

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong SAR, China.

 Telephone:
 (852) 2173 8888

 Facsimile:
 (852) 2785 5487

 www.intertek.com

TEST REPORT

Report Number: 20101182HKG-001

Application for Original Grant of 47 CFR Part 15 Certification

New Family of RSS-247 Issue 2 Equipment

FCC ID: 2AAFX-M2H5BLE

IC: 11137A-M2H5BLE

Prepared and Checked by:

Approved by:

Signed On File Wong Cheuk Ho, Herbert Lead Engineer

Wong Kwok Yeung, Kenneth Senior Lead Engineer Date: March 18, 2020

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Deere & Company
One John Deere Place
Moline
Illinois 61265
United States
FCC Part 15, October 1, 2019 Edition
2AAFX-M2H5BLE
PH85239277, PH85239285, PH85239281, PH85239306,
PH85239297
RSS-247 Issue 2, February 2017
RSS-Gen Issue 5 Amendment 1, March 2019
11137A-M2H5BLE
PH85239277, PH85239285, PH85239281, PH85239306,
PH85239297
PH85239277, PH85239285, PH85239281, PH85239306,
PH85239297
Spread Spectrum Transmitter
Deere & Company Instrument Cluster with Bluetooth LE (BLE)
1101127 (radiated emission test)
1101119 (conductive measurement test)
October 30, 2020
October 30, 2020 to December 28, 2020
March 18, 2020
Temperature: +10 to 40°C
Humidity: 10 to 90%
Test was conducted by client submitted sample. The submitted
sample as received complied with the 47 CFR Part 15 / RSS-247 Issue
2 Certification.

TABLE OF CONTENTS

1.0	TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE	4
	1.1 Summary of Test Results	4
	1.2 Statement of Compliance	4
2.0	GENERAL DESCRIPTION	5
	2.1 Product Description	5
	2.2 Test Methodology	6
	2.3 Test Facility	6
	2.4 Related Submittal(s) Grants	6
3.0	SYSTEM TEST CONFIGURATION	7
	3.1 Justification	7
	3.2 EUT Exercising Software	8
	3.3 Details of EUT and Description of Accessories	9
	3.4 Measurement Uncertainty	9
4.0	TEST RESULTS	
	4.1 Maximum Conducted Output Power at Antenna Terminals	10
	4.2 Minimum 6dB RF Bandwidth	12
	4.3 Maximum Power Spectral Density	15
	4.4 Out of Band Conducted Emissions	20
	4.5 Field Strength Calculation	25
	4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions	26
	4.6.1 Radiated Emission Configuration Photograph	26
	4.6.2 Radiated Emission Data	
	4.6.3 Radiated Emission Test Setup	31
	4.6.4 Transmitter Duty Cycle Calculation	
	4.7 AC Power Line Conducted Emission	
5.0	EQUIPMENT LIST	

1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	RSS-247/ RSS-Gen# Section	Results	Details See Section
Antenna Requirement	15.203	7.1.2#	Pass	2.1
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	5.4(4)	Pass	4.1
Min. 6dB RF Bandwidth	15.247(a)(2)	5.2(1)	Pass	4.2
Max. Power Density (average)	15.247(e)	5.2(2)	Pass	4.3
Out of Band Antenna Conducted Emission	15.247(d)	5.5	Pass	4.4
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	5.5	Pass	4.6
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4#	N/A	4.7

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2019 Edition RSS-247 Issue 2, February 2017 RSS-Gen Issue 5 Amendment 1, March 2019

2.0 GENERAL DESCRIPTION

2.1 Product Description

The product, Deere & Company Instrument Cluster with Bluetooth LE (BLE), operates on Vehicle Battery (12VDC) & reads vehicle information from the CAN bus and convey that information to user's mobile device via BLE.

The Equipment Under Test (EUT) operates at frequency range of 2402MHz to 2480MHz.

The antenna(s) used in the EUT is internal, integral, inverted-F shaped PCB Trace Antenna, and the test sample is a prototype.

For FCC, the Model(s): PH85239285, PH85239281, PH85239306, PH85239297 are the same as the Model: PH85239277 in electronics/electrical designs including software & firmware, Bluetooth BLE RF portion, PCB layout and construction design/physical design/enclosure as declared by client. The only differences between these models are have reduced features to be sold for marketing purpose as declared by client.

For IC, the Model(s): PH85239285, PH85239281, PH85239306, PH85239297 are the same as the Model: PH85239277 in electronics/electrical designs including software & firmware, Bluetooth BLE RF portion, PCB layout and construction design/physical design/enclosure as declared by client. The only differences between these models are have reduced features to be sold for marketing purpose as declared by client.

The representative model PH85239277 (full features) was selected to test.

The circuit description is saved with filename: descri.pdf.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No.558074 D01 v05r01 (11-February-2019). All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 5 Amendment 1, March 2019.

2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Workshop No. 3, G/F., World-Wide Industrial Centre, 43-47 Shan Mei Street, Fo Tan, Sha Tin, N.T., Hong Kong SAR, China. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 2042H.

2.4 Related Submittal(s) Grants

This is an application for certification of a transceiver (Bluetooth BLE portion)

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by 12VDC (fully charged 12VDC lead acid car battery).

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

3.1 Justification – Cont'd

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis… Pulsed RF.* The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 3MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

All relevant operation modes have been tested, and the worst-case data is included in this report.

3.2 EUT Exercising Software

The EUT exercise program (if any) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.3 Details of EUT and Description of Accessories

Details of EUT:

The EUT was powered by 12VDC (fully charged 12VDC lead acid car battery)

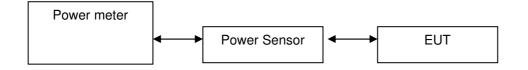
Description of Accessories:

- (1) Load Box comprises of Switches, LED Indicators, Load resistances, Harness (from JDES)
- (2) CAN/LIN Interface from Vector with 1.5m USB cable (Asset No: 0799 3300000436) (Provided by Applicant)
- (3) HP Notebook Computer (Adaptor Model: HSTNN-CA15) (Provided by Intertek)

3.4 Measurement Uncertainty

Decision Rule for compliance: For FCC/IC standard, the measured value must be within the limits of applicable standard without accounting for the measurement uncertainty. For EN/IEC/HKTA/HKTC standard, conformity rules will be used as per standard directly excepted EN/IEC 61000-3-2, EN/IEC 61000-3-3, HKTA1004, HKCA1008, HKTA1019, HKTA1020, HKTA1041 and HKTA1044. For these excepted or not mentioned standards, Cl 4.2.2 of ILAC-G8:09/2019 decision rules will be reference and guard band will be equal to our measurement uncertainty with 95% confidence level (k=2). In case, the measured value is within guard band region, undetermined decision will be used. The values of the Measurement uncertainty for radiated emission test and RF conducted measurement test are \pm 5.3dB and \pm 0.99dB respectively. The value of the Measurement uncertainty for conducted emission test is \pm 4.2dB.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.



4.0 TEST RESULTS

4.1 Maximum Conducted (peak) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

The antenna power of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to the obtain power at the EUT antenna terminals. The measurement procedure 9.1.2 was used.

The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

Frequency (M	Hz)	Output in dBm	Output in mWatt
Low Channel:	2402	10.6	11.5
Middle Channel:	2440	10.4	11.0
High Channel:	2480	9.9	9.8

Bluetooth BLE Antenna Gain = 0.3 dBi

4.1 Maximum Conducted Output Power at Antenna Terminals – Cont'd

Cable loss : <u>0.5</u> dB External Attenuation : <u>0</u> dB

Cable loss, external	attenuation:
----------------------	--------------

included in OFFSET function added to SA raw reading

Bluetooth BLE

max. conducted (peak) output level = <u>10.6</u> dBm

Limits:

1W (30dBm) for antennas with gains of 6dBi or less

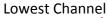
____W (____dBm) for antennas with gains more than 6dBi

The plots of conducted output power are saved as below.

4.2 Minimum 6dB RF Bandwidth

The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Blue	tooth BLE
Frequency (MHz)	6dB Bandwidth (MHz)
Low Channel: 2402	0.708
Middle Channel: 2440	0.708
High Channel: 2480	0.708


Limits

6 dB bandwidth shall be at least 500kHz

The plots of 6dB RF bandwidth are saved as below.

PLOTS OF 6dB RF BANDWIDTH



PLOTS OF 6dB RF BANDWIDTH

Highest Channel

4.3 Maximum Power Spectral Density

Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

	Bluetooth BLE	
Frequency (MHz)	PSD in 100kHz (dBm)	PSD in 3kHz (dBm)
Low Channel: 2402	9.25	-7.25
Middle Channel: 2440	9.30	-7.24
High Channel: 2480	8.45	-7.84

Cable Loss: 0.5 dB

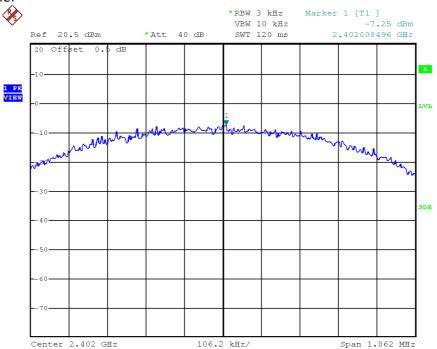
Limit: 8dBm

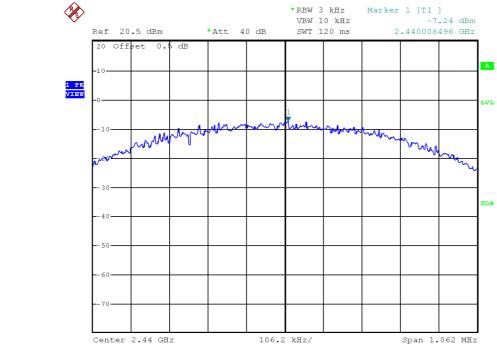
The plots of power spectral density are as below.

PLOTS OF POWER SPECTRAL DENSITY (100kHz RBW)

Lowest channel

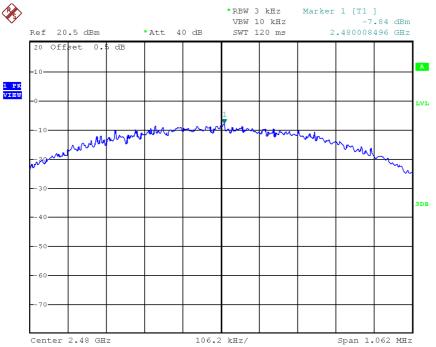
PLOTS OF POWER SPECTRAL DENSITY (100kHz RBW)


Highest channel



PLOTS OF POWER SPECTRAL DENSITY (3kHz RBW)

Lowest channel


Middle channel

PLOTS OF POWER SPECTRAL DENSITY (3kHz RBW)

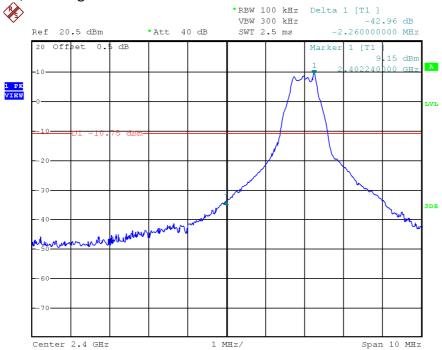
Highest channel

4.4 Out of Band Conducted Emissions

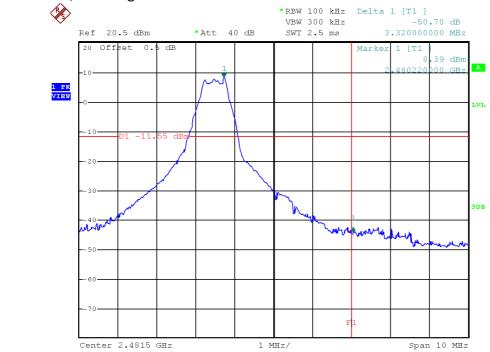
For Bluetooth BLE, the maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth for Bluetooth BLE.

The measurement procedures under sections 11 of KDB No.558074 D01 v05r01 (11-February-2019) were used.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

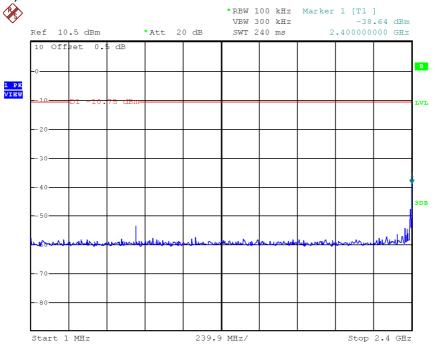

Limits:

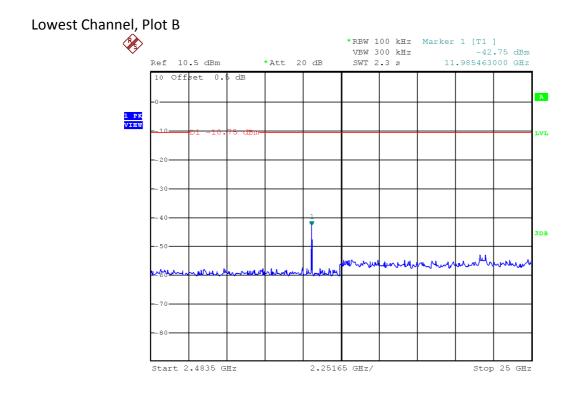
All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the maximum measured in-band peak PSD level.



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

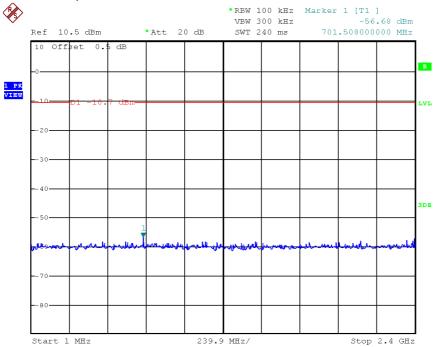
Lowest Channel, Bandedge

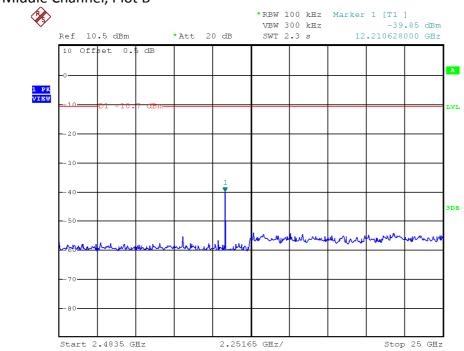

Highest Channel, Bandedge



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

Lowest Channel, Plot A

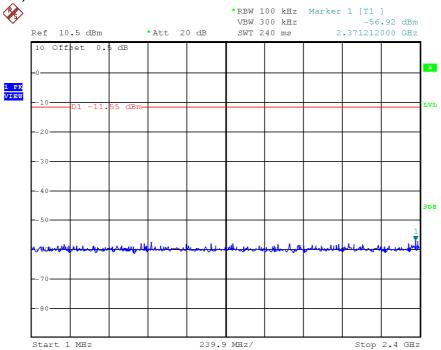




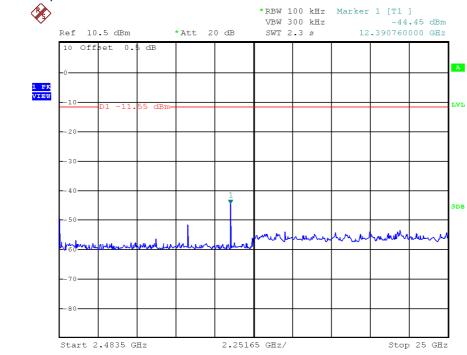
PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

802.11b, Middle Channel, Plot A

Date: 22.DEC.2020 02:32:12



802.11b, Middle Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS

Highest Channel, Plot A

Highest Channel, Plot B

4.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in $dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in dBμV
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB
PD = Pulse Desensitization in dB
AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

<u>Example</u>

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB μ V/m. This value in dB μ V/m is converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0.0 dB AV = -10 dB

 $FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(32.0 dB μ V/m)/20] = 39.8 μ V/m

4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission

at

2390 and 12200 MHz

The worst-case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emission Data

The data in tables 1-6 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Passed by 0.2 dB margin

RADIATED EMISSION DATA

Mode: TX-Channel 2402MHz

Table 1 Bluetooth BLE

					Net at		
			Pre-Amp	Antenna	3m	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	Average	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2390.000	57.4	33	29.4	53.8	54.0	-0.2
Н	4804.000	43.0	33	34.9	44.9	54.0	-9.1
V	12010.000	45.5	33	40.5	53.0	54.0	-1.0

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2390.000	70.9	33	29.4	67.3	74.0	-6.7
Н	4804.000	50.1	33	34.9	52.0	74.0	-22.0
V	12010.000	54.9	33	40.5	62.4	74.0	-11.6

NOTES: 1. Peak detector is used for the emission measurement.

- 2. Average measurement method is according to ANSI C63.10.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

Mode: TX-Channel 2440MHz

Table 2 Bluetooth BLE

					Net at		
			Pre-Amp	Antenna	3m	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	Average	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4880.000	45.0	33	34.9	46.9	54.0	-7.1
V	7320.000	42.9	33	37.9	47.8	54.0	-6.2
V	12200.000	46.3	33	40.5	53.8	54.0	-0.2

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	4880.000	51.8	33	34.9	53.7	74.0	-20.3
V	7320.000	52.3	33	37.9	57.2	74.0	-16.8
V	12200.000	55.7	33	40.5	63.2	74.0	-10.8

NOTES: 1. Peak detector is used for the emission measurement.

- 2. Average measurement method is according to ANSI C63.10.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

Mode: TX-Channel 2480MHz

Table 3 Bluetooth BLE

					Net at		
			Pre-Amp	Antenna	3m	Average Limit	
Polari-	Frequency	Reading	Gain	Factor	Average	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2483.500	57.2	33	29.4	53.6	54.0	-0.4
V	4960.000	49.6	33	34.9	51.5	54.0	-2.5
V	7440.000	46.8	33	37.9	51.7	54.0	-2.3
V	12400.000	45.8	33	40.5	53.3	54.0	-0.7

			Pre-Amp	Antenna	Net at	Peak Limit	
Polari-	Frequency	Reading	Gain	Factor	3m - Peak	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
Н	2483.500	71.7	33	29.4	68.1	114.0	-45.9
V	4960.000	55.7	33	34.9	57.6	74.0	-16.4
V	7440.000	56.9	33	37.9	61.8	74.0	-12.2
V	12400.000	55.2	33	40.5	62.7	74.0	-11.3

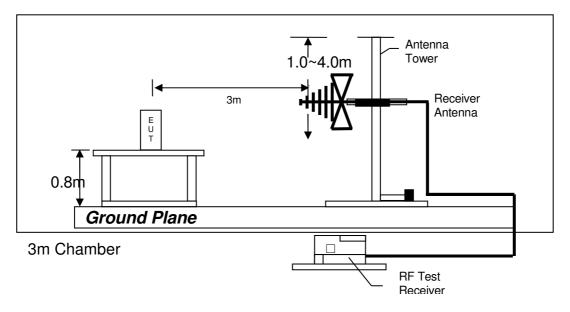
NOTES: 1. Peak detector is used for the emission measurement.

- 2. Average measurement method is according to ANSI C63.10.
- 3. All measurements were made at 3 meters.
- 4. Negative value in the margin column shows emission below limit.
- 5. Horn antenna is used for the emission over 1000MHz.
- 6. Emission (the row indicated by *bold italic*) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

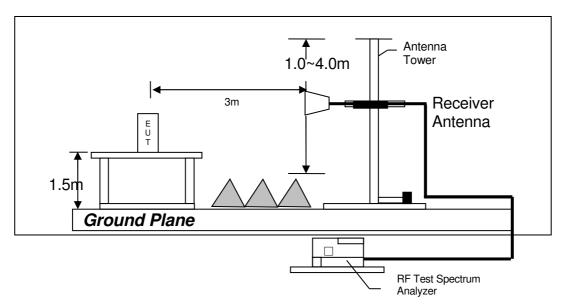
Worst-Case Operating Mode: Bluetooth BLE Operating

Table 4

			Pre-	Antenna	Net	Limit	
	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
Polarization	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	63.844	33.0	16	9.0	26.0	40.0	-14.0
V	71.938	39.3	16	7.0	30.3	40.0	-9.7
Н	95.917	35.7	16	12.0	31.7	43.5	-11.8
Н	143.884	35.1	16	14.0	33.1	43.5	-10.4
Н	263.779	35.2	16	21.0	40.2	46.0	-5.8
Н	311.736	34.6	16	23.0	41.6	46.0	-4.4
Н	407.664	33.3	16	24.0	41.3	46.0	-4.7


NOTES: 1. Quasi-Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by *bold italic*) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.
- 6. Measurement Uncertainty is ±5.3dB at a level of confidence of 95%.



4.6.3 Radiated Emission Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

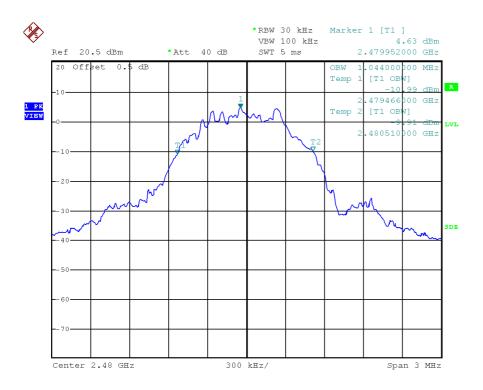
Test setup of radiated emissions above 1GHz

Deere & Company Intertek Report No: 20101182HKG-001

TEST REPORT

4.6.4 Transmitter Duty Cycle Calculation

Not applicable – No average factor is required.


- 4.7 AC Power Line Conducted Emission
- Not applicable EUT is only powered by battery for operation.
 - EUT connects to AC power line. Emission Data is listed in following pages.

Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.

4.8 Occupied Bandwidth

Occupied Bandwidth Results: (Bluetooth BLE)				
(802.11b)	Occupied Bandwidth (MHz)			
Low Channel: 2402	1.032			
Middle Channel: 2440	1.038			
High Channel: 2480	1.044			

The worst case is shown as below

5.0 EQUIPMENT LIST

1) Radiated Emissions Test

Equipment	EMI Test Receiver (9kHz to 3GHz)	Spectrum Analyzer	Biconical Antenna
Registration No.	EW-2500	EW-3281	EW-0571
Manufacturer	ROHDESCHWARZ	ROHDESCHWARZ	EMCO
Model No.	ESCI	FSV40	3104C
Calibration Date	January 09, 2020	March 04, 2020	July 23, 2019
Calibration Due Date	January 09, 2021	March 04, 2021	January 23, 2021

Equipment	Log Periodic Antenna	Double Ridged Guide Antenna	RF Cable 14m (1GHz to 26.5GHz)
Registration No.	EW-0447	EW-0194	EW-3151
Manufacturer	EMCO	EMCO	GREATBILLION
Model No.	3146	3115	SMA m/SHF5MPU
			/SMA m ra14m,26G
Calibration Date	September 25, 2019	September 26, 2019	March 04, 2020
Calibration Due Date	March 25, 2021	March 26, 2021	March 04, 2021

Equipment	14m Double Shield RF Cable (20MHz To 6GHz)	Active Loop H-field (9kHz to 30MHz)	Pyramidal Horn Antenna
Registration No.	EW-2074	EW-2313	EW-0905
Manufacturer	RADIALL	ELECTROMETRI	EMCO
Model No.	nm / RG142 / sma 14m	EM-6876	3160-09
Calibration Date	August 29, 2020	December 17, 2019	July 23, 2019
Calibration Due Date	August 29, 2021	June 17, 2021	January 23, 2021

Equipment	Solid State Low Noise Preamplifier Assembly (1 - 18)GHz	
Registration No.	EW-3431	
Manufacturer	BONN ELEKTRO	
Model No.	BBV 9718 BBV9744 BBV	
	9721	
Calibration Date	November 18, 2020	
Calibration Due Date	November 18, 2021	

2) Conductive Measurement Test

Equipment	RF Cable (up to 40GHz) 1.5m length	RF Power Meter with Power Sensor	Spectrum Analyzer
Registration No.	EW-2774	EW-3309	EW-2466
Manufacturer	N/A	ROHDESCHWARZ	ROHDESCHWARZ
Model No.	SMA-M to SMA-M	NRP-Z81	FSP30
Calibration Date	September 12, 2020	May 18, 2020	September 05, 2020
Calibration Due Date	September 12, 2021	May 18, 2021	September 05, 2021

3) Bandwidth/Bandedge Measurement Test

Equipment	RF Cable (up to 40GHz) 1.5m length	Spectrum Analyzer
Registration No.	EW-2774	EW-2466
Manufacturer	N/A	ROHDESCHWARZ
Model No.	SMA-M to SMA-M	FSP30
Calibration Date	September 12, 2020	September 05, 2020
Calibration Due Date	September 12, 2021	September 05, 2021

END OF TEST REPORT