## RF Exposure Report

Report No.: SA170209C07B
FCC ID: 2AAEDWP2117
Test Model: WiCS-2100
Received Date: Feb. 09, 2017
Test Date: Mar. 08, 2017
Issued Date: May 06, 2017

Applicant: Barco NV
Address: President Kennedypark 35, 8500 Kortrijk, Belgium

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

## Table of Contents

Release Control Record ..... 3
1 Certificate of Conformity ..... 4
2 RF Exposure ..... 5
2.1 Limits For Maximum Permissible Exposure (MPE) ..... 5
2.2 MPE Calculation Formula ..... 5
2.3 Classification ..... 5
2.4 Antenna Gain ..... 6
2.5 Calculation Result of Maximum Conducted Power ..... 7

## Release Control Record

| Issue No. | Description | Date Issued |
| :--- | :--- | :--- |
| SA170209C07B | Original release. | May 06, 2017 |

## 1 Certificate of Conformity

Product: WiCS-2100
Brand: wePresent
Test Model: WiCS-2100
Sample Status: ENGINEERING SAMPLE
Applicant: Barco NV
Test Date: Mar. 08, 2017
Standards: FCC Part 2 (Section 2.1091)
KB 447498 D01 General RF Exposure Guidance v06
IEEE C95.1-1992

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taiyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :
 , Date: $\qquad$
Wendy Wu / Specialist

Approved by : $\qquad$ , Date: $\qquad$ May 06, 2017
May Chen / Manager

## 2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

| Frequency Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength $(\mathrm{V} / \mathrm{m})$ | Magnetic Field <br> Strength $(\mathrm{A} / \mathrm{m})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Average Time <br> $($ minutes $)$ |
| :---: | :---: | :---: | :---: | :---: |
| Limits For General Population / Uncontrolled Exposure |  |  |  |  |
| $0.3-1.34$ | 614 | 1.63 | $(100)^{\star}$ | 30 |
| $1.34-30$ | $824 / \mathrm{f}$ | $2.19 / \mathrm{f}$ | $\left(180 / \mathrm{f}^{2}\right)^{\star}$ | 30 |
| $30-300$ | 27.5 | 0.073 | 0.2 | 30 |
| $300-1500$ | $\ldots$ | $\ldots$ | $\mathrm{f} / 1500$ | 30 |
| $1500-100,000$ | $\ldots$ | $\ldots$ | 1.0 | 30 |

$\mathrm{f}=$ Frequency in MHz ; *Plane-wave equivalent power density

### 2.2 MPE Calculation Formula

Pd $=\left(\right.$ Pout $\left.{ }^{*} G\right) /\left(4^{*}\right.$ pi $\left.^{*} r^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$\mathrm{G}=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

### 2.3 Classification

The antenna of this product, under normal use condition, is at least 20 cm away from the body of the user.
So, this device is classified as Mobile Device.

### 2.4 Antenna Gain

| For 2.4GHz \& BT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Antenna No. | Brand | Model | Antenna Net. $\text { Gain }(\mathrm{dBi})$ | Frequency range (GHz) | Antenna Type |
| $\begin{gathered} 1 \\ \text { (Main-WLAN+BT } \\ \text { combo Ant) } \\ \hline \end{gathered}$ | Pegatron Corp. | Pegatron $\mathrm{P} / \mathrm{N}$ : 1415-05VU000 (Hong-Bo P/N: 290-30536 ) | 2.85 | $2.4 \sim 2.4835$ | PCB |
| $\begin{gathered} 2 \\ (\text { Aux-WLAN Ant) } \end{gathered}$ |  |  | 1.76 | 2.4~2.4835 |  |
| For 5GHz |  |  |  |  |  |
| Antenna No. | Brand | Model | Antenna Net. Gain(dBi) | Frequency range (GHz) | Antenna Type |
| $\begin{gathered} 1 \\ (\text { Main-WLAN Ant) } \end{gathered}$ | Pegatron Corp. | Pegatron $\mathrm{P} / \mathrm{N}$ : 1415-05VU000 (Hong-Bo P/N: 290-30536 ) | 2.58 | 5.15~5.25 | PCB |
|  |  |  | 3.37 | 5.25~5.35 |  |
|  |  |  | 3.68 | 5.47~5.725 |  |
|  |  |  | 3.58 | 5.725~5850 |  |
| $\stackrel{2}{(\text { Aux-WLAN Ant) }}$ | Pegatron Corp. | Pegatron P/N: 1415-05VT000 (Hong-Bo P/N: 290-30535) | 2.76 | 5.15~5.25 | PCB |
|  |  |  | 3.4 | 5.25~5.35 |  |
|  |  |  | 3.26 | 5.47~5.725 |  |
|  |  |  | 2.07 | 5.725~5850 |  |

### 2.5 Calculation Result of Maximum Conducted Power

For $2.4 \mathrm{GHz}, 5 \mathrm{GHz}$ (U-NII-1 \& UNII-3 band) and bluetooth data was copied from the original test report (Report No.: SA170209C07)

For WLAN:

| Frequency <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2412-2462$ | 399.052 | 5.33 | 20 | 0.27087 | 1 |
| $5180-5240$ | 126.192 | 5.68 | 20 | 0.09285 | 1 |
| $5260-5320$ | 105.958 | 6.4 | 20 | 0.09202 | 1 |
| $5500-5580$ <br> $\&$ <br> $5660-5700$ | 102.479 | 6.48 | 20 | 0.09065 | 1 |
| $5745-5825$ | 200 | 5.87 | 20 | 0.15373 | 1 |

NOTE:
2.4GHz: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=5.33 \mathrm{dBi}$

5 GHz :
UNII-1: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=5.68 \mathrm{dBi}$
UNII-2A: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=6.4 \mathrm{dBi}$
UNII-2C: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=6.48 \mathrm{dBi}$
UNII-3: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=5.87 \mathrm{dBi}$

## For BT-LE:

| Frequency <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2402-2480$ | 3.162 | 2.85 | 20 | 0.00121 | 1 |

NOTE: 1. This power include tune-up tolerance range that specified in WiCS-2100 Tune Up power table

## Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + . .....etc. < 1
CPD = Calculation power density
LPD = Limit of power density

WLAN 2.4GHz + BT-LE $=0.27087 / 1+0.00121 / 1=0.27208$
WLAN 5GHz + BT-LE $=0.15373 / 1+0.00121 / 1=0.15494$
Therefore the maximum calculations of above situations are less than the " 1 " limit.

