

Page 1 of 97

TEST REPORT

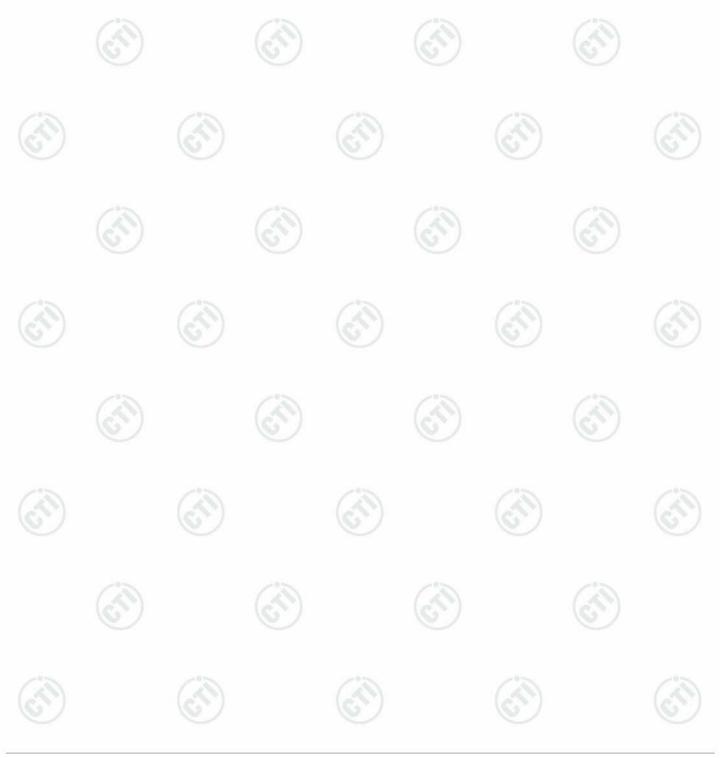
Product	: Wireless Headset
Trade mark	: CORSAIR
Model/Type reference	: RDA0034
Serial Number	: N/A
Report Number	: EED32M00213601
FCC ID	: 2AAFMRDA0034
Date of Issue:	: Aug. 28, 2020
Test Standards	: 47 CFR Part 15 Sul
Test result	: PASS

Prepared for: **Corsair Memory Inc** 47100 Bayside Pkwy Fremont, CA 94538, U.S.A

Part 15 Subpart C

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


sunlight sun Compiled by: Reviewed by: Sunlight Sun Jok Yang (lunery Aug. 28, 2020 ved by: Date: m Sam Chuang Check No.:3096381001 Report Sea

00 Aug. 28, 2020 O	riginal

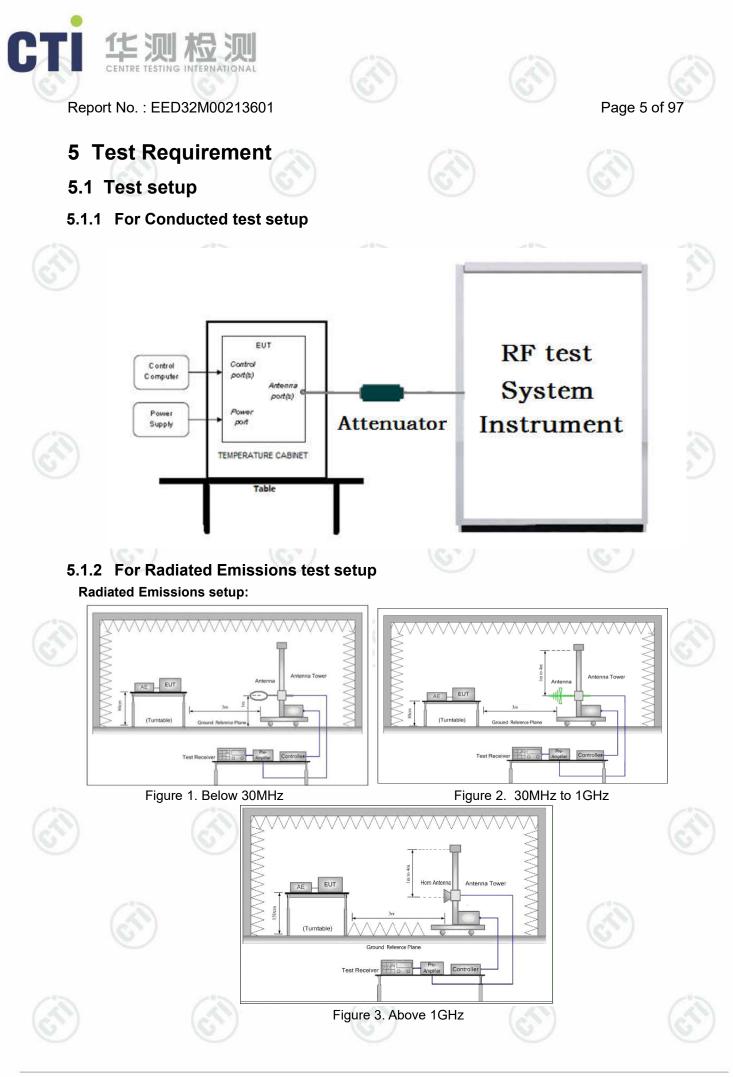
Test Summary 3

i est Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Remark:			

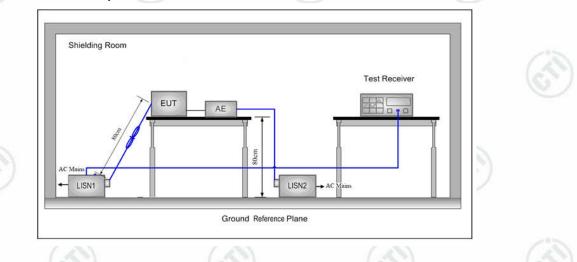
Page 3 of 97

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.


The tested samples and the sample information are provided by the client.

1 COVER PAGE		
2 VERSION		
3 TEST SUMMARY		 ••••••
4 CONTENT		
5 TEST REQUIREMENT		
5.1 Test setup	~	
5.1.1 For Conducted test setup		
5.1.2 For Radiated Emissions tes		
5.1.3 For Conducted Emissions to		
5.2 TEST ENVIRONMENT		
5.3 TEST CONDITION		
6 GENERAL INFORMATION		
6.1 CLIENT INFORMATION		
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECT	TIVE TO THIS STANDARD	
6.4 DESCRIPTION OF SUPPORT UNITS	\sim	
6.5 TEST LOCATION		
6.6 DEVIATION FROM STANDARDS		
6.7 ABNORMALITIES FROM STANDARD	CONDITIONS	
6.8 OTHER INFORMATION REQUESTED		
6.9 MEASUREMENT UNCERTAINTY (959		
7 EQUIPMENT LIST	~ ~ ~ ~	
8 RADIO TECHNICAL REQUIREMEN		
Appendix A): 20dB Occupied Bar		
Appendix B): Carrier Frequency S		
Appendix C): Dwell Time		
Appendix D): Hopping Channel N		
Appendix E): Conducted Peak Ou	•	
Appendix F): Band-edge for RF C	Conducted Emissions	
Appendix G): RF Conducted Spu		
Appendix H) Pseudorandom Free		
Appendix I) Antenna Requiremen		
Appendix J) AC Power Line Conc		
Appendix K) Restricted bands are		
Appendix L) Radiated Spurious E		
	<u> </u>	



Conducted Emissions setup

5.2 Test Environment

Operating Environment:						
Temperature:	24.0 °C					
Humidity:	53 % RH					
Atmospheric Pressure:	1010mbar					

5.3	Test Co	ndition						
	Test Mod	e	Tx/	/Rx	Low(L)	RF Char Middle(N		High(H)
	GFSK/π/4DQ)PSK(DH1,DF		2402MHz ~24	80 MHz	Channel 0	Channel	39 C	Channel78
		10,0110)	(S)		2402MHz	2441MH		2480MHz

6 General Information

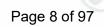
6.1 Client Information

Applicant:	Corsair Memory Inc
Address of Applicant:	47100 Bayside Pkwy Fremont, CA 94538, U.S.A
Manufacturer:	Corsair Memory Inc
Address of Manufacturer:	47100 Bayside Pkwy Fremont, CA 94538, U.S.A
Factory 1:	Minami Acoustics Limited
Address of Factory 1:	Shangou Industrial Park GongJiang Town,Yudu County Ganzhou City Jiangxi 342300 China
Factory 2:	Minami Electronics Malaysia Sdn Bhd
Address of Factory 2:	1208 Lorong Perindustrian Bukit Minyak 22, Kawasan Perindustrian Bukit Minyak,14100 Simpang Ampat, Penang, Malaysia

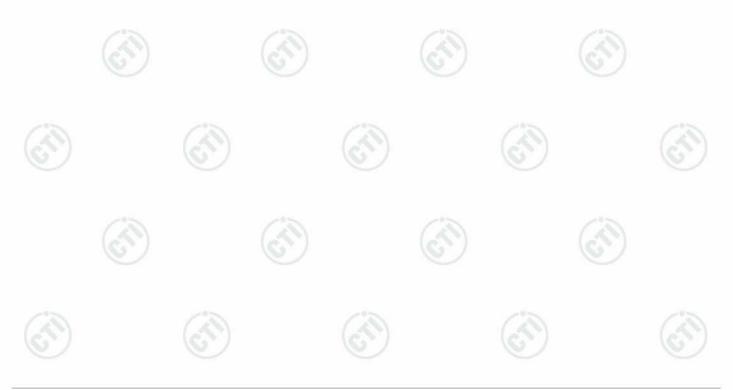
Page 7 of 97

6.2 General Description of EUT

Product Name:	Wireless	Headset			13		
Model No.(EUT):	RDA003	RDA0034					
Tark mark:	CORSA	CORSAIR					
Frequency Range of Operation:	BT 5.0 S	Singlel mode, 2400MHz to	2483.5MHz				
Power Supply:	Battery	603450 3.7V 1050mAh 3.885Wh	S)	S			
Sample Received Date:	Jul. 17, 2020						
Sample tested Date:	Jul. 17, 2	2020 to Aug. 24, 2020	15				


6.3 Product Specification subjective to this standard

	- (10) / (10)		
Operating Frequency:	2402MHz~2480MHz		\sim
Bluetooth Version:	5.0		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	23	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	(\mathcal{S})	
Number of Channel:	79	V	
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Test Power Grade:	Default		-0-
Test Software of EUT:	Lab Test Tool-2.3.7		(A)
Antenna Type:	FPC Antenna	9	6
Antenna Gain:	1.48 dbi		
Test Voltage:	DC 5V		



63		63	\	68		12	· · · · · · · · · · · · · · · · · · ·
Operation	Frequency ea	ch of channe	1)	6	2	6	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		6

6.4 Description of Support Units

The EUT has been tested with associated equipment below

Manufacturer	Model No.	Certification	Supplied by
DELL	DELL 3490	CE&FCC	DELL
			0
622)	(63)	(2)	(c.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty(95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%
ST)	(25)	(A) (A)

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity bia Indicator	biaozhi	НМ10	1804186	06-29-2020	06-28-2021
High-pass filter Sinoscite		FL3CX03WG18N M12-0398-002	V		<u> </u>
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			<u> </u>

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021				
Temperature/ Humidity Indicator	Defu	TH128		(<u>en - (15)</u>				
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021				
Barometer	changchun	DYM3	1188						

	3M \$	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	200	
Cable line	Fulai(3M)	SF106	5217/6A	(

3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
SE Automatic test software	JS Tonscend	JS36-RSE	10166		\sim		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021		
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021		
Iorn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021		
Iorn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021		
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021		
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021		
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021		
Femperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021		
ully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021		
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		0		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003				
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	25			
Cable line	Times	EMC104-NMNM- 1000	SN160710	(A)			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	_			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001				
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001				
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		<u></u>		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

	Test requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
	Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
	Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
	Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
9	Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
	Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
	Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
	Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
	Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
	Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Page 14 of 97

EUT DUTY CYCLE


				est Case	: Duty	Cycle			
/lode: DH	5				Ant: /	Ant1			
Channel: 2	2402	((3	Volta	ge: VN	12		
emperatu	ire: TN	/		(G)	Resu	lt: PASS	Value	:77.3%;2	2.8994ms
tart Time			6:19		End	Time: 202	20/7/29 1	6:56:26	
Keysight Spectru	RF 50 Ω	DC 0000 GHz PNC): Fast +++	SENSE:INT rig: Free Run Atten: 30 dB		ALIGN AUTO Type: RMS	TRAC	M Jul 29, 2020 E 1 2 3 4 5 6 E WWWWWW T P P P P P P	Frequency
I0 dB/div	Ref 20.00 d		millow •				Mkr3 4. -19.	.552 ms 55 dBm	Auto Tune
-og 10.0 0.00 10.0									Center Freq 2.402000000 GHz
20.0 <mark>X2</mark> 30.0 40.0	1∧3								Start Freq 2.402000000 GHz
50.0 60.0 <mark>july</mark> 70.0			u tr Option				* *		Stop Freq 2.402000000 GHz
Center 2.40 Res BW 1.0	MHz	Hz	#VBW 1.	0 MHz	FUNCTION	Sweep	30.40 ms (pan 0 Hz 8001 pts)	CF Step 1.000000 MHz <u>Auto</u> Man
1 <u>A2</u> 1	t (Δ) t t	2.89 801		0.13 dB 19.60 dBm 19.55 dBm					Freq Offset 0 Hz
8 9 10 11				m		A			
ISG		(9		(STAT	US		S

Appendix A): 20dB Occupied Bandwidth

Test Limit

According to §15.247(a) (1),

<u>20 dB Bandwidth</u> : For reporting purposes only.

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.9275	0.87449	PASS
GFSK	мсн	0.9241	0.86739	PASS
GFSK	НСН	0.9230	0.86758	PASS
π /4DQPSK	LCH	1.256	1.1646	PASS
π /4DQPSK	МСН	1.229	1.1641	PASS
π /4DQPSK	НСН	1.228	1.1622	PASS
8DPSK	LCH	1.269	1.1688	PASS
8DPSK	мсн	1.258	1.1713	PASS
8DPSK	НСН	1.259	1.1728	PASS

Test Graph

Page 20 of 97

Page 21 of 97

Appendix B): Carrier Frequency Separation

Test Limit

According to §15.247(a)(1),

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit 🔊	> two-thirds of the 20 dB bandwidth

Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Sweep = auto.
 Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

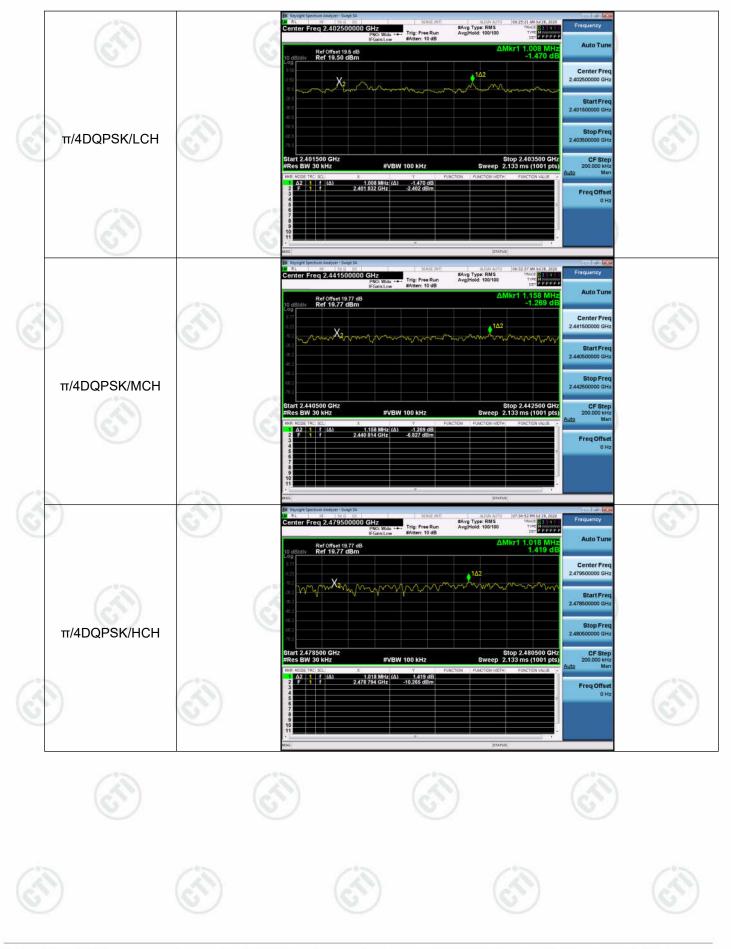
Test Setup

Page 22 of 97

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.154	PASS
GFSK	МСН	0.992	PASS
GFSK	НСН	1.004	PASS
π/4DQPSK	LCH	1.008	PASS
π/4DQPSK	МСН	1.158	PASS
π/4DQPSK	нсн	1.018	PASS
8DPSK	LCH	0.904	PASS
8DPSK	МСН	1.004	PASS
8DPSK	НСН	0.996	PASS

Test Graph



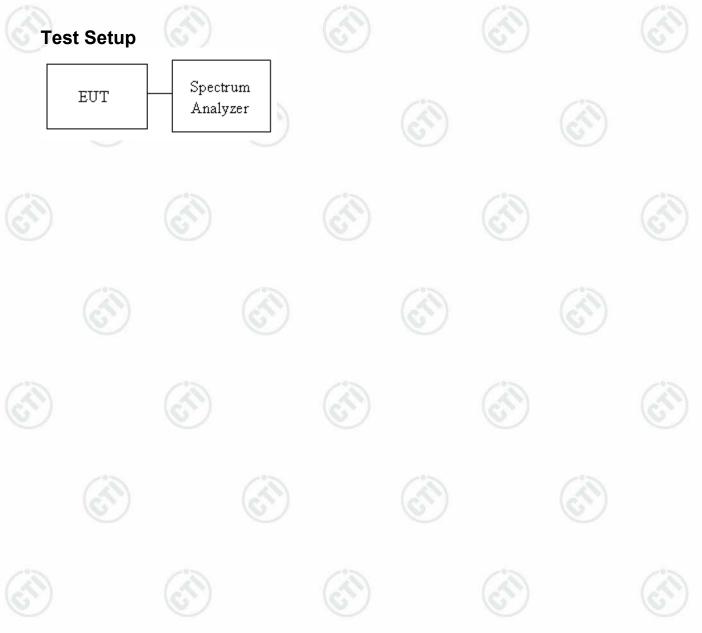
Page 24 of 97

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 25 of 97

Page 26 of 97

Appendix C): Dwell Time

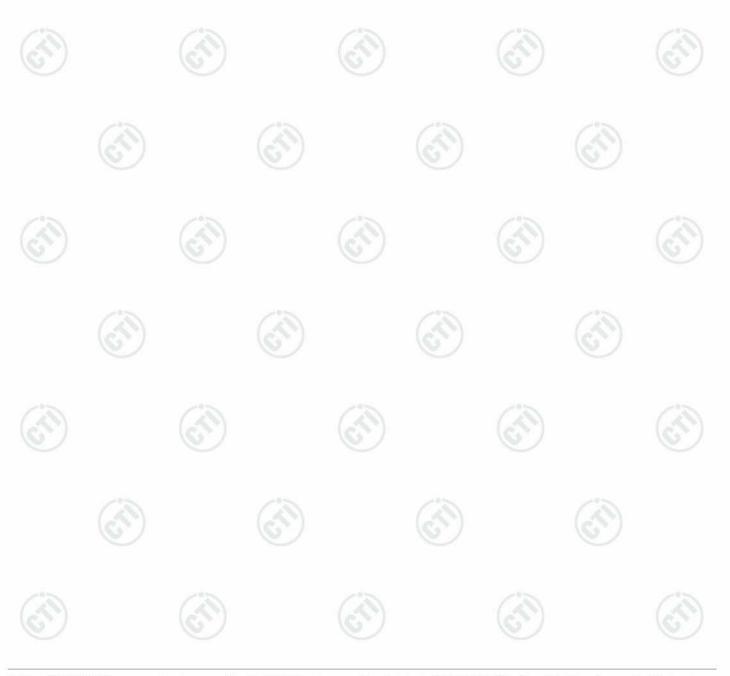

Test Limit

According to §15.247(a)(1)(iii),

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Sweep =auto



Result Table

Мос	le	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdic
GFS	δK	DH1	LCH	0.399	320	0.128	0.32	PASS
GFS	δK	DH1	MCH	0.399	320	0.128	0.32	PASS
GFS	δK	DH1	HCH	0.399	320	0.128	0.32	PASS
GFS	δK	DH3	LCH	1.65553	160	0.265	0.66	PASS
GFS	δK	DH3	MCH	1.655537	160	0.265	0.66	PASS
GFS	δK	DH3	HCH	1.65427	160	0.265	0.66	PASS
GFS	δK	DH5	LCH	2.8888	106.7	0.308	0.77	PASS
GFS	δK	DH5	MCH	2.8888	106.7	0.308	0.77	PASS
GFS	SK	DH5	HCH	2.8888	106.7	0.308	0.77	PASS

Test Graph Graphs #Avg Type: RM: 0 GHz Trig: Free Run Auto T Center Fr Start Fr Stop F GFSK_DH1/LCH CFS -19.75 dBm -19.65 dBm -19.75 dBm 1.056 ms 1.455 ms 2.307 ms Freq Offs ALION A er Freq 2.441000 Trig: Free Run Auto Tu r3 1.433 n -19.94 dB Center Fre 2.441000000 GH Start Fr 2.441 Stop Fr GFSK_DH1/MCH 2.44100 Span 0 Hz (8001 pts CF Ste ep 10.13 m -19.97 dBm -19.81 dBm -19.94 dBm 182.4 µs 581.4 µs 1.433 ms Freq Offs #Avg Type: RMS enter Freq 2.480000000 GHz Trig: Free Run Auto T Center Fre Start Fre Stop Fr GFSK_DH1/HCH r 2.480000 W 1.0 MH Span 0 H: (8001 pts CFS ep 10.13 m 1.217 ms 1.616 ms 2.466 ms -20.87 dBm -20.78 dBm -20.99 dBm Freq Of

Page 29 of 97

Page 30 of 97

Appendix D): Hopping Channel Number

Test Limit

According to §15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

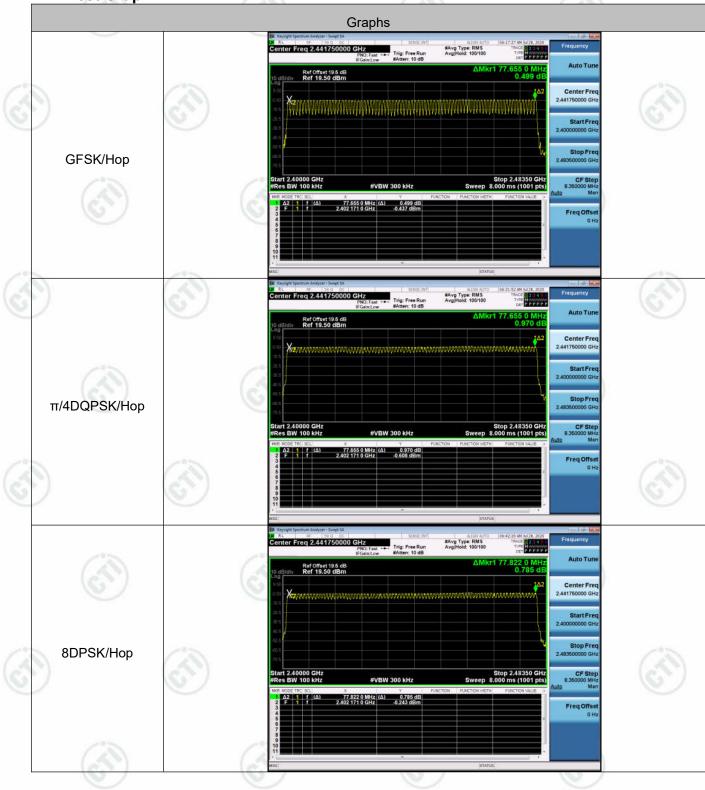
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW =100KHz, VBW = 300KHz.
- 4.Max hold, view and count how many channel in the band.

Test Setup

Page 32 of 97

Result Table

G			
Мос	de Channel.	Number of Hopping Channel	Verdict
GFS	SK Hop	79	PASS
π/4DQ	PSK Hop	79	PASS
8DPS	SK Hop	79	PASS



Test Graph

Page 34 of 97

Appendix E): Conducted Peak Output Power **Test Limit**

According to §15.247(b)(1).

Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit

Antenna not exceed 6 dBi : 21dBm Antenna with DG greater than 6 dBi : 21dBm [Limit = 30 - (DG - 6)]

Average output power : For reporting purposes only.

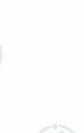
Test Procedure

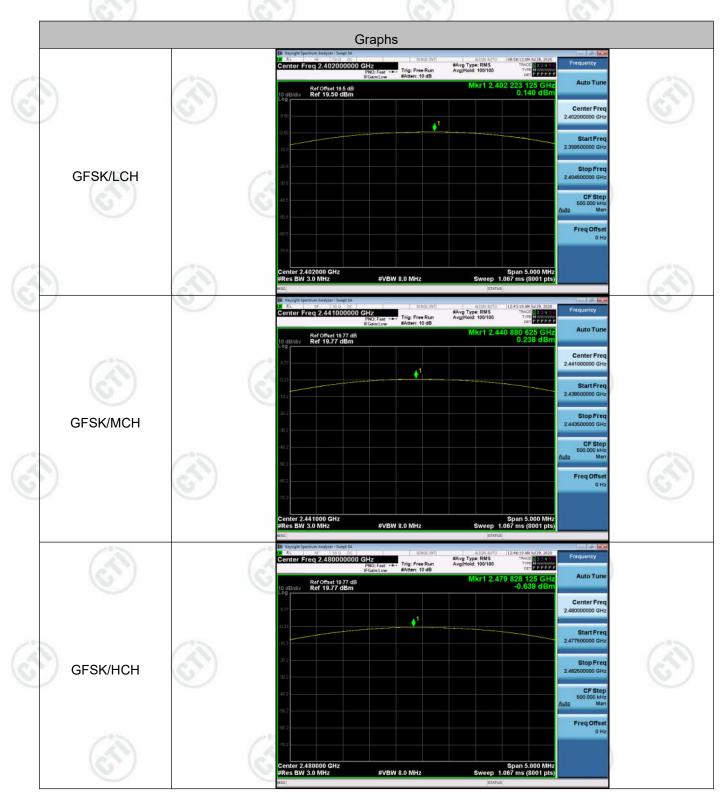
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- Spectrum analyzer settings are as follows : 3.
 - a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - b) RBW > 20 dB bandwidth of the emission being measured.
 - c) VBW \geq RBW.
 - d) Sweep: Auto.
 - e) Detector function: Peak.
 - f) Trace: Max hold.
 - g) Allow trace to stabilize.
 - h) Use the marker-to-peak function to set the marker to the peak of the emission
 - Measure and record the result in the test report.

Page 35 of 97

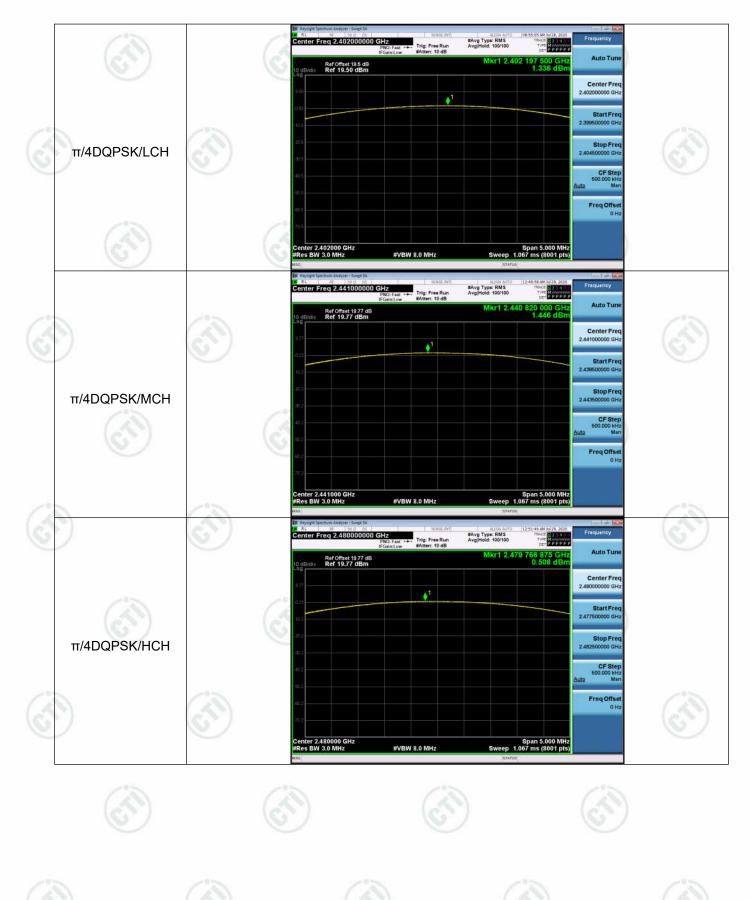
Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	0.140	PASS
GFSK	мсн	0.238	PASS
GFSK	НСН	-0.639	PASS
π/4DQPSK	LCH	1.336	PASS
π/4DQPSK	МСН	1.446	PASS
π/4DQPSK	нсн	0.508	PASS
8DPSK	LCH 🔍	1.727	PASS
8DPSK	МСН	1.819	PASS
8DPSK	НСН	0.966	PASS



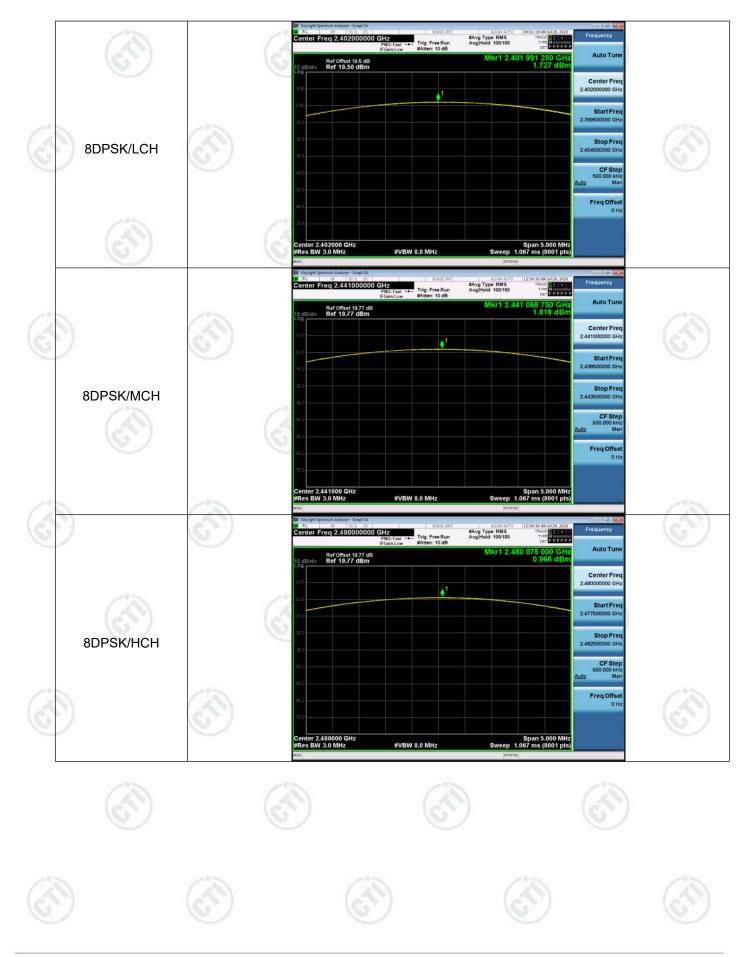


Test Graph



Page 37 of 97

Report No. : EED32M00213601



Report No. : EED32M00213601

Page 38 of 97

Page 39 of 97

Appendix F): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

Limit

-20 dBc

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

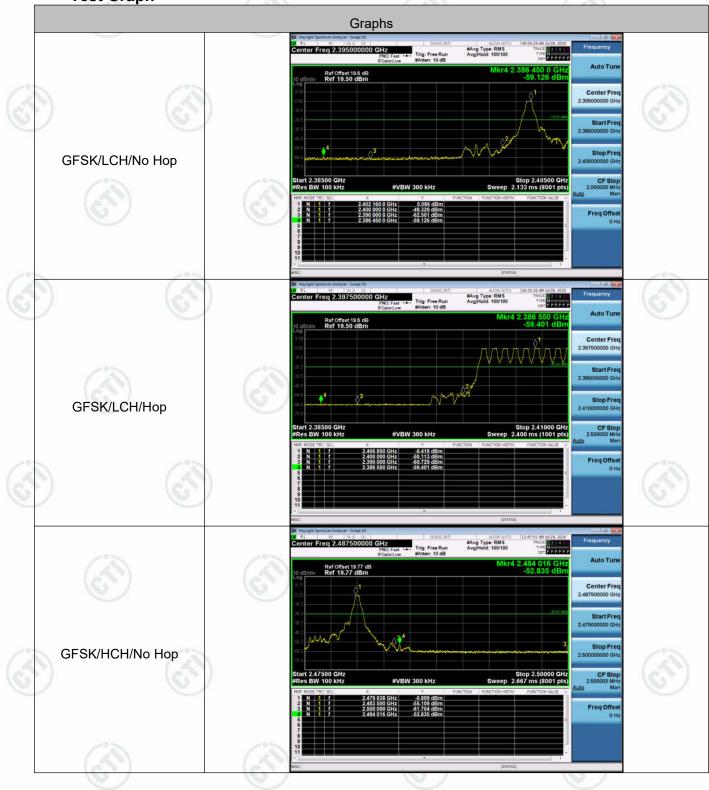
Test Setup

Report No. : EED32M00213601

Page 40 of 97

Result Table

Result rubi	0						
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
OFEK		2402	0.086	Off	-59.126	-19.91	PASS
GFSK	LCH	2402	-0.418	On	-59.401	-20.42	
OFOK		0400	-0.809	Off	-52.835	-20.81	PASS
GFSK	HCH	2480	0.631	On	-55.537	-19.37	PASS
		0400	-0.073	Off	-59.408	-20.07	PASS
π/4DQPSK	LCH	2402	-0.409	On	-59.279	-20.41	PASS
	ЦСЦ	2490	-0.791	Off	-52.072	-20.79	PASS
π/4DQPSK	HCH	2480	0.731	On	-58.106	-19.27	PASS
ODDCK		0400	0.065	Off	-58.852	-19.94	PASS
8DPSK	LCH	2402	-0.167	On	-59.628	-20.17	PASS
oper	ЦСЦ	2490	-0.870	Off	-52.585	-20.87	PASS
8DPSK	НСН	2480	0.996	On	-53.083	-19	PASS



Test Graph

Page 42 of 97

Page 43 of 97

Page 45 of 97

Appendix G): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),			
Limit	-20 dBc	(\mathcal{C})	

Test Procedure

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT

= Auto.

Test Setup

Report No. : EED32M00213601

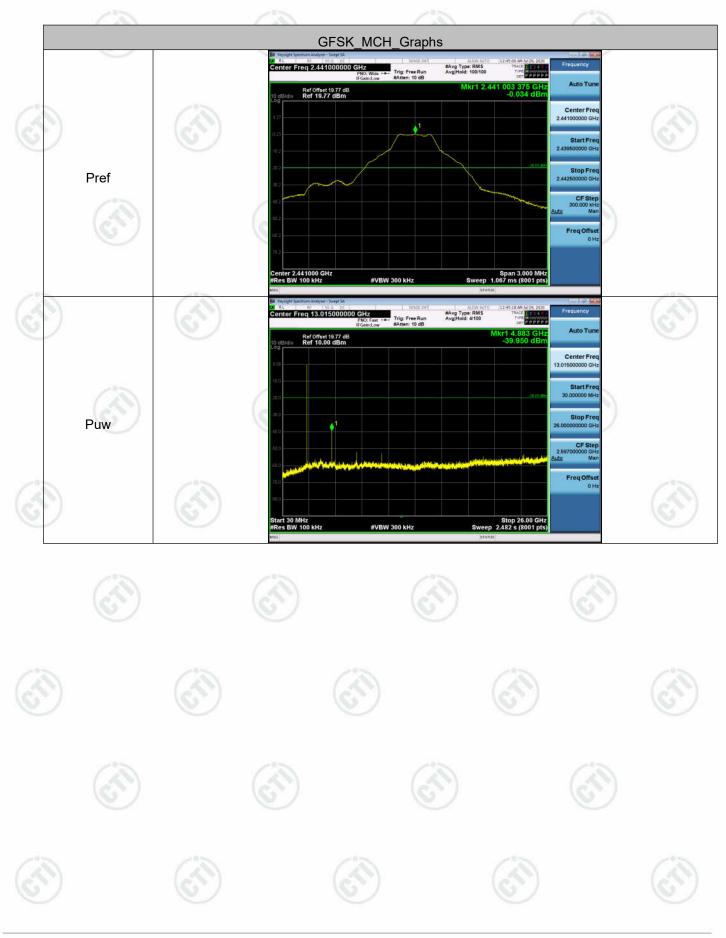
Page 46 of 97

Result Table

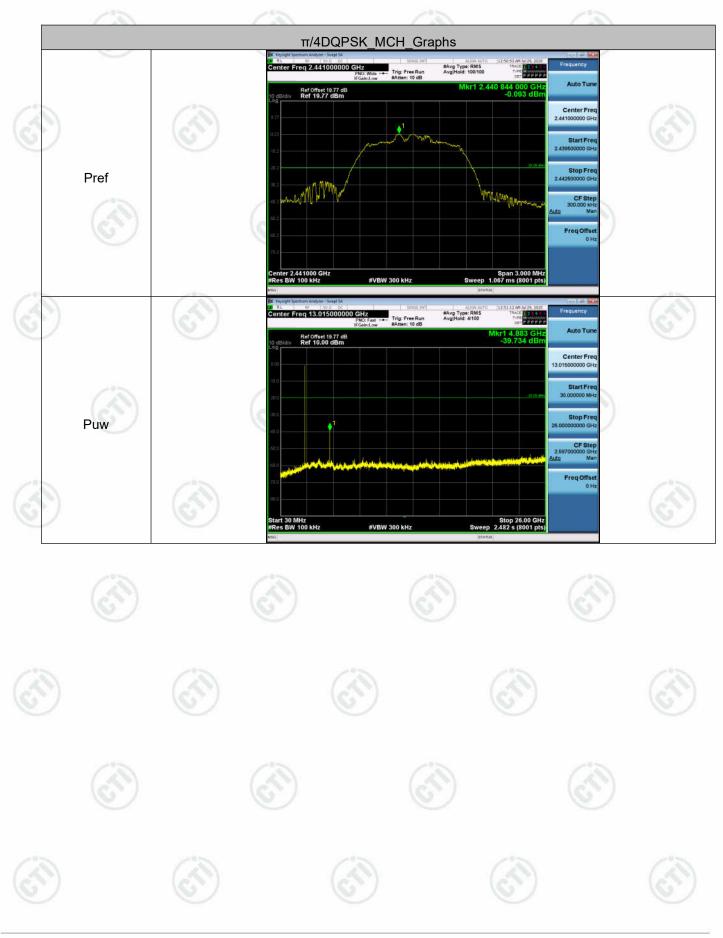
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	0.03	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	-0.034	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	-0.969	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-0.148	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	-0.093	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	-0.806	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	0.052	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	-0.067	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	-0.956	<limit< td=""><td>PASS</td></limit<>	PASS

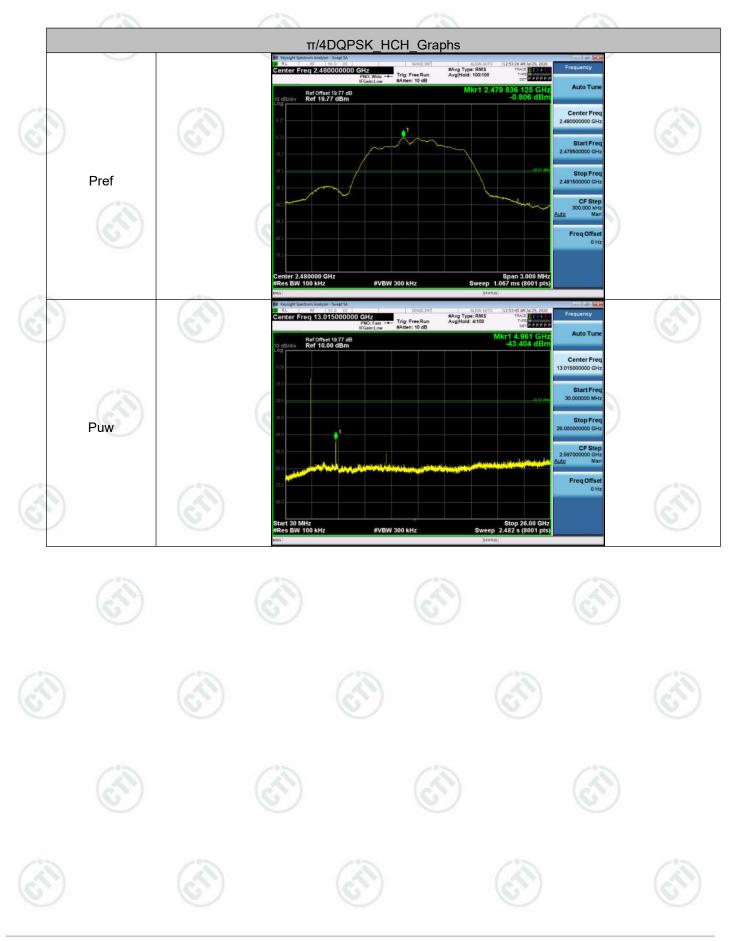
(A

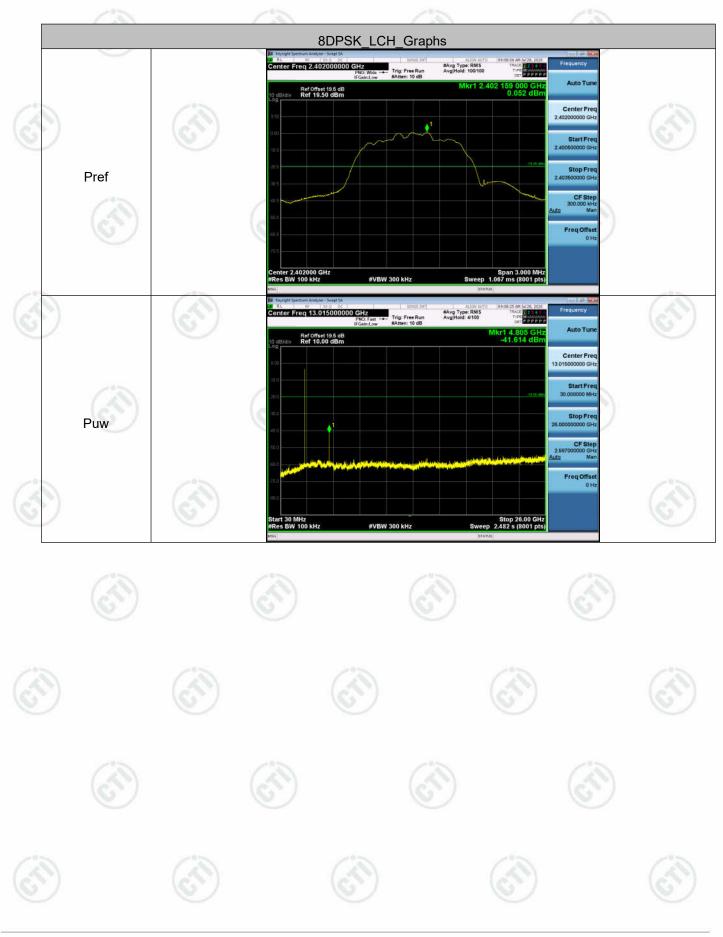
Test Graph

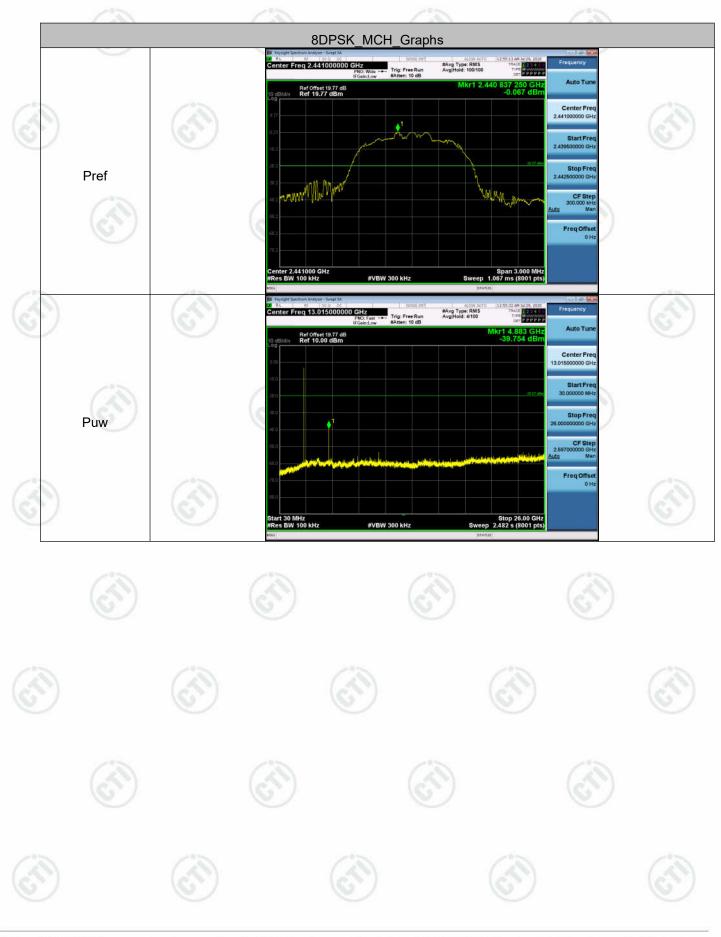


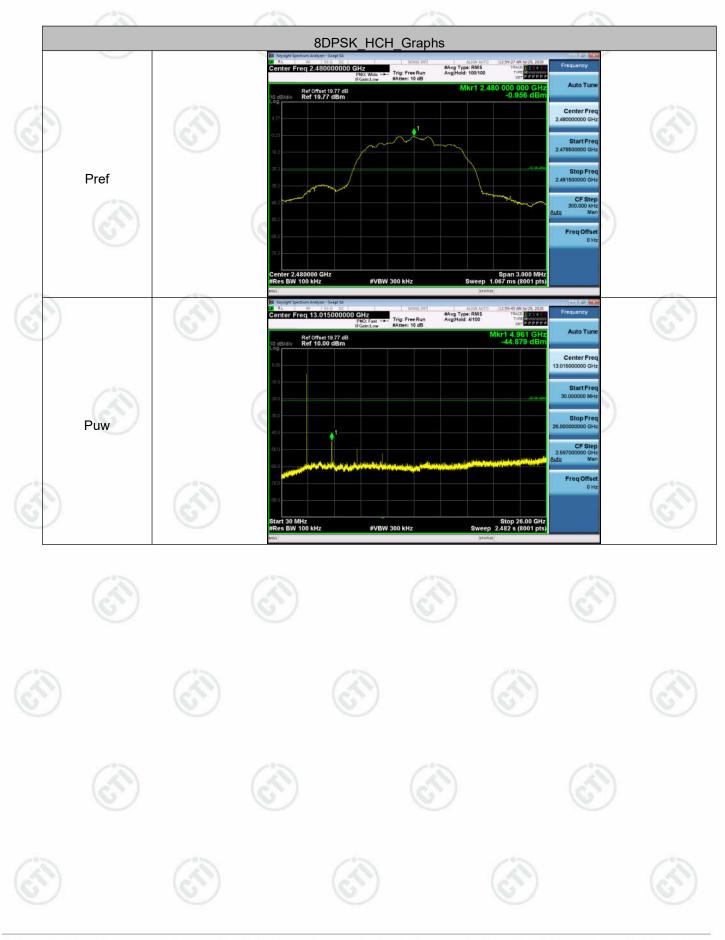


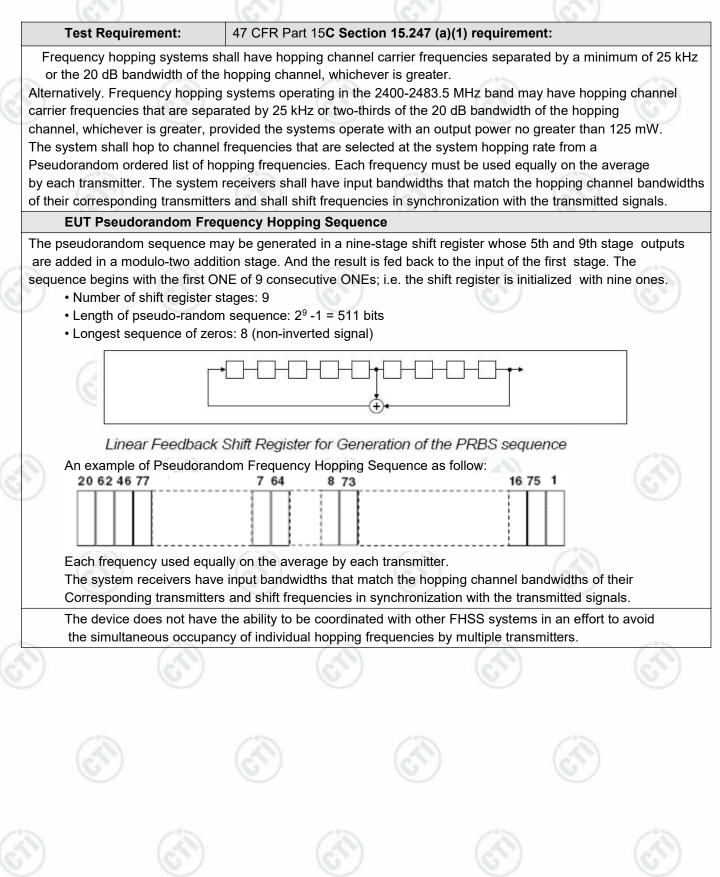






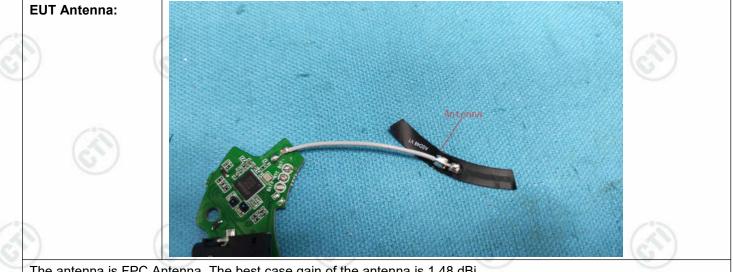




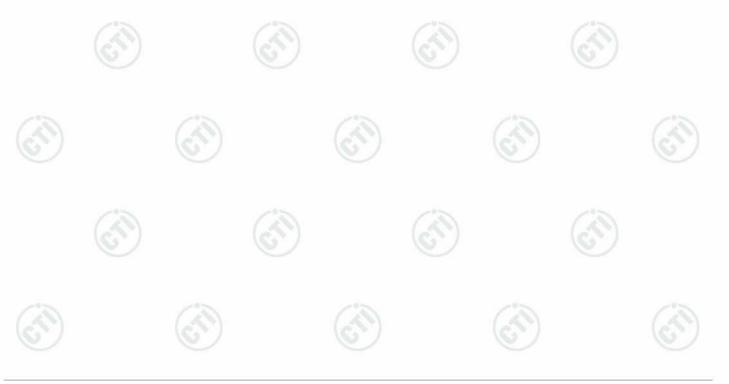


Page 56 of 97

Appendix H) Pseudorandom Frequency Hopping Sequence


Appendix I) Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

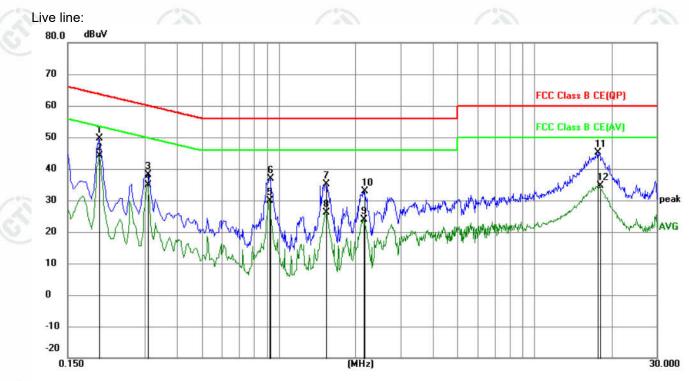
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is FPC Antenna. The best case gain of the antenna is 1.48 dBi.

Page 58 of 97

Appendix J) AC Power Line Conducted Emission

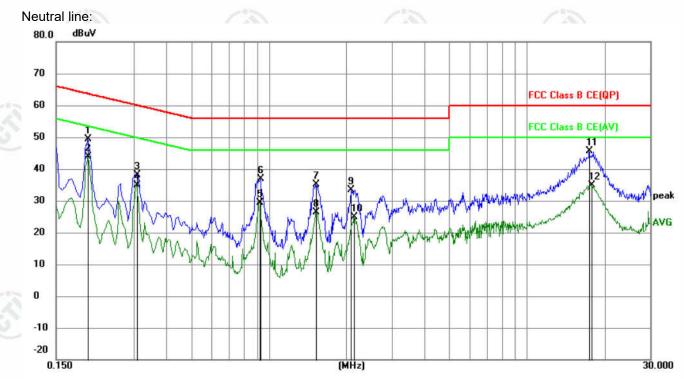
	Test Procedure:	Test frequency range :150KHz	-30MHz	0	
		1) The mains terminal disturba	ance voltage test was	conducted in a shie	lded room.
S)		2) The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the g for the unit being measure multiple power cables to a se exceeded.	h provides a 50Ω/50 nits of the EUT were round reference plane d. A multiple socket o	$\mu H + 5\Omega$ linear imp connected to a sec in the same way a putlet strip was use	edance. Th cond LISN 2 is the LISN d to connec
		 The tabletop EUT was place reference plane. And for floc horizontal ground reference 	or-standing arrangem		
		4) The test was performed wi EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other write of the EUT of	e vertical ground reference to the horizontal gro the boundary of the u for LISNs mounted co etween the closest po	rence plane. The ve ound reference plan unit under test and on top of the groun unts of the LISN 1 a	ertical groun ne. The LISI bonded to nd referenc and the EUT
		LISN 2.	ind associated equipn	nent was at least 0.	8 m from th
			m emission, the relat	ive positions of eq	uipment an
	Limit:	LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement.	m emission, the relat	ive positions of eq according to ANS	uipment an
	Limit:	LISN 2. 5) In order to find the maximu all of the interface cables	m emission, the relat s must be changed	ive positions of eq according to ANS	uipment an
	Limit:	LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement.	m emission, the relat s must be changed Limit (c	ive positions of eq according to ANS IBuV)	luipment an
	Limit:	LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement. Frequency range (MHz)	m emission, the relat s must be changed Limit (c Quasi-peak	ive positions of eq according to ANS IBuV) Average	uipment ar
	Limit:	LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	m emission, the relat s must be changed Limit (c Quasi-peak 66 to 56*	ive positions of eq according to ANS IBuV) Average 56 to 46*	luipment an


Report No. : EED32M00213601

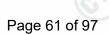
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

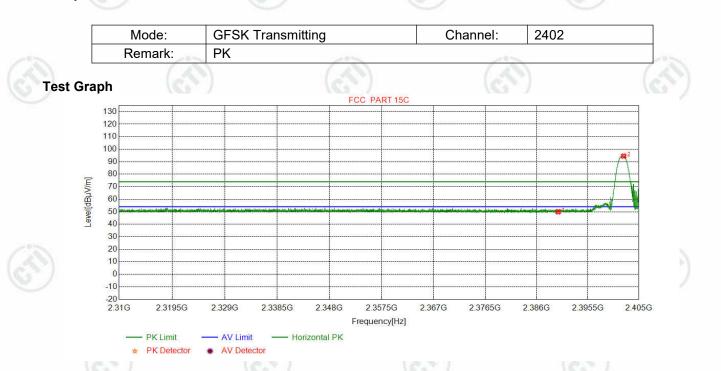


No. Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1995	39.65	10.02	49.67	63.63	-13.96	QP	
2 *	0.1995	34.04	10.02	44.06	53.63	-9.57	AVG	
3	0.3075	28.02	10.09	38.11	60.04	-21.93	QP	
4	0.3075	24.71	10.09	34.80	50.04	-15.24	AVG	
5	0.9195	19.92	9.92	29.84	46.00	-16.16	AVG	
6	0.9285	27.06	9.92	36.98	56.00	-19.02	QP	
7	1.5315	25.37	9.87	35.24	56.00	-20.76	QP	
8	1.5315	16.34	9.87	26.21	46.00	-19.79	AVG	
9	2.1480	14.16	9.83	23.99	46.00	-22.01	AVG	
10	2.1660	23.16	9.83	32.99	56.00	-23.01	QP	
11	17.7270	35.18	9.95	45.13	60.00	-14.87	QP	
12	17.9475	24.74	9.95	34.69	50.00	-15.31	AVG	


	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
-	1	0.1995	39.28	10.02	49.30	63.63	-14.33	QP	
-	2 *	0.1995	33.94	10.02	43.96	53.63	-9.67	AVG	
ľ	3	0.3075	28.05	10.09	38.14	60.04	-21.90	QP	
1	4	0.3075	24.75	10.09	34.84	50.04	-15.20	AVG	
1	5	0.9195	19.54	9.92	29.46	46.00	-16.54	AVG	
	6	0.9240	26.86	9.92	36.78	56.00	-19.22	QP	
	7	1.5225	25.18	9.87	35.05	56.00	-20.95	QP	
	8	1.5225	16.59	9.87	26.46	46.00	-19.54	AVG	
	9	2.0850	23.63	9.83	33.46	56.00	-22.54	QP	
	10	2.1345	14.97	9.83	24.80	46.00	-21.20	AVG	
	11	17.4345	35.63	9.96	45.59	60.00	-14.41	QP	
	12	17.7855	24.89	9.95	34.84	50.00	-15.16	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Appendix K) Restricted bands around fundamental frequency (Radiated)

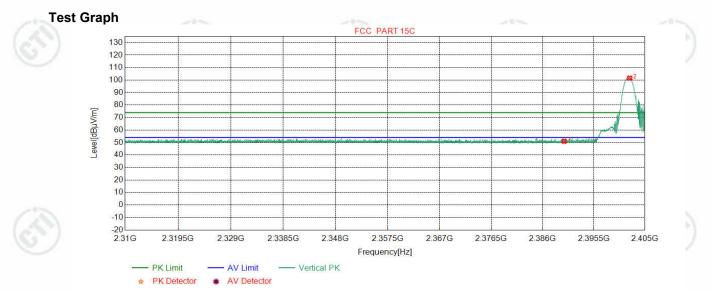
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	- 10
	6	Above 1GHz	Peak	1MHz	3MHz	Peak	1
)	C	Above IGH2	Peak	1MHz	10Hz	Average	U)
9	Test Procedure:	 Below 1GHz test procedur a. The EUT was placed on at a 3 meter semi-anech determine the position of b. The EUT was set 3 meter was mounted on the top c. The antenna height is var determine the maximum polarizations of the anterna height is var determine the maximum polarizations of the anterna was tuned the antenna was tuned the antenna was tuned from 0 e. The test-receiver system Bandwidth with Maximum f. Place a marker at the emprovement of the show commutation of the show	e as below: the top of a ro noic camber. The f the highest rates are a way from of a variable-haried from one avalue of the finna are set to assion, the EUT to heights from degrees to 360 m was set to Per m Hold Mode. and of the restrict	tating table ne table wa adiation. the interfer- neight anter meter to fo eld strength make the n was arran 1 meter to 0 degrees t eak Detect	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters a o find the i Function a	rs above the g 360 degrees to ving antenna, above the gro izontal and ve ent. worst case an and the rotata maximum rea nd Specified ne transmit	o wh ouncertic d th ble ding
		frequency to show comp bands. Save the spectru for lowest and highest c Above 1GHz test procedur g. Different between above to fully Anechoic Chamb metre(Above 18GHz the h. b. Test the EUT in the lo i. The radiation measurem Transmitting mode, and	im analyzer plo hannel e is the test site e distance is 1 west channel nents are perfo found the X ax	ot. Repeat f e, change fr e form table meter and , the Highes rmed in X, kis positioni	or each po om Semi- 0.8 metre table is 1.5 st channel Y, Z axis p ng which i	ower and mod Anechoic Cha to 1.5 metre). positioning for t is worse cas	ula aml
		j. Repeat above procedure	es until all freq	uencies me	easured wa	is complete	
	Limit			1		6.2 /	
	Limit:	Frequency	Limit (dBuV	- /		mark	
	Limit:	Frequency 30MHz-88MHz	Limit (dBuV/ 40.0	- /		6.2 /	
	Limit:)	Quasi-pe	mark	
0	Limit:	30MHz-88MHz	40.0	5	Quasi-pe Quasi-pe	mark eak Value	0
)	Limit:	30MHz-88MHz 88MHz-216MHz	40.0	5)	Quasi-pe Quasi-pe Quasi-pe	nark eak Value eak Value	S
9	Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	40.0 43.9 46.0	5))	Quasi-pe Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value	3
9	Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	40.0 43.5 46.0 54.0	5 5 0 0	Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	mark eak Value eak Value eak Value eak Value	CX.


Report No. : EED32M00213601

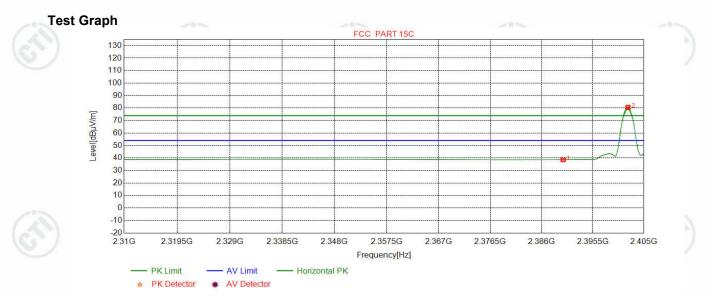
Test plot as follows:

Page 62 of 97

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.41	49.91	74.00	24.09	Pass	Horizontal
2	2402.1751	32.26	13.31	-43.12	92.02	94.47	74.00	-20.47	Pass	Horizontal
	6		1					/ · · · · · · · · · · · · · · · · · · ·		

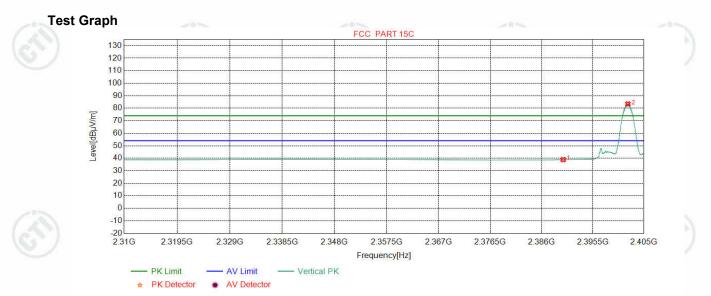


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.52	51.02	74.00	22.98	Pass	Vertical
2	2402.1625	32.26	13.31	-43.12	99.12	101.57	74.00	-27.57	Pass	Vertical
100							1000			1



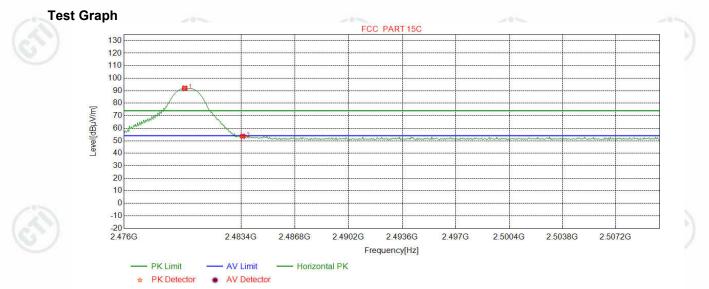
Mode:GFSK TransmittingChannel:2402Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Horizontal
2	2402.0358	32.26	13.31	-43.12	78.12	80.57	54.00	-26.57	Pass	Horizontal
 (A)	U			•			120			

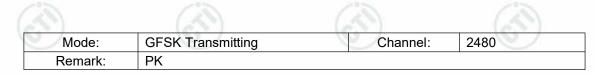


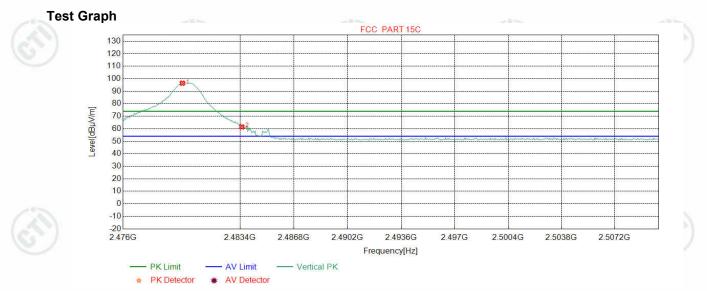
Mode:GFSK TransmittingChannel:2402Remark:AV

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.40	38.90	54.00	15.10	Pass	Vertical
2	2402.0231	32.26	13.31	-43.12	81.00	83.45	54.00	-29.45	Pass	Vertical
 C < 2 < 1							10.00			

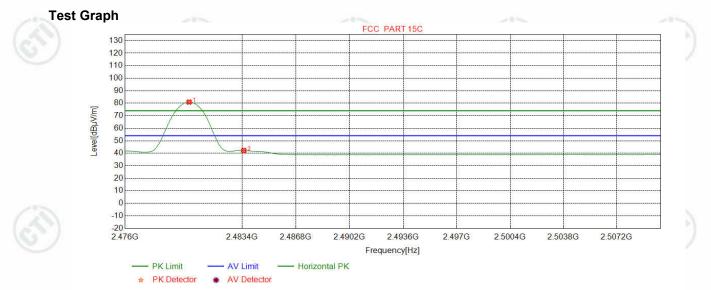


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8298	32.37	13.39	-43.10	89.31	91.97	74.00	-17.97	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	50.95	53.60	74.00	20.40	Pass	Horizontal
1				•				()		100

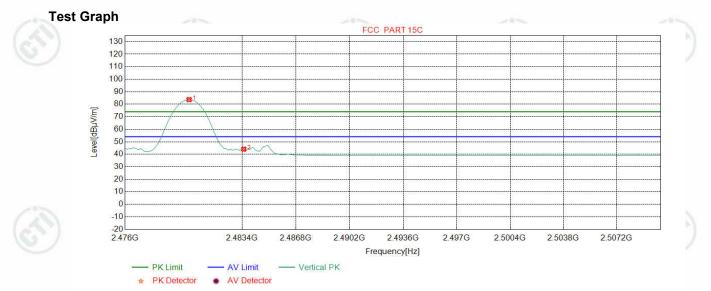




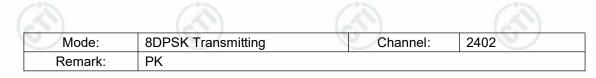
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	93.75	96.41	74.00	-22.41	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	58.79	61.44	74.00	12.56	Pass	Vertical
12		1			13		2°2			12

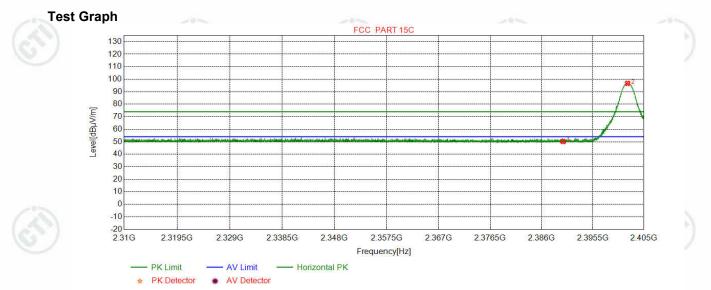


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	78.26	80.92	54.00	-26.92	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	39.57	42.22	54.00	11.78	Pass	Horizontal
1.0	V.								•	

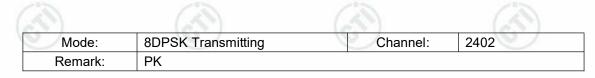


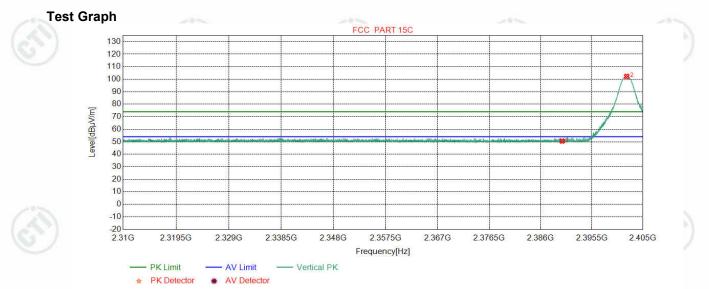
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	81.05	83.71	54.00	-29.71	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	41.38	44.03	54.00	9.97	Pass	Vertical
1.0				•						10



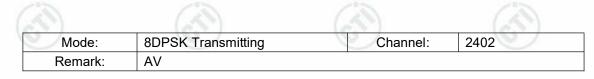


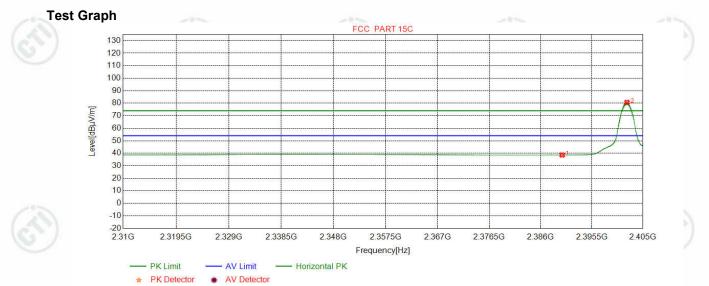
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.67	50.17	74.00	23.83	Pass	Horizontal
2	2401.9661	32.26	13.31	-43.12	94.22	96.67	74.00	-22.67	Pass	Horizontal
1.0				•					•	100



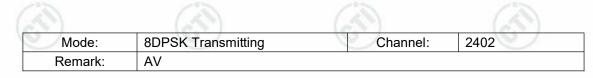


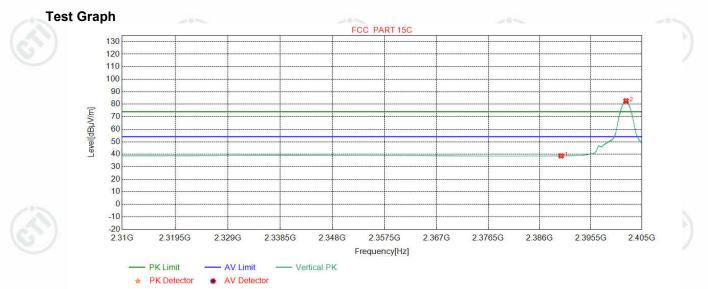
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.97	50.47	74.00	23.53	Pass	Vertical
2	2401.9851	32.26	13.31	-43.12	99.78	102.23	74.00	-28.23	Pass	Vertical
100	2			•			1000			100



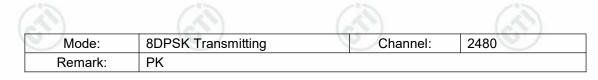


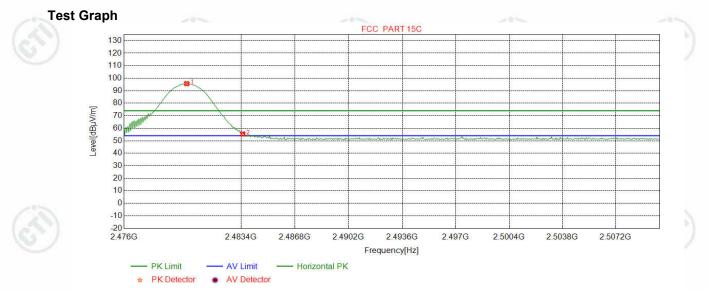
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.12	38.62	54.00	15.38	Pass	Horizontal
2	2402.0421	32.26	13.31	-43.12	78.20	80.65	54.00	-26.65	Pass	Horizontal
1.0	V			•					•	



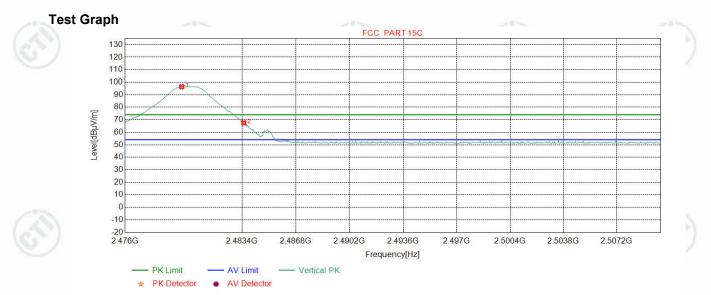


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.24	38.74	54.00	15.26	Pass	Vertical
2	2402.0421	32.26	13.31	-43.12	80.21	82.66	54.00	-28.66	Pass	Vertical
100							100			100



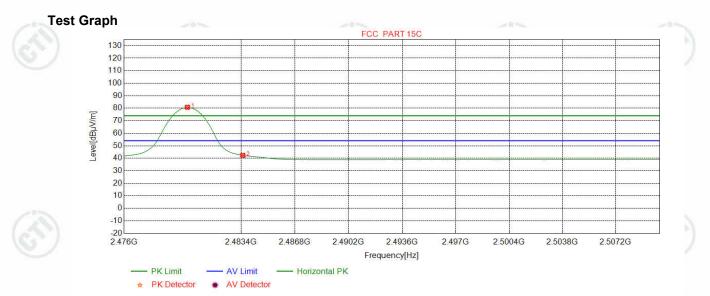


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	93.01	95.67	74.00	-21.67	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	52.80	55.45	74.00	18.55	Pass	Horizontal
100	V.			•		•			•	100



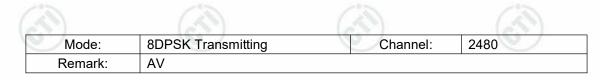
Mode:8DPSK TransmittingChannel:2480Remark:PK

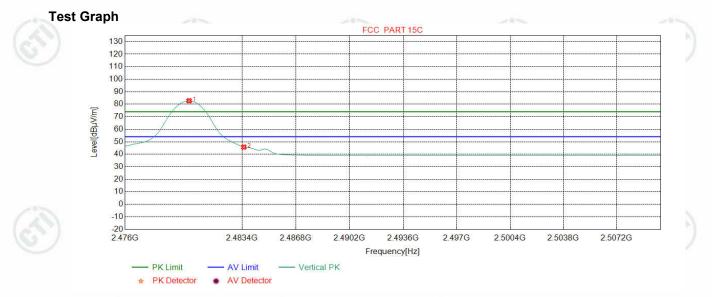
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5745	32.37	13.39	-43.10	93.73	96.39	74.00	-22.39	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	64.81	67.46	74.00	6.54	Pass	Vertical
1.0	2			•			1000			100



Mode:8DPSK TransmittingChannel:2480Remark:AV

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	78.10	80.76	54.00	-26.76	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	39.67	42.32	54.00	11.68	Pass	Horizontal
100				•		•			•	1





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	80.09	82.75	54.00	-28.75	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	43.07	45.72	54.00	8.28	Pass	Vertical

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.find the 3DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 78 of 97

Appendix L) Radiated Spurious Emissions

Receiver Setup:						
•	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
1	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
12	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
6	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:						
Below 1GHz test pr	ocedure as below:					
a. The EUT was place	ced on the top of a rotating t	able 0.8 meters a	above the g	round at a 3	3 meter semi-an	lechoic
camber. The table	e was rotated 360 degrees to	o determine the p	osition of th	e highest r	adiation.	
b. The EUT was set	3 meters away from the inte	rference-receivir	ng antenna,	which was	mounted on the	e top of a
variable-height an			• A			10.0
	ht is varied from one meter t	o four meters ab	ove the aro	und to dete	rmine the maxir	num value
	th. Both horizontal and vertic					
	ed emission, the EUT was a					
	eter to 4 meters (for the test					
	tatable table was turned from					
	system was set to Peak Det	•	•			•

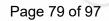
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

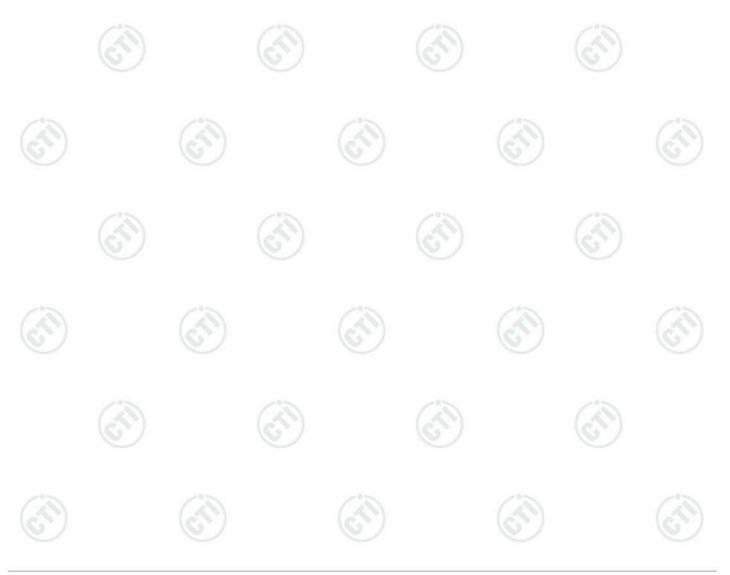
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength	Limit	Domork	Measurement	
(\mathbf{G}^*)	Frequency	(microvolt/meter)	(dBuV/m)	Remark	distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)		-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30	
	1.705MHz-30MHz	30	-	-	30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	~°~
	88MHz-216MHz	150	43.5	Quasi-peak	3	$\langle \gamma \rangle$
	216MHz-960MHz	200	46.0	Quasi-peak	3	51
	960MHz-1GHz	500	54.0	Quasi-peak	3	
	Above 1GHz	500	54.0	Average	3	
	Note: 15.35(b), Unless	otherwise specifie	ed, the limi	t on peak radio	o frequency	
13	emissions is 20d					
(25)	applicable to the			oeak limit appli	es to the total	
	peak emission lev	el radiated by the	device			

3





Report No. : EED32M00213601

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Radiated E	missio	n belov	V 1GHZ		1.00			1631		
Mode	÷		8DPSK	Transmittir	ng			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	40.42	20.92	40.00	19.08	Pass	н	PK
2	96.4516	10.43	1.13	-31.96	52.29	31.89	43.50	11.61	Pass	Н	PK
3	264.2784	12.49	1.94	-31.88	44.19	26.74	46.00	19.26	Pass	Н	PK
4	324.9095	13.75	2.14	-31.80	42.78	26.87	46.00	19.13	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	42.80	33.26	46.00	12.74	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	42.18	35.30	46.00	10.70	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	42.64	23.14	40.00	16.86	Pass	V	PK
8	60.0730	11.58	0.90	-31.80	39.47	20.15	40.00	19.85	Pass	V	PK
9	90.9221	9.55	1.10	-32.07	44.33	22.91	43.50	20.59	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	42.81	24.69	46.00	21.31	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	42.89	33.35	46.00	12.65	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	37.75	33.10	54.00	20.90	Pass	V	PK

	Transmitte	r Emiss	sion ab	ove 1G	Hz								
Mode	Mode:			ransmitting	J			Channel:			2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1794.6795	30.34	3.31	-42.70	57.88	48.83	74.00	25.17	Pass	Н	PK		
2	1990.8991	31.64	3.46	-43.18	61.33	53.25	74.00	20.75	Pass	Н	PK		
3	4804.0000	34.50	4.55	-42.80	56.35	52.60	74.00	21.40	Pass	Н	PK		
4	7205.2804	36.31	5.82	-42.17	54.80	54.76	74.00	19.24	Pass	Н	PK		
5	9612.4408	37.64	6.64	-42.10	51.89	54.07	74.00	19.93	Pass	Н	PK		
6	12010.000	39.31	7.60	-41.90	48.55	53.56	74.00	20.44	Pass	Н	PK		
7	7205.2808	36.31	5.82	-42.16	41.44	41.41	54.00	12.59	Pass	Н	AV		
8	9612.4401	37.64	6.64	-42.10	40.88	43.06	54.00	10.94	Pass	Н	AV		
9	1312.8313	28.21	2.77	-42.77	56.65	44.86	74.00	29.14	Pass	V	PK		
10	1798.2798	30.37	3.32	-42.71	61.70	52.68	74.00	21.32	Pass	V	PK		
11	4804.1203	34.50	4.55	-42.80	60.21	56.46	74.00	17.54	Pass	V	PK		
12	7205.2804	36.31	5.82	-42.17	56.24	56.20	74.00	17.80	Pass	V	PK		
13	9612.4408	37.64	6.64	-42.10	51.98	54.16	74.00	19.84	Pass	V	PK		
14	12010.000	39.31	7.60	-41.90	47.75	52.76	74.00	21.24	Pass	V	PK		
15	4804.1199	34.50	4.55	-42.80	54.06	50.31	54.00	3.69	Pass	V	AV		
16	7205.2812	36.31	5.82	-42.16	43.66	43.63	54.00	10.37	Pass	V	AV		
17	9612.4406	37.64	6.64	-42.10	41.76	43.94	54.00	10.06	Pass	V	AV		

Mode	:		GFSK T	ransmitting]			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1792.2792	30.33	3.31	-42.71	57.78	48.71	74.00	25.29	Pass	Н	PK
2	1990.6991	31.64	3.46	-43.18	56.64	48.56	74.00	25.44	Pass	Н	PK
3	4882.1255	34.50	4.81	-42.80	56.57	53.08	74.00	20.92	Pass	Н	PK
4	7322.2882	36.42	5.85	-42.13	56.17	56.31	74.00	17.69	Pass	Н	PK
5	9760.4507	37.70	6.73	-42.10	52.10	54.43	74.00	19.57	Pass	Н	PK
6	12205.000	39.42	7.67	-41.89	46.72	51.92	74.00	22.08	Pass	Н	PK
7	7322.2891	36.42	5.85	-42.14	43.54	43.67	54.00	10.33	Pass	Н	AV
8	9760.4504	37.70	6.73	-42.10	40.30	42.63	54.00	11.37	Pass	Н	AV
9	1795.0795	30.35	3.31	-42.71	59.26	50.21	74.00	23.79	Pass	V	PK
10	1992.8993	31.65	3.46	-43.18	61.47	53.40	74.00	20.60	Pass	V	PK
11	4882.1255	34.50	4.81	-42.80	60.85	57.36	74.00	16.64	Pass	V	PK
12	7323.2882	36.42	5.85	-42.13	57.23	57.37	74.00	16.63	Pass	V	PK
13	9759.4506	37.70	6.73	-42.09	53.95	56.29	74.00	17.71	Pass	V	PK
14	12205.000	39.42	7.67	-41.89	46.76	51.96	74.00	22.04	Pass	V	PK
15	4882.1246	34.50	4.81	-42.80	54.00	50.51	54.00	3.49	Pass	V	AV
16	7323.2872	36.42	5.85	-42.14	47.85	47.98	54.00	6.02	Pass	V	AV
17	9759.4508	37.70	6.73	-42.10	42.33	44.66	54.00	9.34	Pass	V	AV
62	1	6			0.					6	67)

Page 81 of 97

	- 12						1.70		2.0 %		
Mode	:		GFSK T	ransmitting]		_	Channel:	_	2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1796.6797	30.36	3.31	-42.71	57.22	48.18	74.00	25.82	Pass	Н	PK
2	1996.4997	31.68	3.47	-43.20	55.94	47.89	74.00	26.11	Pass	Н	PK
3	4960.1307	34.50	4.82	-42.80	59.17	55.69	74.00	18.31	Pass	Н	PK
4	7440.2960	36.54	5.85	-42.11	57.72	58.00	74.00	16.00	Pass	Н	PK
5	9916.4611	37.77	6.78	-42.10	52.66	55.11	74.00	18.89	Pass	Н	PK
6	12400.000	39.54	7.86	-41.90	46.82	52.32	74.00	21.68	Pass	Н	PK
7	4960.1314	34.50	4.82	-42.80	51.70	48.22	54.00	5.78	Pass	Н	AV
8	7440.2954	36.54	5.85	-42.11	48.06	48.34	54.00	5.66	Pass	Н	AV
9	9916.4612	37.77	6.78	-42.10	44.60	47.05	54.00	6.95	Pass	Н	AV
10	1800.0800	30.38	3.32	-42.71	59.80	50.79	74.00	23.21	Pass	V	PK
11	1998.4999	31.69	3.47	-43.20	59.58	51.54	74.00	22.46	Pass	V	PK
12	4960.1307	34.50	4.82	-42.80	62.20	58.72	74.00	15.28	Pass	V	PK
13	7439.2960	36.54	5.85	-42.11	58.46	58.74	74.00	15.26	Pass	V	PK
14	9916.4611	37.77	6.78	-42.10	53.95	56.40	74.00	17.60	Pass	V	PK
15	12400.000	39.54	7.86	-41.90	46.91	52.41	74.00	21.59	Pass	V	PK
16	4960.1306	34.50	4.82	-42.80	55.41	51.93	54.00	2.07	Pass	V	AV
17	7439.2963	36.54	5.85	-42.11	45.66	45.94	54.00	8.06	Pass	V	AV
18	9916.4602	37.77	6.78	-42.10	45.13	47.58	54.00	6.42	Pass	V	AV

Mode	:		8DPSK	Transmit	ting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1999.7000	31.70	3.47	-43.20	54.37	46.34	74.00	27.66	Pass	Н	PK
2	3024.0016	33.21	4.88	-43.10	50.66	45.65	74.00	28.35	Pass	Н	PK
3	4803.1202	34.50	4.55	-42.80	58.75	55.00	74.00	19.00	Pass	Н	PK
4	7206.2804	36.31	5.81	-42.16	55.51	55.47	74.00	18.53	Pass	Н	PK
5	9612.4408	37.64	6.64	-42.10	52.52	54.70	74.00	19.30	Pass	Н	PK
6	12010.000	39.31	7.60	-41.90	47.26	52.27	74.00	21.73	Pass	Н	PK
7	4803.1203	34.50	4.55	-42.80	43.85	40.10	54.00	13.90	Pass	Н	AV
8	7206.2798	36.31	5.81	-42.16	44.68	44.64	54.00	9.36	Pass	Н	AV
9	9612.4399	37.64	6.64	-42.10	41.86	44.04	54.00	9.96	Pass	Н	AV
10	1399.4399	28.30	2.90	-42.68	56.00	44.52	74.00	29.48	Pass	V	PK
11	1791.2791	30.32	3.30	-42.70	62.89	53.81	74.00	20.19	Pass	V	PK
12	4803.1202	34.50	4.55	-42.80	61.70	57.95	74.00	16.05	Pass	V	PK
13	7206.2804	36.31	5.81	-42.16	57.65	57.61	74.00	16.39	Pass	V	PK
14	9611.4408	37.64	6.64	-42.10	53.84	56.02	74.00	17.98	Pass	V	PK
15	12010.000	39.31	7.60	-41.90	47.08	52.09	74.00	21.91	Pass	V	PK
16	4803.1204	34.50	4.55	-42.80	46.08	42.33	54.00	11.67	Pass	V	AV
17	7206.2806	36.31	5.81	-42.16	46.94	46.90	54.00	7.10	Pass	V	AV
18	9611.4418	37.64	6.64	-42.10	43.24	45.42	54.00	8.58	Pass	V	AV

Mode	:		8DPSK	Transmit	ting			Channel:		2441	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1117.0117	28.02	2.60	-42.98	61.20	48.84	74.00	25.16	Pass	Н	PK
2	2987.5988	33.18	4.51	-43.10	54.81	49.40	74.00	24.60	Pass	н	PK
3	4883.1255	34.50	4.81	-42.80	58.69	55.20	74.00	18.80	Pass	Н	PK
4	7322.2882	36.42	5.85	-42.13	53.70	53.84	74.00	20.16	Pass	Н	PK
5	9760.4507	37.70	6.73	-42.10	53.04	55.37	74.00	18.63	Pass	н	PK
6	12205.000	39.42	7.67	-41.89	45.66	50.86	74.00	23.14	Pass	Н	PK
7	4883.1257	34.50	4.81	-42.80	42.06	38.57	54.00	15.43	Pass	Н	AV
8	9760.4501	37.70	6.73	-42.10	42.15	44.48	54.00	9.52	Pass	Н	AV
9	1158.6159	28.06	2.68	-42.93	54.36	42.17	74.00	31.83	Pass	V	PK
10	1994.2994	31.66	3.46	-43.18	60.49	52.43	74.00	21.57	Pass	V	PK
11	4882.1255	34.50	4.81	-42.80	60.97	57.48	74.00	16.52	Pass	V	PK
12	7323.2882	36.42	5.85	-42.13	55.08	55.22	74.00	18.78	Pass	V	PK
13	9760.4507	37.70	6.73	-42.10	52.63	54.96	74.00	19.04	Pass	V	PK
14	12205.000	39.42	7.67	-41.89	45.65	50.85	74.00	23.15	Pass	V	PK
15	4882.1255	34.50	4.81	-42.80	53.26	49.77	54.00	4.23	Pass	V	AV
16	7323.2873	36.42	5.85	-42.14	46.63	46.76	54.00	7.24	Pass	V	AV
17	9760.4501	37.70	6.73	-42.10	40.79	43.12	54.00	10.88	Pass	V	AV

Mod	e:		8DPSK	Transmit	ting			Channel:		2480	
N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1800.2800	30.38	3.32	-42.71	54.67	45.66	74.00	28.34	Pass	Н	PK
2	2000.1000	31.70	3.47	-43.20	56.13	48.10	74.00	25.90	Pass	н	PK
3	4960.1307	34.50	4.82	-42.80	59.84	56.36	74.00	17.64	Pass	Н	PK
4	7440.2960	36.54	5.85	-42.11	56.37	56.65	74.00	17.35	Pass	Н	PK
5	9915.4610	37.77	6.78	-42.10	52.49	54.94	74.00	19.06	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.40	52.90	74.00	21.10	Pass	Н	PK
7	4960.1297	34.50	4.82	-42.80	50.34	46.86	54.00	7.14	Pass	Н	AV
8	7440.2953	36.54	5.85	-42.11	45.40	45.68	54.00	8.32	Pass	н	AV
9	9915.4613	37.77	6.78	-42.10	44.89	47.34	54.00	6.66	Pass	Н	AV
10	4960.1307	34.50	4.82	-42.80	63.85	60.37	74.00	13.63	Pass	V	PK
11	7440.2960	36.54	5.85	-42.11	57.15	57.43	74.00	16.57	Pass	V	PK
12	9916.4611	37.77	6.78	-42.10	52.54	54.99	74.00	19.01	Pass	V	PK
13	12400.0000	39.54	7.86	-41.90	46.70	52.20	74.00	21.80	Pass	V	PK
14	4960.1299	34.50	4.82	-42.80	54.07	50.59	54.00	3.41	Pass	V	AV
15	7440.2966	36.54	5.85	-42.11	46.31	46.59	54.00	7.41	Pass	V	AV
16	9916.4602	37.77	6.78	-42.10	46.16	48.61	54.00	5.39	Pass	V	AV

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.find the 3DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

