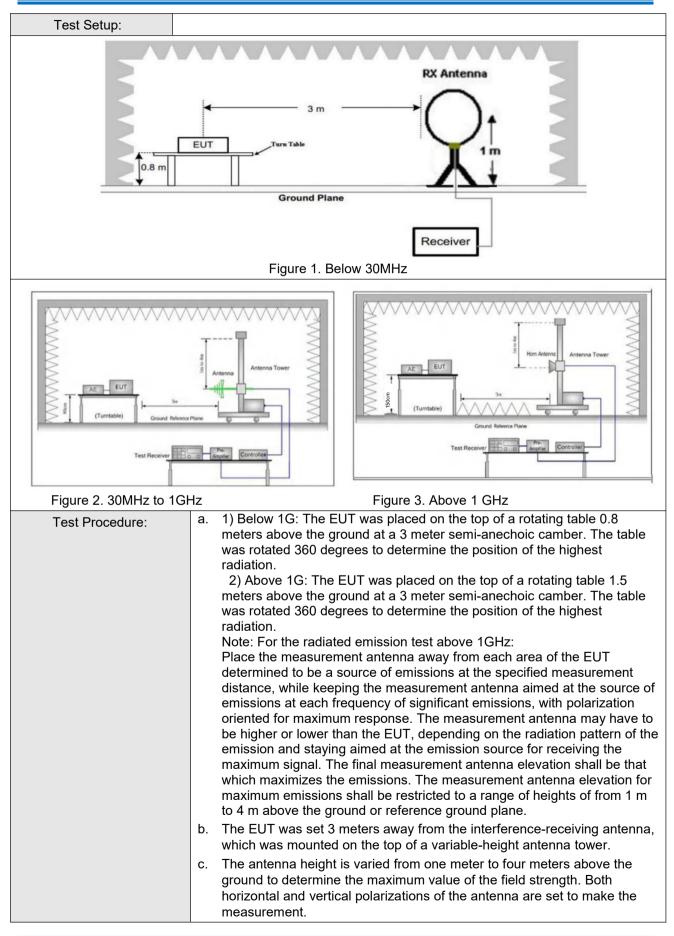






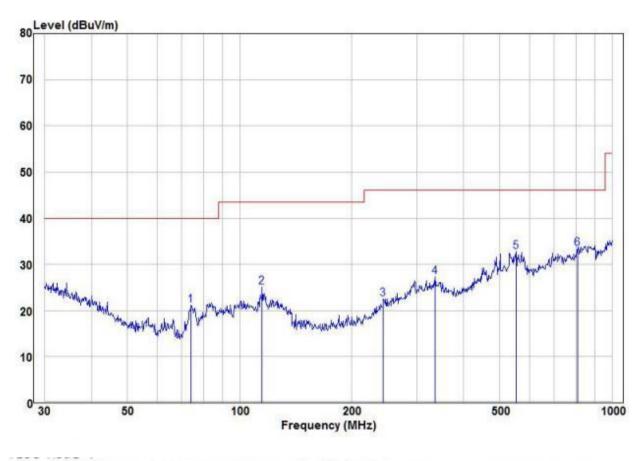


Remark:


Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

5.8 Radiated Spurious Emissions

_							
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance:	3m (Semi-Anechoi	c Chamber)				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above IGHZ	Peak	1MHz	10Hz	Average		
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30		
	1.705MHz-30MHz	30	-	-	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						



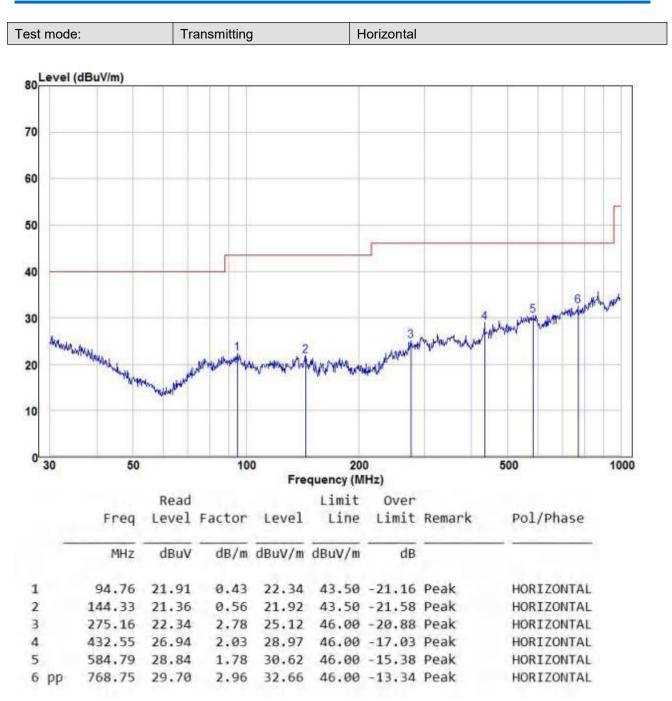
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.	
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.	
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel h. Repeat above procedures until all frequencies measured was complete. 	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.	
	Transmitting mode, Charge + Transmitting mode.	
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge +Transmitting mode, four the Charge +Transmitting mode which it is worse case Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case of 802.11n(HT20) ; For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.	
Test Results:	Pass	
TOST ROSUITS.		

5.8.1 Radiated emission below 1GHz

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	-	
1	74.14	20.81	0.37	21.18	40.00	-18.82	Peak	VERTICAL
2	114.92	24.67	0.49	25,16	43.50	-18.34	Peak	VERTICAL
3	243.38	19.79	2.66	22.45	46.00	-23.55	Peak	VERTICAL
4	334.86	24.49	2.88	27.37	46.00	-18.63	Peak	VERTICAL
5	552,88	30.50	2.25	32,75	46.00	-13.25	Peak	VERTICAL
6 pp	807.43	29.34	4.02	33,36	46.00	-12.64	Peak	VERTICAL

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Report No.: CQASZ20220100086E-02

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor – Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.8.2 Transmitter emission above 1GHz

2.4G WIFI can transmit at the same time with Power G, so the test data describes the test results of both transmission at the same time.

Test mode:		802.11b(1	Mbps)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
1825.500	54.21	-9.32	44.89	74	-29.11	peak	Н
4824.000	52.66	-4.26	49.45	74	-24.55	peak	н
4824.000	36.27	-4.26	32.39	54	-21.61	AVG	Н
7236.000	51.09	1.18	53.04	74	-20.96	peak	Н
7236.000	37.73	1.18	40.11	54	-13.89	AVG	Н
1825.500	53.02	-9.32	43.7	74	-30.3	peak	V
4824.000	55.27	-4.26	50.33	74	-23.67	peak	V
4824.000	38.83	-4.26	35.41	54	-18.59	AVG	V
7236.000	51.01	1.18	51.56	74	-22.44	peak	V
7236.000	35.74	1.18	36.27	54	-17.73	AVG	V

Test mode:		802.11b(1	Mbps)	Test chann	el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4874.000	52.45	-4.12	47.52	74	-26.48	peak	н
4874.000	36.72	-4.12	33.67	54	-20.33	AVG	н
7311.000	49.86	1.46	51.13	74	-22.87	peak	н
7311.000	35.02	1.46	37.01	54	-16.99	AVG	Н
4874.000	53.35	-4.12	48.27	74	-25.73	peak	V
4874.000	36.18	-4.12	33.68	54	-20.32	AVG	V
7311.000	48.86	1.46	51.03	74	-22.97	peak	V
7311.000	36.90	1.46	36.63	54	-17.37	AVG	V

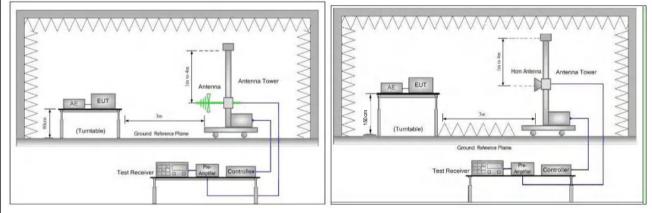
Test mode:		802.11b(11	Mbps)	Test chann	el:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
1838.212	53.21	-9.29	43.92	74	-30.08	peak	н
4924.000	53.10	-4.03	48.34	74	-25.66	peak	н
4924.000	37.78	-4.03	32.96	54	-21.04	AVG	Н
7386.000	50.67	1.66	52.90	74	-21.10	peak	н
7386.000	37.32	1.66	37.97	54	-16.03	AVG	н
1838.212	54.02	-9.29	44.73	74	-29.27	peak	V
4924.000	54.84	-4.03	50.66	74	-23.34	peak	V
4924.000	37.64	-4.03	34.81	54	-19.19	AVG	V
7386.000	49.52	1.66	52.18	74	-21.82	peak	V
7386.000	36.03	1.66	38.04	54	-15.96	AVG	V

Remark:

1) The 1Mbps of rate of 802.11b is the worst case.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

5.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205				
Test Method:	ANSI C63.10 2013				
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chamber	r)		
Limit:	Frequency	Frequency Limit (dBuV/m @3m) Remark			
	30MHz-88MHz 40.0 Quasi-peak				
	88MHz-216MHz 43.5 Quasi-peak Value				
	216MHz-960MHz	46.0	Quasi-peak Value		
	960MHz-1GHz	54.0	Quasi-peak Value		
	Above 1GHz	54.0	Average Value		
		74.0	Peak Value		

Test Setup:

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:
	 Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and

	then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test	Transmitting with all kind of modulations, data rates.
Mode:	Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g ; 6.5Mbps of rate is the worst case
	of 802.11n(HT20) ;
Test Results:	Pass

Test data:

Worse case mode:		802.11b(1N	/lbps)	Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	58.54	-9.2	49.42	74	-24.58	peak	н
2390.000	44.08	-9.2	35.36	54	-18.64	AVG	н
2400.000	59.63	-9.39	50.84	74	-23.16	peak	н
2400.000	46.98	-9.39	37.05	54	-16.95	AVG	н
2390.000	58.36	-9.2	49.53	74	-24.47	peak	V
2390.000	44.49	-9.2	35.40	54	-18.60	AVG	V
2400.000	59.56	-9.39	50.14	74	-23.86	peak	V
2400.000	46.02	-9.39	36.63	54	-17.37	AVG	V

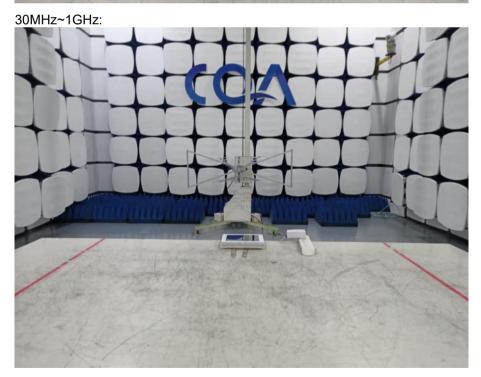
Worse case mode:		802.11b(1N	/lbps)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	57.53	-9.29	48.47	74	-25.53	peak	Н
2483.500	43.68	-9.29	34.19	54	-19.81	AVG	Н
2483.500	57.78	-9.29	48.68	74	-25.32	peak	V
2483.500	45.73	-9.29	36.19	54	-17.81	AVG	V

Worse case mode:		802.11g(6M	/lbps)	Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	59.15	-9.2	50.00	74	-24.00	peak	Н
2390.000	44.86	-9.2	34.81	54	-19.19	AVG	Н
2400.000	60.08	-9.39	50.75	74	-23.25	peak	н
2400.000	46.44	-9.39	36.94	54	-17.06	AVG	Н
2390.000	58.47	-9.2	49.08	74	-24.92	peak	V
2390.000	44.62	-9.2	34.87	54	-19.13	AVG	V
2400.000	60.14	-9.39	50.23	74	-23.77	peak	V
2400.000	46.82	-9.39	37.51	54	-16.49	AVG	V

Worse case mode:		802.11g(6N	/lbps)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	57.82	-9.29	48.77	74	-25.23	peak	н
2483.500	43.73	-9.29	34.72	54	-19.28	AVG	н
2483.500	58.29	-9.29	48.81	74	-25.19	peak	V
2483.500	45.77	-9.29	36.54	54	-17.46	AVG	V

Worse case mode:		802.11n(HT	20)(6.5Mbps)	Test channel:		Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	59.20	-9.2	49.79	74	-24.21	peak	н
2390.000	44.21	-9.2	35.72	54	-18.28	AVG	н
2400.000	60.06	-9.39	50.55	74	-23.45	peak	н
2400.000	46.00	-9.39	36.60	54	-17.40	AVG	н
2390.000	59.16	-9.2	49.65	74	-24.35	peak	V
2390.000	44.50	-9.2	35.25	54	-18.75	AVG	V
2400.000	60.03	-9.39	50.29	74	-23.71	peak	V
2400.000	46.07	-9.39	37.26	54	-16.74	AVG	V

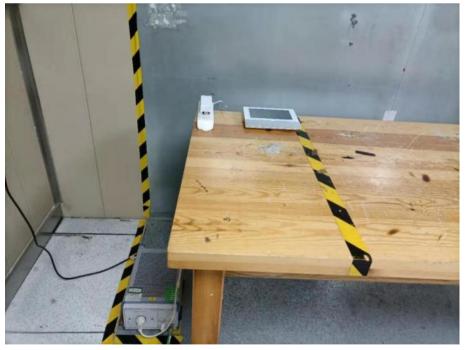
Worse case mode:		802.11n(HT	20)(6.5Mbps)	Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	57.73	-9.29	49.03	74	-24.97	peak	Н
2483.500	43.70	-9.29	34.32	54	-19.68	AVG	Н
2483.500	57.87	-9.29	48.30	74	-25.70	peak	V
2483.500	45.46	-9.29	36.23	54	-17.77	AVG	V



6 Photographs - EUT Test Setup


6.1 Radiated Spurious Emission

9KHz~30MHz:



6.2 Conducted Emission

PHOTOGRAPHS OF EUT Constructional Details

Refer to APPENDIX 2 PHOTOGRAPHS OF EUT for CQASZ20220100086E-01.

*** END OF REPORT***