

Global United Technology Services Co., Ltd.

Report No.: GTS202103000066-01

TEST REPORT

Applicant: CartaSense Ltd.

Address of Applicant: 6 Ravnitzki street, Petach-Tikva, Israel 49277

Manufacturer: CartaSense Ltd.

Address of 6 Ravnizki St. ,Petah Tikva, Israel 4900617

Manufacturer:

Equipment Under Test (EUT)

Product Name: O-Sensor stationary / O-Sensor mobile

Model No.: 100700-XX

FCC ID: 2AAEP-OSENSOR

IC: 11128A-OSENSOR

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-247 Issue 3 RSS-Gen Issue 5

Date of sample receipt: March 05, 2023

Date of Test: March 05, 2023-August 31, 2023

Date of report issued: August 31, 2023

Test Result: PASS *

Authorized Signature:

TESTING NVLAP LAB CODE 600179-0

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 32

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	August 31, 2023	Original

Prepared By:	Jasan Elly Date:	August 31, 2023
	Project Engineer	
Check By:	Latinsong Lun Date:	August 31, 2023
	Reviewer	

Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
٠			
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY TEST LOCATION	
	5.7 5.8	ADDITIONAL INSTRUCTIONS	
		아내가 있는 경기 가는 가는 어느 아니는 것은 것이다. 그 나는 사람들이 되는 것은 사람들이 살아 있다. 그 나는 것은 것은 것은 것은 것은 것은 것은 것이다.	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED OUTPUT POWER	
	7.3	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH.	
	7.4	POWER SPECTRAL DENSITY	13
	7.5	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	14
	7.5.1	1 Conducted Emission Method	14
	7.5.2	Radiated Emission Method	15
	7.6	FREQUENCY STABILITY	30
8	TES	T SETUP PHOTO	32
0		CONSTRUCTIONAL DETAILS	22
u		CONCIDITE HONOR DEIATE	-2')

4 Test Summary

Test Item	Section in CFR 47	Result
Antonno roquiroment	15.203/15.247 (c)	Pass
Antenna requirement	RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	15.207	N/A
AC Fower Line Conducted Emission	RSS-Gen Section 8.8	IN/A
Conducted Output Power	15.247 (b)(3)	Pass
Conducted Output Power	RSS-247 Section 5.4(d)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Charnel Bandwidth	RSS-247 Section 5.2(a)	rass
99% Occupy Bandwidth	RSS-Gen Section 6.7	Pass
Power Spectral Density	15.247 (e)	Pass
r ower Spectral Delisity	RSS-247 Section 5.2(b)	T 455
Band Edge	15.247(d)	Pass
Bana Euge	RSS-247 Section 5.5	1 433
Spurious Emission	15.205/15.209	Pass
Spullous Effission	RSS-247 Section 5.5	r ass
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013 and RSS-Gen.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	O-Sensor stationary / O-Sensor mobile
Model No.:	100700-XX
Test sample(s) ID:	GTS202103000066-1
Sample(s) Status:	Engineer sample
S/N:	000001
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Integral Antenna
Antenna Gain:	1.42dBi
Power Supply:	NON-RECHEARGEABLE: 1.8 Volt - 3.3 Volt
	Or
	RECHEARGEABLE: 4.5 Volt - 5.5 Volt

Remark:

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Report No.: GTS202103000066-01

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

realistificing mode Reep the EOT in continuously transmitting mode		Transmitting mode	Keep the EUT in continuously transmitting mode
--	--	-------------------	--

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
MEILI	DC POWER SUPPLY	MCH-305A	011121168

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• ISED —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with Registration No.: 9079A

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional instructions

Test Software	Test command provide by manufacturer.
Power level setup	Default

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024	
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023	
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024	
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024	
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023	
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023	
13	FSV·Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024	
14	Amplifier		LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024	
15	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023	
16	Wideband Amplifier		WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024	
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024	
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024	
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024	
20	RE cable 3	GTS	N/A	GTS677	July 31. 2023	July 30. 2024	
21	RE cable 4	GTS	N/A	GTS678	July 31. 2023	July 30. 2024	
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024	
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024	
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024	
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024	

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024		
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024		
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024		

Gene	eral used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Standard requirement: RSS-Gen Section 6.8

A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

E.U.T Antenna:

The antenna is Integral antenna, reference to the appendix II for details

7.2 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
	RSS-247 Section 5.4(d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen		
Limit:	30dBm		
	36dBm(4W for e.i.r.p)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.3 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2) & RSS-247 Section 5.2(a)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
	RSS-247 Section 5.2(b)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 and RSS-Gen		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.5 Spurious Emission in Non-restricted & restricted Bands

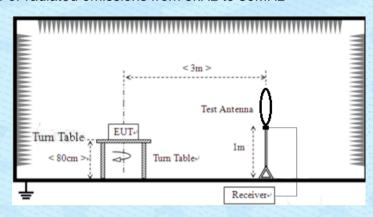
7.5.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
	RSS-247 Section 5.5			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05			
	& RSS-Gen			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

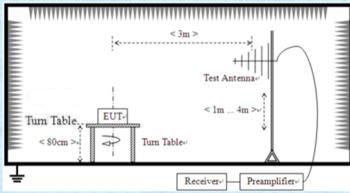
7.5.2 Radiated Emission Method

Test Requirement:	ECC Part15 C Sc	oction 15 200			
rest Nequirement.	FCC Part15 C Section 15.209 RSS-247 Section 3.3 & RSS-Gen Section 8.9				
Test Method:					
		ANSI C63.10:2013 & RSS-Gen			
Test Frequency Range:	9kHz to 25GHz	-1			
Test site:	Measurement Dis			N.D.III	
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz		200Hz	600Hz	Quasi-peak
	150KHz-30MH		9KHz	30KHz	Quasi-peak
	30MHz-1GHz		120KHz	300KHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
		Peak	1MHz	10Hz	Average
FCC Limit:		ield strength (microvolts/r 400/F(kHz)	meter) Me	easurement dist	tance (meters)
		4000/F(kHz)			3
	1.705-30.0 30 30-88 10	00**			3
		50**			
	216-960 20 Above 960 50	00** 00 mits shown in the			
	216-960 20 Above 960 50 The emission line measurements the frequency by Radiated emiss	00**	PR quasi-p 10-490 kH three ban	eak detec z and abo ds are bas	tor except for ve 1000 MHz
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these	PR quasi-p 10-490 kH e three ban erage detec	eak detect z and abords ds are basector.	tor except for ve 1000 MHz sed on
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an av	PR quasi-p 10-490 kH e three ban erage detec	eak detect z and abords are basector. Incies above 30 angth	tor except for ve 1000 MHz sed on
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an avenue eneral field strength lift requency (MHz) 30-88	PR quasi-p 10-490 kH three ban erage detec mits at frequen Field stree (µV/m at 1	eak detect z and abords are basector. Incies above 30 angth	tor except for ve 1000 MHz sed on
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an avenue eneral field strength lift requency (MHz) 30-88 88-216	PR quasi-p 10-490 kH three ban erage detect mits at frequen (µV/m at 100 150	eak detect z and abords are basector. Incies above 30 angth	tor except for ve 1000 MHz sed on
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an avenue eneral field strength lift Frequency (MHz) 30 - 88 88 - 216 216 - 960	PR quasi-p 10-490 kH e three ban erage detec mits at frequen Field stree (µV/m at 100 150 200	eak detect z and abords are basector. Incies above 30 angth	tor except for ve 1000 MHz sed on
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an avenue eneral field strength lift requency (MHz) 30-88 88-216	PR quasi-p 10-490 kH three ban erage detect mits at frequen (µV/m at 100 150	eak detect z and abords are basector. Incies above 30 angth	tor except for ve 1000 MHz sed on
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements Table 5 – Ge	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an avenue eneral field strength lift Frequency (MHz) 30 - 88 88 - 216 216 - 960	PR quasi-p 10-490 kH e three ban erage detec mits at frequen Field stree (µV/m at 100 150 200 500	eak detect and about a are based tor. Increase above 30 angth 3 m)	tor except for ve 1000 MHz sed on 0 MHz
IC Limit:	The emission line measurements the frequency be Radiated emiss measurements Table 5 – Ge	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an average employing an average employing an average (MHz) 30 - 88 88 - 216 216 - 960 Above 960 Magnetic firety	PR quasi-p 10-490 kH three ban erage detect mits at frequen Field stree (µV/m at 100 150 200 500 mits at frequen eld strength (Field)	eak detect z and abords are basector. Incies above 30 angth 3 m) Incies below 30 and	tor except for ve 1000 MHz sed on 0 MHz 0 MHz ement nce
IC Limit:	Table 6 – Ge	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an avenue eneral field strength lift requency (MHz) 30 - 88 88 - 216 216 - 960 Above 960 Magnetic fields trength lift recy Magnetic fields trength lift recy	PR quasi-p 10-490 kH three ban erage detect mits at frequent Field stree (µV/m at 100 150 200 500 mits at frequent teld strength (Field) µA/m)	eak detect z and abords are basector. Incies above 30 angth 3 m) Incies below 30 and	tor except for ve 1000 MHz sed on 0 MHz 0 MHz ement nce
IC Limit:	Table 6 – Ge	mits shown in the employing a CIS pands 9-90 kHz, 1 sion limits in these employing an aveneral field strength li Frequency (MHz) 30 - 88 88 - 216 216 - 960 Above 960 eneral field strength li Magnetic field strength li check (Hz 1 6.37/F	PR quasi-p 10-490 kH three ban erage detect mits at frequen Field stree (µV/m at 100 150 200 500 mits at frequen eld strength (Field)	eak detect z and about a are basector. Incies above 30 angth 3 m) Incies below 30 distant (m)	tor except for ve 1000 MHz sed on 0 MHz 0 MHz

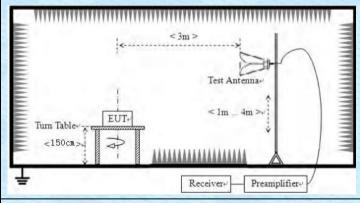
1.705 **-** 30 MHz


0.08

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.



Test setup:


For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

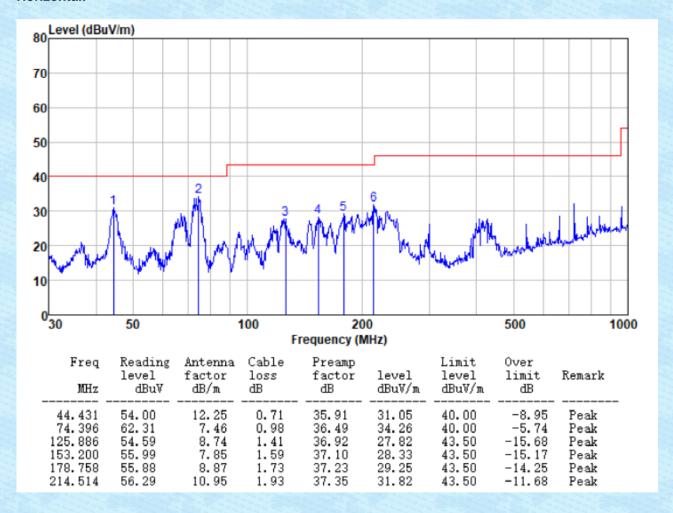
				Report No.:	GTS2021030	000066-01
	measure	ment.				
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.					
			em was set t with Maximur			nd
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of th EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			alues of the t have si-peak or		
Test Instruments:	Refer to sec	ction 6.0 for o	details			
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test results:	Pass					

Measurement data:

Remark:

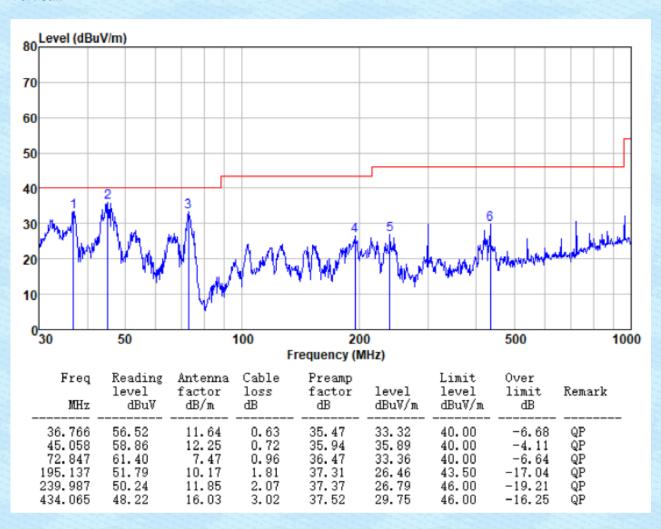
Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

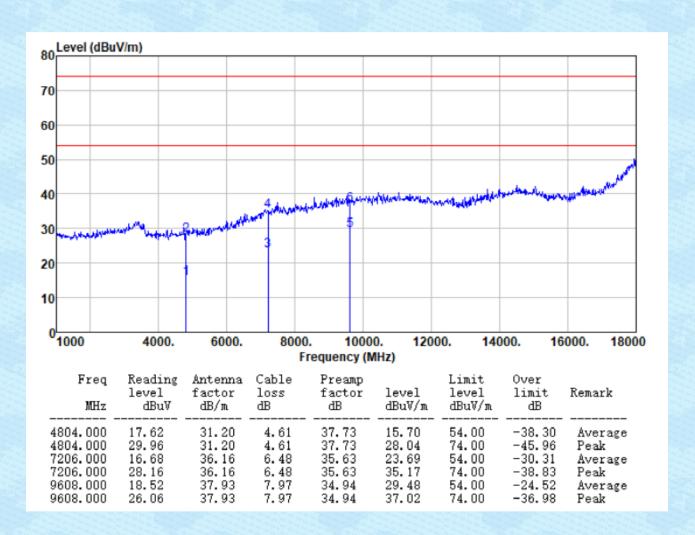
■ Below 1GHz

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz


Horizontal:

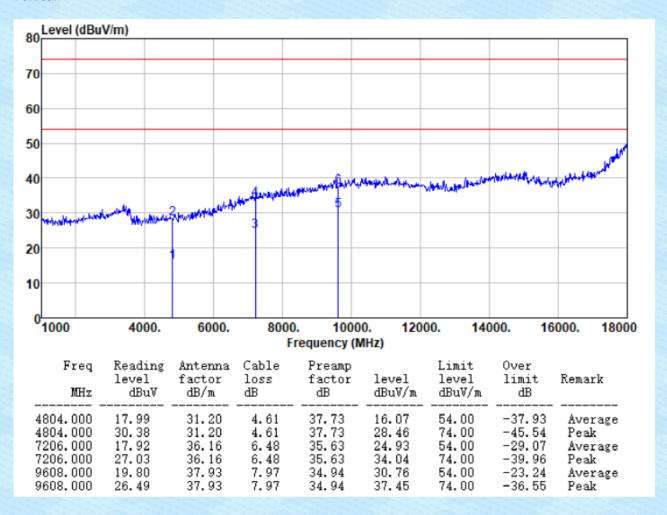
Report No.: GTS202103000066-01

Vertical:



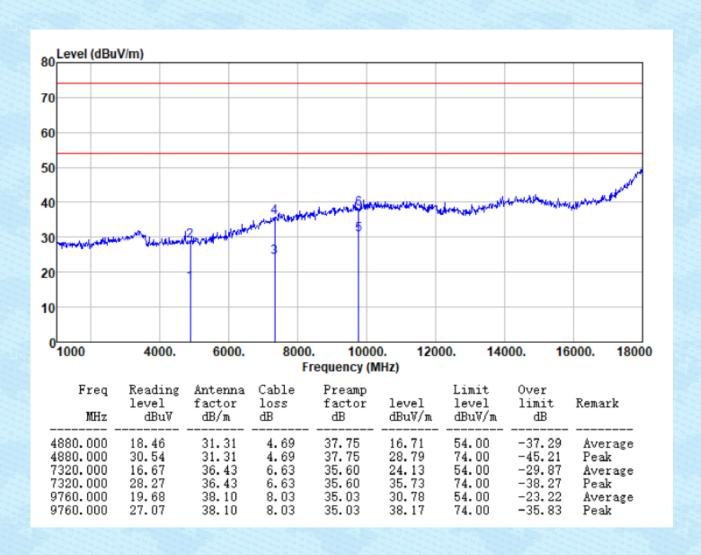
Report No.: GTS202103000066-01

- Above 1GHz
- Unwanted Emissions in Restricted Frequency Bands

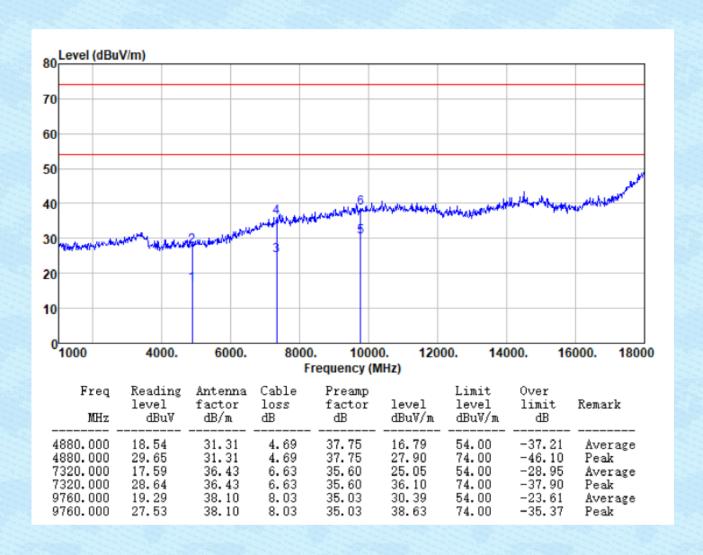

Test channel:	Lowest
---------------	--------

Horizontal:

Vertical:

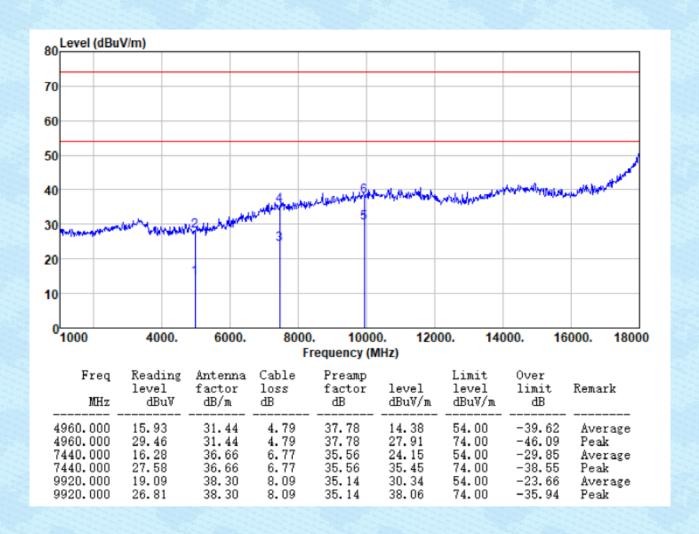


Report No.: GTS202103000066-01

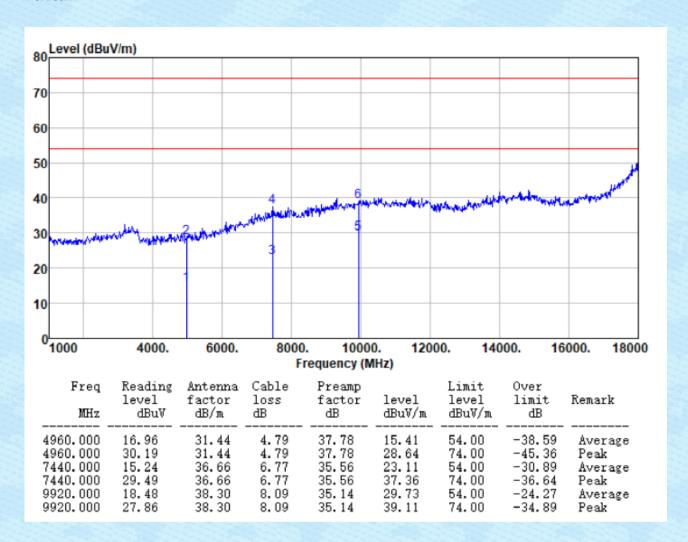

Test channel:	Middle

Horizontal:

Vertical:



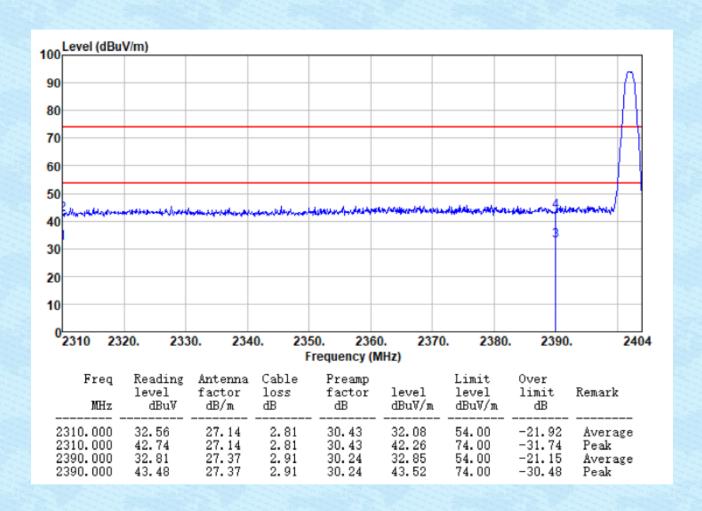
Report No.: GTS202103000066-01


Test channel:	Highest

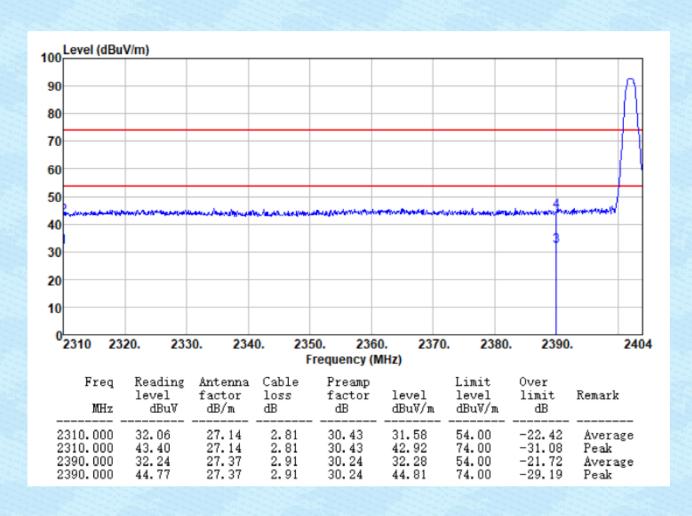
Horizontal:

Vertical::

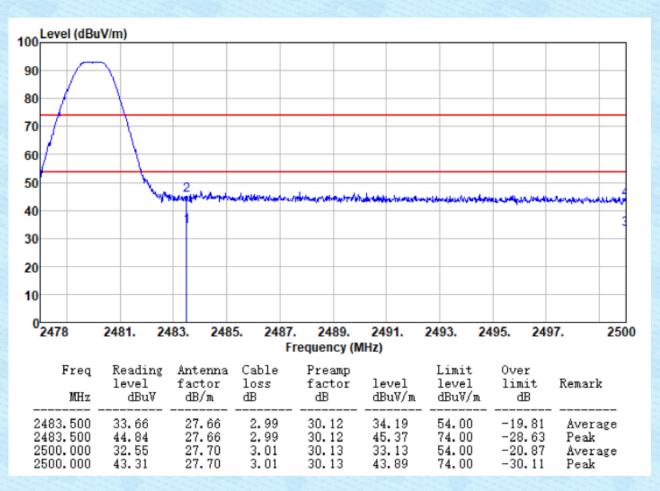
Remarks:

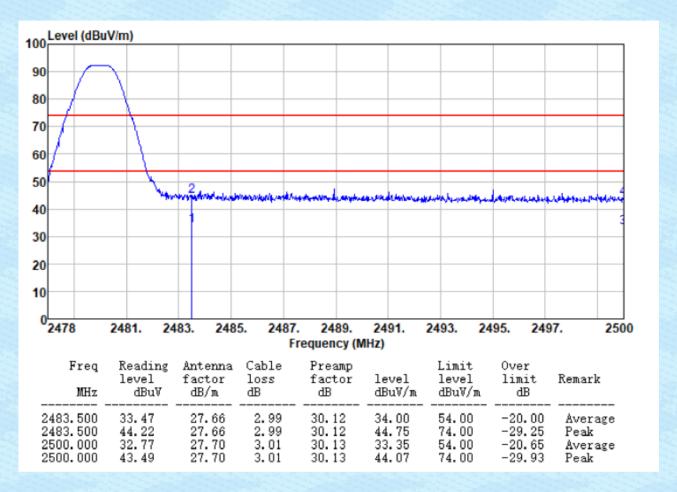

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

■ Unwanted Emissions in Non-restricted Frequency Bands


Test channel:	Lowest
---------------	--------

Horizontal:


Vertical:


Report No.: GTS202103000066-01

Horizontal:

Vertical::

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Report No.: GTS202103000066-01

7.6 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.11					
Test Method:	ANSI C63.10: 2013 & RSS-Gen					
Limit:	Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.10, 2013; tested to 2.1055 for compliance to RSS-Gen requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Report No.: GTS202103000066-01

Measurement data:

Frequency stability versus Temp.								
Power Supply: DC5V								
		0 minute	2 minute	5 minute	10 minute			
Temp.	Operating	Measured	Measured	Measured	Measured	Pass		
(°C)	Frequency	Frequency	Frequency	Frequency	Frequency	/Fail		
(0)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	71 (41)		
-30	2402	2,402.0080	2,402.0152	2,402.0128	2,402.0104	Pass		
	2440	2,440.0083	2,440.0156	2,440.0181	2,440.0107	Pass		
	2480	2,480.0088	2,480.0162	2,480.0187	2,480.0112	Pass		
-20	2402	2,402.0082	2,402.0154	2,402.0178	2,402.0106	Pass		
	2440	2,440.0091	2,440.0164	2,440.0188	2,440.0115	Pass		
	2480	2,480.0088	2,480.0163	2,480.0188	2,480.0113	Pass		
-10	2402	2,402.0090	2,402.0162	2,402.0186	2,402.0114	Pass		
	2440	2,440.0088	2,440.0161	2,440.0186	2,440.0113	Pass		
	2480	2,480.0088	2,480.0163	2,480.0187	2,480.0113	Pass		
	2402	2,402.0082	2,402.0154	2,402.0178	2,402.0106	Pass		
0	2440	2,440.0083	2,440.0156	2,440.0181	2,440.0107	Pass		
	2480	2,480.0081	2,480.0156	2,480.0180	2,480.0106	Pass		
	2402	2,402.0083	2,402.0155	2,402.0179	2,402.0107	Pass		
10	2440	2,440.0087	2,440.0160	2,440.0185	2,440.0111	Pass		
	2480	2,480.0088	2,480.0163	2,480.0187	2,480.0113	Pass		
	2402	2,402.0082	2,402.0154	2,402.0178	2,402.0106	Pass		
20	2440	2,440.0089	2,440.0162	2,440.0187	2,440.0114	Pass		
	2480	2,480.0083	2,480.0158	2,480.0183	2,480.0108	Pass		
	2402	2,402.0078	2,402.0150	2,402.0174	2,402.0102	Pass		
30	2440	2,440.0082	2,440.0155	2,440.0180	2,440.0107	Pass		
	2480	2,480.0089	2,480.0164	2,480.0188	2,480.0114	Pass		
	2402	2,402.0087	2,402.0159	2,402.0183	2,402.0111	Pass		
40	2440	2,440.0074	2,440.0148	2,440.0172	2,440.0099	Pass		
	2480	2,480.0076	2,480.0151	2,480.0176	2,480.0101	Pass		
50	2402	2,402.0073	2,402.0145	2,402.0169	2,402.0097	Pass		
	2440	2,440.0074	2,440.0148	2,440.0172	2,440.0099	Pass		
	2480	2,480.0076	2,480.0151	2,480.0175	2,480.0101	Pass		
			y stability versi					
		Te	emperature: 25					
Power	Operating	0 minute	2 minute	5 minute	10 minute			
Supply	Frequency	Measured	Measured	Measured	Measured	Pass		
(VDC)	(MHz)	Frequency	Frequency	Frequency	Frequency	/Fail		
(VDO)	(1711 12)	(MHz)	(MHz)	(MHz)	(MHz)			
	2402	2,402.0085	2,402.0157	2,402.0133	2,402.0109	Pass		
1.8	2440	2,440.0084	2,440.0157	2,440.0133	2,440.0108	Pass		
	2480	2,480.0084	2,480.0158	2,480.0133	2,480.0108	Pass		
	2402	2,402.0088	2,402.0160	2,402.0136	2,402.0112	Pass		
5.0	2440	2,440.0087	2,440.0160	2,440.0135	2,440.0111	Pass		
	2480	2,480.0089	2,480.0164	2,480.0139	2,480.0114	Pass		
5.5	2402	2,402.0078	2,402.0150	2,402.0126	2,402.0102	Pass		
	2440	2,440.0080	2,440.0153	2,440.0128	2,440.0104	Pass		
	2480	2,480.0084	2,480.0158	2,480.0133	2,480.0108	Pass		

8 Test Setup Photo

Reference to the **Appendix I** for details.

9 EUT Constructional Details

Reference to the Appendix II for details.

-----End-----